Система охлаждения двигателя описание,принцип работы,устройство,промывка,неисправности.
Содержание статьи
ИСТОРИЯ СИСТЕМЫ ОХЛАЖДЕНИЯ ДВИГАТЕЛЯ
Стоит признать, что система охлаждения двигателя всегда была в автомобилях, правда, её конструкция с годами кардинально менялась. Если смотреть исключительно в сегодняшний день, то в большинстве автомобилей установлен жидкостный тип. К его основным преимуществам можно причислить компактность и высокую производительность. Но так было далеко не всегда.
Первые системы охлаждения двигателей были крайне ненадёжными. Пожалуй, если вы напряжёте память, то вспомните фильмы, в которых события происходят в конце XIX и в начала XX века. В то время машина на обочине с дымящимся двигателем была обычным явлением.
Внимание!Изначально основной причиной перегрева двигателя н было использование в качестве охлаждающей жидкости воды.
Вы как автомобилист должны знать, что в современных автомобилях в качестве ресурса для системы охлаждения используется антифриз. Его аналог даже был в Советском Союзе, только назывался он тосолом.
В принципе, это одно и то же вещество. В его основе лежит спирт, но из-за дополнительных присадок эффективность антифриза кардинально выше. К примеру, тосол в системе охлаждения двигателя покрывает защитной плёнкой абсолютно всё, что крайне негативно сказывается на теплоотдаче. Из-за этого ресурс мотора сокращается.
Антифриз действует совершенно по-другому. Он покрывает защитной плёнкой только проблемные места. Также среди отличий можно вспомнить дополнительные присадки, которые есть в антифризе, разную температуру закипания и так далее. В любом случае наиболее показательным будет сравнение с водой.
Вода закипает при температуре в 100 градусов. Температура кипения антифриза составляет порядка 110—115 градусов. Естественно, благодаря этому случаи закипания двигателя практически исчезли.
Стоит признать, что конструкторами было проведено множество опытов, направленных на то, чтобы модернизировать систему охлаждения двигателя. Достаточно вспомнить исключительно воздушное охлаждение. Такие системы довольно активно применялись в 50—70 годах прошлого века. Но из-за низкой эффективности и громоздкости довольно быстро вышли из употребления.
В качестве успешных примеров автомобилей с воздушными системами охлаждения двигателей можно вспомнить:
- Fiat 500,
- Citroën 2CV,
- Фольксваген Жук.
В Советском Союзе также были автомобили, работающие при помощи воздушной системы охлаждения двигателя. Пожалуй, каждый автомобилист, родившийся в СССР, помнит легендарных «запорожцев», у которых двигатель был установлен сзади.
Принцип работы системы охлаждения двигателя в действии
Налаженная работа охлаждения обусловлена наличием системы управления. В автомобилях с современными двигателями её действия основаны на математической модели, в которой учтены различные показатели параметров системы:
- температура смазочного масла;
- температура жидкости, используемой для охлаждения двигателя;
- температура наружной среды;
- другие важные показатели, влияющие на работу системы.
Система управления, оценивая различные параметры и их влияние на работу системы, компенсирует их влияние регулированием условий работы управляемых элементов.
С помощью центробежного насоса осуществляется принудительная циркуляция охлаждающей жидкости в системе. Проходя через рубашку охлаждения жидкость нагревается, а попав в радиатор — остывает. Нагревая жидкость, сами детали двигателя остывают. В рубашке охлаждения жидкость может циркулировать как в продольном (по линии цилиндров), так и в поперечном направлении (от одного коллектора к другому).
От температуры охлаждающей жидкости зависит круг ее циркуляции. Во время запуска двигателя он сам и охлаждающая жидкость холодные, и чтобы ускорить его нагрев жидкость направляется на малый круг циркуляции, минуя радиатор. В дальнейшем, при нагревании двигателя, термостат нагревается и меняет свое рабочее положение на полуоткрытое. Вследствие этого охлаждающая жидкость начинает течь через радиатор.
Если встречного потока воздуха радиатора недостаточно для понижения температуры жидкости до требуемого значения, включается вентилятор, образующий дополнительный поток воздуха. Охлажденная жидкость вновь попадает в рубашку охлаждения и цикл повторяется.
Если в автомобиле используется турбонаддув, то он может быть оснащен двухконтурной системой охлаждения. Первый её контур охлаждает сам двигатель, а второй — наддувочный поток воздуха.
Устройство системы охлаждения двигателя
При рассмотрении устройства системы охлаждения первое, что может броситься в глаза – так это то, что в системе охлаждения двигателя нет бака, где хранится жидкость. Он тут просто не нужен, так как вся жидкость находится в радиаторе или полостях и каналах двигателя. Имеющийся расширительный бачок служит для залива жидкости в систему, а также обеспечения автоматического пополнения жидкости в системе при нарушении ее герметичности.
Типичное устройство системы охлаждения представлено ниже:
Изучение начнем с насоса (помпы). Название у него так и сохранилось с прошлых лет – водяной насос, и представляет собой внутри что-то вроде маленькой мельницы. Как и в системе смазки, он подает под давлением жидкость в каналы ДВС. Конечная цель охлаждающей жидкости – пройти через полости блока цилиндров. Именно в цилиндрах — самая высокая температура, передающаяся остальным деталям и узлам. В результате передачи тепла блок цилиндров охлаждается, а жидкость системы охлаждения двигателя автомобиля нагревается, то есть происходят обыкновенные физические процессы, направленные на уравнивание температуры. Дальше разогретая жидкость проходит через часть остальных узлов двигателя и подается в радиатор.
Радиатор представляет собой объемную решетку, образованную из многочисленных мелких вертикальных каналов с поперечными пластинами. По этим многочисленным каналам жидкость, стекая вниз, охлаждается и отдает все свое тепло в атмосферу. Затем через нижнюю емкость радиатора по патрубкам снова попадает в водяной насос. Эта самая решетка за счет большого числа каналов увеличивает общую площадь охлаждения рабочей жидкости, в результате чего она быстрее остывает. Кроме того, потоки встречного воздуха при движении автомобиля значительно увеличивают этот эффект. Поэтому радиатор всегда расположен, спереди автомобиля. Однако и этого бывает недостаточно, особенно когда автомобиль стоит на месте или сам ДВС предназначен для работы в стационарных условиях или закрытых помещениях. Для этого предусмотрен вентилятор, крепящийся между радиатором и двигателем. Он помогает усиливать циркуляцию воздуха через щели радиатора.
Вот, вроде бы, с устройством системы охлаждения и все. Но есть еще и другая функция, противоречащая названию системы – прогрев двигателя. В условиях низких температур, характерных для зимнего времени и северных районов, запуск и прогрев ДВС сильно затруднен. Топливо плохо распыляется, воздух холодный и влажный, а для масла и охлаждающей жидкости характерна повышенная вязкость. И для того, чтобы обеспечить двигателю автомобиля ( см. устройство двигателя автомобиля ) условия нормальной работы, его не нужно охлаждать, а совсем наоборот – как можно быстрее прогреть. Для этого в системе охлаждения двигателя автомобиля предусмотрен такой элемент как
Аналогично охлаждающей жидкостью происходит прогрев кабины водителя. За счет маленького радиатора и вентилятора в кабине, тепло от жидкости распространяется по салону.
Последний прибор в устройстве системы охлаждения двигателя, играющий тоже немаловажную роль – это датчик температуры, расположенный в кабине. Водитель, имея постоянную информацию о температуре ДВС, может своевременно принять меры по устранению неисправности системы охлаждения, в случае превышения рабочих параметров. Самая частая неисправность системы охлаждения двигателя — это нарушение ее герметичности. Жидкость вытекает, а ее количества не хватает для охлаждения блока цилиндров, в результате чего, температура резко поднимается вверх, что и покажет датчик.
ОСНОВНЫЕ НЕИСПРАВНОСТИ СИСТЕМЫ
Если обратиться к пункту 2.3.1 ПДД и к «Перечню неисправностей…», с которыми ограничивается движение транспортных средств, то в них можно обнаружить полное отсутствие упоминаний о проблемах, связанных с системой охлаждения двигателя. Это означает, что поломки системы не позиционируются в качестве неисправностей, с которыми запрещается движение. А, следовательно, система охлаждения и ее ремонт – это личное дело каждого водителя, степень его комфорта на дороге.
Каковы же основные «несерьезные» проблемы, которые может испытывать система охлаждения ДВС?
Во-первых, наиболее распространена негерметичность или течь охлаждающей жидкости. Причем, ее причины могут заключаться в смене уличной температуры (чаще – наступления сезона морозов). Среди популярных причин – и закоксованность патрубков и шлангов, которые под постоянным воздействием высокой температуры теряют эластичность. Протекание охлаждающей жидкости обуславливается и физическими повреждениями основного радиатора и радиатора «печки», полученными либо химическим путем (например, реактивами, входящими в состав тосола), либо посредством механического воздействия (например, удара).
Во-вторых, не менее популярная неисправность – выход из строя (или заклинивание) термостата. Клапан термостата (устройство, находящееся в постоянном контакте с жидкостью), постепенно коррозирует. В конечном счете, происходит его заклинивание, что исключает срабатывание в системе «открыто-закрыто». Результаты подобного состояния термостата двояки:
- при заклинивании в положении «открыто» охлаждающая жидкость двигается только по большому кругу (с постоянным использованием радиатора), что приводит к слабому и длительному прогреву двигателя и, соответственно, плохой обогреваемости салона автомобиля;
- при заклинивании в положении «закрыто» охлаждающая жидкость, напротив, двигается только по малому кругу (без использования радиатора), что обусловливает перегрев двигателя и может привести к необратимым изменениям в структуре металла, уменьшению ресурса силового агрегата и даже к его поломке.
В-третьих, серьезной неприятностью представляется поломка циркуляционного насоса (или «помпы»). Чаще всего эта неисправность связана с выходом из строя подшипника «помпы» — ее основной детали. Причины банальны – износ или некачественная запчасть. Спрогнозировать поломку затруднительно, но уловить начало нестандартной работы «помпы» более чем возможно – по характерному свистящему звуку подшипника. Он означает, что циркуляционный насос требует немедленной замены.
В-четвертых, при определенных условиях возможно засорение системы охлаждения двигателя. Причинами подобного состояния является, как правило, отложение солей в каналах системы охлаждения (радиатора, блока, головки блока). При этом нарушается циркуляция охлаждающей жидкости и отвод излишнего тепла от двигателя и его деталей ухудшается. В конечном счете, это приводит к перегреву двигателя со всеми вытекающими отсюда последствиями.
ПРОМЫВКА СИСТЕМЫ ОХЛАЖДЕНИЯ ДВИГАТЕЛЯ
Промывка системы охлаждения двигателя — процесс, которым очень многие водители нередко пренебрегают, что рано или поздно может вызвать фатальные последствия.
Производить подобные работы рекомендуется одновременно с заменой охлаждающей жидкости. Принимая во внимание модель автомобиля и его марку, делать это необходимо от 1-го раза в календарный год до одного раза в три года.
Признаки того, что систему охлаждения пора промывать
- Если стрелка указателя температуры находится не в середине, а стремится к красной зоне во время движения;
- В салоне холодно, печка отопления не дает достаточную температуру;
- Вентилятор радиатора включается слишком часто
Промыть систему охлаждения простой водой невозможно, поскольку в системе концентрируются загрязнения, которые не удаляются даже водой, нагретой до высоких температур.
Накипь удаляется с помощью кислоты, а жиры и органические соединения – исключительно щелочью, заливать же в радиатор одновременно оба состава нельзя, так как они согласно законам химии взаимонейтрализуются. Производители средств для промывки, пытаясь решить эту проблему, создали целый ряд средств, которые условно можно разделить на:
- щелочные;
- кислотные;
- нейтральные;
- двухкомпонентные.
Первые два слишком агрессивны и в чистом виде почти не используются, так как опасны для системы охлаждения и требуют нейтрализации после использования. Реже встречаются двухкомпонентные виды очистителей, содержащие оба раствора — щелочной и кислотный, которые заливаются в систему охлаждения поочередно.
Наибольшую востребованность имеют нейтральные очистители, не содержащие в своем составе сильных щелочей и кислот. Эти средства обладают разной степенью эффективности и могут использоваться как для профилактики, так и для капитальной промывки системы охлаждения от сильных загрязнений.
Промывка системы охлаждения:
- Сливается антифриз, тосол или вода. Перед этим необходимо на пару минут завести двигатель.
- Залить в систему воду и очиститель.
- Включить двигатель на 5-30 минут (зависит от марки очистителя) и включить обогрев салона.
- По истечении обозначенного в инструкции времени двигатель нужно заглушить.
- Слить отработанный очиститель из системы охлаждения.
- Произвести промывку водой либо специальным составом.
- Залить свежую охлаждающую жидкость.
Работы по промывке системы охлаждения просты и доступны: их могут выполнять даже неопытные автовладельцы. Эта операция существенно продлевает моторесурс двигателя и поддерживает его эксплуатационные характеристики на высоком уровне.
Радиатор охлаждения двигателя: устройство и принцип работы, рекомендации по эксплуатации
string(10) "error stat"
Радиатор является ключевым важнейшим элементом в системе охлаждения ДВС. Его задача — передача избыточного тепла, возникающего при сгорании топлива, атмосферному воздуху. Устройства, напоминающие современный радиатор, имели даже самые ранние автомашины с ДВС, потому что в случае отсутствия специального элемента, обеспечивающего охлаждение силовых агрегатов, работа последних, как было установлено, оказалась просто невозможной. Автомобильный радиатор обеспечивает поддержание температуры работающего двигателя в определенных строго заданных рамках, предотвращая его перегрев и неизбежное в этом случае заклинивание.
История появления радиатора
Использовать систему охлаждения ДВС, в которой теплоносителем являлась вода, стали еще на заре автомобилестроения. Впервые радиатор установили на автомобиле Benz Velo, свободно продававшимся начиная с 1886 года. Эта техническая идея в дальнейшем была развита немецким предпринимателем Вильгельмом Майбахом, сконструировавшим охлаждающее устройство с сотами. Его разработку вскоре применили в конструкции автомобиля Mercedes 35HP (цифра «35» в его обозначении, должна была говорить, что его мощность в лошадиных силах равна 35). В дальнейшем, вплоть до нашего времени, конструкция радиатора охлаждения существенно не изменялась.
Первые водяные системы охлаждения для автомобильных двигателей не имели насосов (помп), принуждающих охлаждающую жидкость (ОЖ) к движению по замкнутому кругу, и работали по принципу термосифона. То есть, движение воды возникало из-за того, что при нагреве ее плотность уменьшалась, и она начинала перемещаться вверх. В результате подогретая жидкость попадало в охлаждающее устройство, проходя через его верхний патрубок.
Оказавшись внутри радиатора, вода становилась более прохладной, ее плотность возрастала, и она опускалась вниз, а пройдя нижний патрубок, снова проникала в рубашку двигателя. Но в связи с постоянным ростом мощности ДВС системы, использующие эффект термосифона, очень скоро стали не пригодными для более новых автомобилей. Они достаточно быстро были вытеснены решениями, включавшими жидкостные насосы (помпы) центробежного типа.
Устройство современного радиатора
Радиатор охлаждения ДВС, как правило, имеет два бачка (нижний и верхний), сердцевину, в которой охлаждается жидкость (антифриз или тосол), и несколько дополнительных деталей для крепления. Жидкость от охлаждающей рубашки двигателя поступает в радиатор, где ее температура понижается до требуемого значения, затем антифриз снова передается двигателю. Для изготовления сердцевины и бачков используются легкие металлы: или алюминий, или латунь. Благодаря их высокой теплопроводности они обеспечивают эффективное и быстрое охлаждение антифриза.
Сердцевина радиатора состоит из горизонтально расположенных металлических пластин, соединенных с полыми трубками, идущими вертикально вниз от верхнего бачка к нижнему бачку. Таким образом, при движении через сердцевину жидкость разбивается на несколько потоков, и происходит увеличение площади ее соприкосновения с воздухом атмосферы, ведущее к повышению интенсивности охлаждения.
Патрубки радиатора позволяют соединять бачки с рубашкой охлаждения двигателя. Нижний бачок имеет, как правило, сливной краник, через который можно слить жидкость. Подобным краником снабжена и рубашка двигателя. Антифриз заливается внутрь системы охлаждения через горловину верхнего бачка.
Функционирование систем охлаждения современных автомобилей происходит с учетом значения температуры:
- двигателя;
- охлаждающей жидкости;
- окружающей среды;
- масла и т. д.
Действие системы охлаждения можно объяснить следующим образом. Нагретая двигателем жидкость направляется насосом через патрубки в радиатор, в котором обеспечивается понижение ее температуры. После чего охлажденная жидкость (антифриз) снова подается в рубашку двигателя, и далее цикл повторяется.
Для повышения эффективности теплообмена на автомобилях перед радиатором устанавливается вентилятор иногда с механическим, но чаще с электрическим приводом, нагнетающий воздух в его сердцевину.
Сердцевины радиаторов автомашин могут быть:
- трубчато-пластинчатыми;
- трубчато-ленточными.
В первом случае охлаждающие трубки могут иметь расположение:
- шахматное;
- под углом;
- в ряд.
Ребра у радиаторов, относящихся к типу трубчато-пластинчатых, бывают либо плоскими, либо волнистыми, и могут иметь разный размер. Кроме того, для усиления теплопередачи на них иногда делают специальные турбулизаторы (просечки, отогнутые и образующие узкие проходы для воздуха).
У радиаторов, называемых, трубчато-ленточными, охлаждающие трубки всегда расположены в ряд, а для изготовления ленты их решеток используется медный лист толщиною от 0,05 миллиметра до 0,1 миллиметра. Чтобы усилить теплоотдачу с помощью завихрений, на ленте выполняют фигурные отверстия методом штамповки или создают отогнутые просечки.
Сегодня наибольшее распространение получили радиаторы охлаждения автомобиля, изготовленные на основе алюминиевых сплавов. Такие устройства дешевле и легче латунных аналогов, но уступают последним по надежности и сроку службы. Еще одним достоинством радиаторов из латуни является то, что они проще ремонтируются: их можно паять. В то время как радиатор системы охлаждения, известный как алюминиевый, более сложен в ремонте, так как его детали и конструктивные элементы соединяют между собой с использованием завальцовки и герметизирующих материалов.
Можно ли смешивать антифриз и тосол или добавлять в них воду?
Как известно, антифризом называют охлаждающую жидкость для ДВС. Есть много различных составов антифризов, имеющих кроме отличий в цвете и цене, также и разные температурные режимы.
Тосол также является разновидностью антифриза. Но заливать тосол в автомобили зарубежного производства не рекомендуется, так как тосол, являясь чрезвычайно едкой жидкостью, может повредить не только шланги, но и патрубки, и пластиковые датчики, установленные в системах охлаждения иномарок.
Смешивать тосол с антифризом нельзя, в том числе и потому, что при взаимодействии этих химических веществ, может образоваться осадок, способный забить радиатор автомобиля, в результате чего неизбежно произойдет перегрев мотора.
Добавлять воду в тосол и в антифриз (особенно если он в виде концентрата) можно. Главное обеспечивать необходимое соотношение компонентов, которое зависит от того, насколько низкая температура воздуха «за бортом». Летом в жару h3O понемногу испаряется из антифриза, поэтому полезно небольшое добавление дистиллированной воды, чтобы понизить концентрацию действующего вещества до нормального значения. Зимой же сильно разбавленный антифриз может замерзнуть уже и при пяти градусах мороза. При этом всегда нужно добавлять тосол в тосол, а антифриз в антифриз, и цвет добавляемой жидкости должен совпадать с цветом жидкости уже залитой в систему охлаждения.
Итак, если у вас наблюдается иногда перегрев или даже кипение двигателя или вы просто хотите чтобы ваш двигатель никогда не «заглох» по «непонятным причинам», то, прежде всего, изучите систему охлаждения ДВС и устройство радиатора охлаждения автомобиля. И тогда вы не попадете в ситуацию с отказом двигателя своего авто в самый неподходящий момент.
Если у вас возникли вопросы — оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них
Системы охлаждения. Часть 1
Эта работа была прислана на наш «бессрочный» конкурс статей и автор получил приз — фанатский комплект NVIDIA.
Содержание
Данная статья представляет собой целостный материал, разбитый на две части для удобства восприятия. После каждой категории систем охлаждения дана табличка сравнительных оценок данной категории. Совокупность таких таблиц образуют таблицу сравнительной оценки потребительских характеристик различных систем охлаждения, приведенную во второй части статьи.
Часть 1
Часть 2
Небольшое введениеКраткое название, но огромная по объему тема. Статью я вынашивал давно (около 9 месяцев). Постоянно изменялся представительский материал, но не менялась идея. Все началось с того, как я прикупил домой модем и забрел на сайт www.overclockers.ru. Было это в августе 2003 г. (до этого лет 5 читал только iXBT.com). С тех пор, меня не покидала мысль что-нибудь да «сбацать» себе этакого. Про хорошее охлаждение я был неплохо осведомлен, ну, типа, какой кулер какого лучше, но зайдя на наш любимый сайт… В общем, ощущения были похожи на те, когда я маленьким ребенком первый раз сел в самолет и увидел, что кроме моего города в мире есть и другие города: есть море, которое больше речки около дачи… И понеслось… Пропилы в кулере, скотч на боковых ребрах радиатора с перевернутым вентилятором, но всего было мало. Хотелось большего, большего и большего. Впервые я осознано встретился с чем-то новым и ощутил сильнейшее действие закона возрастающих потребностей. Система жидкостного охлаждения (для простоты – ВО), элементы Пельтье, фреонка, чиллер – что выбрать… Я терялся в догадках. Нет. Я прекрасно знал, что «эти вещи» существуют и некоторые люди их используют, но я был просто поражен их доступностью. Их можно сделать самому и более эффективно, сэкономить кучу денег и получить от процесса огромное удовольствие. И в дополнение, не связываться с «не слишком продвинутыми» продавцами компьютерных фирм, молящимися в лучшем случае на мейнстрим, их предоплатами и месячными доставками (если у поставщиков есть), а мне нужен hi-end. Такой вот я человек – буду играть в старье, но накоплю на хорошую вещь. Шутка ли пересесть с Riva TNT на Radeon 9700! Жаль, что он у меня умер… Это и стало дополнительным стимулом к написанию конкурсной статьи, целями которой стали:
- Рассказать в общих чертах и достаточно простыми словами о способах охлаждения внутренностей наших «железных коней».
- Описать плюсы и минусы разных категорий систем охлаждения.
- Оценить привлекательность каждой категории систем охлаждения по ряду критериев (и это главная цель данной статьи).
- Предложить методику самооценки своих потребностей (о, как загнул!) по принципу «необходимость-достаточность».
В идеале должен получиться справочный материал (не люблю FAQ, искать вопрос в нужной формулировке – не по мне) для начинающего свой путь по охлаждению оверклокера.
анонсы и реклама
Пошаговое руководство по работе с ODME и принципу его работы
Некоторое время назад я написал небольшой пост об ODME, но он будет более подробным. Все больше и больше компаний уделяют внимание сохранению окружающей среды. Нефтяная компания не стремится сотрудничать с компаниями, которые не учитывают экологические аспекты в своей повседневной работе.
Пока что в настоящее время недостаточно просто выполнять требования закона. Все хотят, чтобы мы выходили за рамки требований законодательства.
ODME — одно из устройств, обеспечивающих соблюдение экологических требований на борту судов.
Но задержания по-прежнему происходят из-за несоблюдения ODME. Иногда это несоблюдение является преднамеренным, но во многих случаях непреднамеренным. Компания должна сосредоточиться на развитии культуры безопасности, которая может предотвратить умышленное несоблюдение.
Но доскональное знание оборудования, такого как ODME, — единственный способ избежать непреднамеренного несоответствия. Это руководство может помочь нам лучше узнать ODME, узнав о нем больше.
Для чего нужен ODME?
Что ж, если вы это читаете, то, скорее всего, знаете, для чего нужен ODME. Но все же спросим. Зачем нам ODME? Разве мы не можем просто запретить выбрасывать масляную смесь за борт и высаживать ее баржей.
Мы заботимся об окружающей среде, но есть предприятия, которые нужно поддерживать. Судовладельцы будут утверждать, что им следует разрешить сбрасывать водную часть нефтесодержащей смеси в море?
ODME обеспечивает баланс между «не выбрасывать нефть в море» и «снижением эксплуатационных расходов» для судовладельцев.
Но иногда мы забываем, что цель ODME — удалить воду из помоев, а не столько нефти, сколько разрешено.
Как это делает ODME?
В общих чертах ODME управляет работой этих двух клапанов, показанных на диаграмме ниже.
Эти два клапана никогда не будут открываться или закрываться вместе. Если один открыт, другой будет в закрытом положении.
Нам известно, что правило 34 Приложения I к Marpol перечисляет условия, при которых нефтесодержащие смеси могут сбрасываться в море.
Когда условия № 4 и 5 выполнены, ODME откроет забортный клапан, чтобы разрешить сброс нефтяной воды. Каждый раз, когда мы превышаем любое из этих двух условий, ODME закроет забортный клапан и откроет отстойный клапан.
Теперь для выполнения этой задачи ODME необходимо измерить
- Мгновенный расход для обеспечения того, чтобы он не превышал 30 л / нм
- Общее количество выгружено, чтобы убедиться, что оно не превышает требуемого
Итак, давайте посмотрим, какие компоненты помогают ODME измерять эти вещи.
Какие все компоненты делают ODME
Если вы помните, формула для мгновенной скорости разряда —
.Теперь, если ODME необходимо измерить IRD, ему обязательно потребуются значения содержания масла в PPM и скорости потока. Скорость соединения обычно указывается либо из журнала, либо из GPS.
Все эти значения передаются в вычислительный блок ODME. Вычислительный блок выполняет все математические вычисления для получения требуемых значений. В большинстве случаев вы найдете вычислительное устройство в диспетчерской.Теперь посмотрим, как и откуда вычислительный блок получает эти значения
Расход
Вычислительный блокODME получает значение расхода от расходомера. Небольшая пробоотборная линия идет от основной линии, проходит через расходомер и возвращается к основной линии. Расходомер рассчитывает расход в м3 / час и передает это значение в вычислительный блок через сигнальный кабель.
Измерение PPM
Измерительная ячейка — это компонент, который измеряет количество масла (в ppm) в воде.Измерительная ячейка находится в шкафу «Блок анализа». В большинстве случаев вы найдете «Блок анализа» в бювете.
Принцип измерения основан на том факте, что разные жидкости имеют разные характеристики светорассеяния. Основываясь на диаграмме светорассеяния масла, измерительная ячейка определяет содержание масла.
Проба воды пропускается через трубку из кварцевого стекла. А содержание масла определяется путем последовательного прохождения этой пробы воды через разные детекторы.
Но для измерения PPM в пробе воды проба сбросной воды должна пройти через измерительную ячейку. Эту работу выполняет пробоотборный насос.
Насос для отбора проб отбирает пробу из нагнетательной линии перед выпускными клапанами. Этот образец отправляется в измерительную ячейку (в блоке анализа) для измерения содержания масла, а затем отправляется обратно в ту же линию нагнетания.
Важно, чтобы насос для отбора проб не работал всухую или с избыточным давлением нагнетания. Чтобы избежать этой ситуации, внутри анализирующего блока установлен датчик давления.Этот датчик давления измеряет давление на входе и выходе насоса для отбора проб.
Измерительная ячейка должна всегда получать непрерывный поток пробы, чтобы анализировать самую свежую пробу. Датчик давления также исключает возможность работы ODME при закрытых пробоотборных клапанах.
Измерительную ячейку необходимо регулярно чистить во время работы. Это сделано во избежание отложения масляных следов вокруг измерительной ячейки, которые могут давать неверные показания. Для очистки измерительной ячейки ODME выполняет цикл очистки с заранее заданным интервалом во время работы.Цикл очистки включает промывание ячейки пресной водой.
Линия очистки и линии отбора проб в измерительные ячейки разделены пневматическими клапанами. Таким образом, при запуске цикла очистки происходит следующее:
- Пневматический клапан линии пресной воды в измерительную ячейку открывается
- Пневматический клапан линии отбора пробы в измерительную ячейку закрывается
- Если ODME имеет приспособление для впрыска моющего средства, необходимое количество моющего средства будет впрыснуто во время цикла очистки
Нам необходимо убедиться, что резервуары для моющего средства не пустые, и мы используем только моющее средство, рекомендованное производителем.
Итак, есть три дополнительные строки, которые вы найдете в блоке анализа для цикла очистки.
- Линия пресной воды для очистки измерительной ячейки
- Воздуховод для управления пневмоклапанами
- Линия чистящего раствора для лучшей очистки измерительной ячейки
Блок анализа отправляет значения данных, такие как давление и содержание масла, в вычислительный блок в CCR. В зависимости от марки блок анализа отправляет эти значения либо непосредственно в вычислительный блок, либо через блок преобразования.
Если установлен преобразователь, он может выполнять дополнительные задачи, например, контролировать цикл очистки.
Вычислительный блок вычисляет IRD на основе всех этих значений, введенных в него. Если IRD меньше 30 л / миля, он дает команду блоку электромагнитного клапана открыть забортный клапан и закрыть обратный клапан рециркуляции. Когда IRD становится больше 30 л / миля, он закрывает забортный клапан.
Вычислительный блок также вычисляет количество фактической нефти, сброшенной в море.Требование состоит в том, что мы не можем выгружать более 1/30000 от общего количества перевозимого груза. Прежде чем мы запустим ODME, нам нужно вычислить и передать это максимально допустимое значение в ODME. Об этом мы поговорим позже в этом посте.
Но, как видите, постепенно мы создали базовую линейную диаграмму ODME. Теперь, если вы можете извлечь линейную диаграмму ODME на своем судне, проверьте, можете ли вы относиться к ней. Я наугад взял линейную диаграмму одного из производителей, чтобы посмотреть, сможем ли мы идентифицировать части и линию ODME? Я мог бы, вы также можете идентифицировать себя на изображении ниже?
Если бы вы могли, очень хорошо.Но если вам все еще нужны ответы, вот они на изображении ниже
Теперь, когда мы ясно понимаем, из чего состоит ODME и какие компоненты ODME, давайте посмотрим, как старший офицер должен управлять ODME.
Работа ODME
Как мы знаем, ODME требуется в соответствии с Приложением I к Marpol, которое касается аспектов загрязнения, связанных с нефтяными грузами. Теперь за 10 шагов давайте посмотрим, как нам следует использовать ODME.
Предположим, мы находимся на танкере-продукте дедвейтом 45000 тонн, который только что выгружал нефтеналивной груз объемом 29000 тонн (30000 м3 при 15 ° C).Этот танкер должен очистить эти танки, в которых находился общий нефтяной груз в 29000 тонн. Как продолжить очистку и слив помои с помощью ODME?
Шаг 1: Установите общее количество масла в ODME
Marpol установила предел общего количества масла, которое мы можем слить в промывочную воду. Этот лимит составляет 1/30000 от общего количества перевозимого груза. Итак, в нашем примере с танкером-продуктовозом рассчитаем
Всего грузов, перевезенных в очищаемых танках: 30000 м3 при 15 ° C
Общее количество сливаемого масла из мойки = 1 м3 (1000 литров)
Установите общий предел масла в 1000 литров в ODME.Продемонстрируем это в ODME make Rivertrace engineering.
Чтобы установить общий предел масла, перейдите к разделу «Разгрузка масла» в разделе «Выбор режима», нажав кнопку ввода (центральная).
В разделе «Настройка сброса масла» перейдите к «пределу срабатывания сигнализации» и нажмите «Ввод».
Установите новое значение с помощью стрелок вверх и вниз и нажмите ввод.
Он попросит подтвердить, что мы и сделаем, и теперь мы установили максимальный предел слива масла.
2.Разрешить минимум 36 часов для оседания
Мы будем мыть цистерны и собирать отстой в отстойник. Но прежде чем мы сможем откачивать нефтесодержащую воду через ODME, нам нужно дать время отстоя как минимум 36 часов. Это время отстаивания обеспечивает полное отделение масла от воды.
Мы можем возразить, что если наш расход ограничен 30 л / мор. Мили, то какая разница со временем установления? Но факт в том, что даже когда мы можем использовать ODME для сброса нефтесодержащей воды, мы должны обеспечить минимальное содержание масла в воде.
3) Проверьте все остальные условия в Приложении I Marpol, Reg 34
Мы должны гарантировать, что другие условия, связанные с движением судна, минимальной скоростью и удаленностью от ближайшего берега, соответствуют требованиям.
4) Подготовить ODME к работе
После того, как будут выполнены все условия, мы можем подготовиться к запуску сброса шламов за борт.
Мы уже обсуждали, какие компоненты присутствуют в ODME и каковы их функции. Итак, мы знаем, что нам нужно сделать, чтобы настроить ODME для работы.Конечно, на разных судах все может немного отличаться, но большинство вещей будет общим. Мы должны проверить и найти каждый элемент, упомянутый в руководстве. Вот краткое изложение некоторых общих элементов, которые необходимо проверить перед работой ODME
.- Проверить, открыты ли впускной и выпускной клапаны расходомера
- Проверить, есть ли подача пресной воды и все ли клапаны открыты
- Проверить, открыты ли впускной и выпускной клапаны пробоотборной линии
- Проверить, есть ли подача воздуха для пневматических клапанов.
- Проверить наличие чистящего раствора в емкости
- Проверить, включено ли питание преобразователя
- Проверьте и проверните рукой вал пробоотборного насоса, чтобы убедиться, что он движется свободно
Также проверьте и убедитесь, что все значения указаны в автоматическом, а не в ручном режиме. Эти значения для проверки относятся к расходу, скорости и частям в минуту.
5) Запустить грузовой насос в режиме рециркуляции
После того, как мы настроили ODME, мы можем запустить насос отстойного резервуара, содержащего нефтесодержащую воду, в режиме рециркуляции.Теперь, даже когда он работает в режиме рециркуляции, а забортный клапан закрыт, на некоторых устройствах вы можете проверить IRD на экране CCR ODME. Если вы видите какие-то странные клапаны, например высокое содержание PPM масла в пробе, остановите насос и
- либо запустить цикл очистки вручную, если эта функция присутствует в ODME
- или Очистите измерительную ячейку вручную с помощью инструмента производителя, как описано в руководстве ODME
6) Пуск за борт
После того, как все вышеперечисленные шаги выполнены и проверены, мы можем запустить ODME, чтобы начать сброс за борт.
7) Монитор во время всего сброса за борт
Теперь, если все в порядке, внимательно следите за
Сбрасываемая вода не оставляет видимого блеска на поверхности моря. Помните, что вам не нужен фонарик, чтобы увидеть это. Выполнять сброс за борт необходимо только в светлое время суток.
Проверяйте и отслеживайте значения масла в воде (PPM) и IRD. Если IRD близок к 30 л / миля, вы не хотите, чтобы он пересек 30 л / миля и остановил операцию.В этом случае вы можете уменьшить скорость насоса, чтобы уменьшить расход. При уменьшении скорости потока уменьшается и IRD.
Контролируйте уровень поверхности раздела масло-вода с помощью ленты MMC или UTI. Это важно, потому что мы серьезно относимся к окружающей среде. Мы хотим остановить выброс за борт за несколько сантиметров до того, как мы достигнем поверхности масла. Это показывает нашу серьезность к сохранению окружающей среды. Также видно, что наша цель заключалась не в том, чтобы слить столько нефти, сколько мы можем, а в том, чтобы слить как можно больше чистой воды.
Более того, мы не хотим портить нашу систему ODME, позволяя маслу проникать в систему.
8) Остановить сброс за борт
ODME остановится автоматически, когда IRD превысит 30 л / м.миль или если мы превысим предел общего сброса масла. Но мы должны быть готовы остановить ODME и вручную. Мы должны остановить сброс за борт вручную, если произойдет одно из следующих событий
- Мы достигли уровня интерфейса
- Быстрое увеличение PPM.Мы можем продолжить, если уверены, что граница раздела нефть-вода еще очень далеко.
- Мы видим масляный блеск на поверхности моря
9) Не запускайте ODME несколько раз
Если ODME останавливается автоматически из-за того, что IRD превышает 30L / NM, мы не должны запускать ODME снова. Некоторые люди запускают ODME снова, чтобы проверить, могут ли они по-прежнему уменьшить количество на борту. Даже когда вы можете утверждать, что делаете это через ODME, вы на самом деле ненамеренно осуждаете МАРПОЛ.Многие суда были задержаны Парижским меморандумом о взаимопонимании за неоднократные попытки запустить ODME. Задержание имеет логику и следующие причины
- При многократных запусках оператор пытается выбросить за борт как можно больше масла
- После автоматической остановки ODME оператору необходимо подождать еще 24 часа для стабилизации, чтобы снова запустить ODME. Это связано с тем, что, если уровень смеси масло / вода будет очень низким, при рециркуляции она будет взбалтываться. Теперь, чтобы вода отделилась от масла, нам нужно подождать 24 часа.
Но если ODME остановился из-за какой-либо ошибки, когда уровень воды все еще был высоким, нет необходимости ждать еще 24 часа для установления времени.
9) Выполните цикл очистки
Каждый раз, когда ODME останавливается, запускается цикл очистки. Но если он не запускается автоматически, мы можем запустить цикл очистки вручную.
10) Закройте все клапаны и систему
После завершения операции ODME мы можем закрыть все клапаны и подачу электроэнергии.Затем мы можем сделать запись в журнале нефтяных операций по этой операции.
Заключение
Было зафиксировано множество задержаний и сотни наблюдений за неправильным использованием ODME. Эти задержания также включают умышленное неправильное функционирование ODME.
Было немного случаев, когда моряки обходили ODME, даже когда ODME находился в идеальной форме и работал. Причина в том, что моряки иногда считают, что такое оборудование, как ODME, сложно в эксплуатации.
Но если мы хорошо знаем наше оборудование, оно не только будет казаться простым в эксплуатации, но и будет работать безупречно.
Принцип работы четырехтактного бензинового двигателя
Двигатель внутреннего сгорания назван так потому, что топливо сжигается непосредственно внутри самого двигателя. Большинство автомобильных двигателей работают по 4-тактному циклу. Цикл — это одна полная последовательность из 4 ходов поршня в цилиндре. Рабочий цикл четырехтактного бензинового двигателя включает: такт впуска (впускной клапан открывается), такт сжатия (оба клапана закрыты), рабочий ход (оба клапана закрыты), такт выпуска (выпускной клапан открыт).
Чтобы описать полный цикл, предположим, что поршень находится в верхней части хода (верхняя мертвая точка), а впускной и выпускной клапаны закрыты. Когда поршень движется вниз, впускной клапан открывается и всасывает топливо в цилиндр. Это называется тактом впуска (впуска). Достигнув нижнего положения (нижней мертвой точки), поршень начинает двигаться вверх в закрытую верхнюю часть цилиндра (впускной клапан закрывается, и смесь сжимается поднимающимся поршнем.Это называется тактом сжатия. Когда поршень снова достигает верхней мертвой точки, свечи зажигания воспламеняют смесь, при этом оба клапана закрываются во время ее сгорания. В результате горения смеси оба клапана закрываются при ее сгорании. В результате горения смесей газы расширяются, и большое давление заставляет поршень двигаться обратно по цилиндру. Этот ход называется рабочим ходом. Когда поршень достигает нижней точки своего хода, выпускной клапан открывается, давление сбрасывается, и поршень снова поднимается.Он пропускает сгоревший газ через выпускной клапан в атмосферу. Это называется тактом выпуска, который завершает цикл. Таким образом, поршень движется в цилиндре вниз (ход впуска), вверх (ход сжатия), вниз (рабочий ход), вверх (ход на выпуске).
Тепло, выделяемое топливом, преобразуется в работу, так что возвратно-поступательное движение поршней преобразуется во вращательное движение коленчатого вала посредством шатунов.
1 — впуск 2 — компрессия 3 — мощность 4 — выпуск .1. Принцип работы четырехтактного бензинового двигателя. |
Сцепление
Муфта — фрикционное устройство. Он соединяет двигатель с шестернями в коробке передач. Он используется для отключения двигателя от коробки передач, для запуска автомобиля и снятия двигателя с колес автомобиля.
Муфта закреплена между маховиком двигателя и шестерней коробка и состоит из двух пластин (дисков): фрикционного диска и нажимного диска.Фрикционный диск расположен между маховиком и нажимным диском и имеет износостойкий материал с каждой стороны.
Основная основная работа сцепления — сила трения, действующая между двумя дисками. Сцепление управляется педалью сцепления. Когда педаль находится в состоянии покоя, сцепление включено, и работающий двигатель соединен с коробкой передач. Когда педаль нажата, сцепление выключается, и двигатель работает на холостом ходу.
Тормоза
Тормоза используются для замедления или остановки автомобиля там, где это необходимо.Это один из важнейших механизмов автомобиля по состоянию на его собственный
.зависит безопасность пассажиров. Автомобильные тормоза можно разделить на два типа, а именно: барабанные и дисковые. Барабанный тип может быть либо ленточным, либо колодочным. В зависимости от функции автомобиль имеет ножной тормоз и ручной тормоз (стояночный тормоз). По принципу действия тормоза классифицируются как: механические тормоза, гидравлические тормоза, воздушные тормоза, электрические тормоза.Тормоза управляются педалью тормоза.
Большинство используемых сегодня тормозных систем — гидравлические. Эта система состоит из главного цилиндра, установленного на раме автомобиля, и колесных цилиндров. Когда водитель нажимает на педаль тормоза, поршень перемещается в главном цилиндре, и тормозная жидкость подается от 11 к колесным цилиндрам. Движение поршня заставляет тормозные колодки двигаться и тормозить (тормозные колодки прижимаются к тормозным барабанам).
Пневматический тормоз использует сжатый воздух для приложения тормозного усилия к тормозным колодкам.
В электрических тормозах используются электромагниты для обеспечения тормозного усилия тормозных колодок.
Раньше тормоза применялись только на двух задних колесах, но теперь все автомобили оснащены тормозами на все колеса. Сегодня много доработок проводится в тормозах.
. 3. Тормозная система
:
Приводы постоянного тока— Принципы работы
перейти к содержанию- Home
- Запрос цен
- Продукты
- Системы частотно-регулируемых приводов и элементы управления
- Частотно-регулируемые приводы переменного тока
- Компонентные приводы ACS150 от ABB :: Обзор
- ABB ACS350 Приводы общего назначения :: Обзор
- ABB ACS550 Частотно-регулируемый привод :: Обзор
- Приводы переменного тока с регулируемой скоростью ABB ACS 600
- Частотно-регулируемый привод переменного тока ABB ACS800 :: Обзор
- Промышленные низковольтные приводы переменного тока ABB ACS880
- Устройства плавного пуска ABB, тип SSM, среднего напряжения, 2300-13,800 В :: Описание
- Устройства плавного пуска ABB типа SSM — среднее напряжение, 2300-13,800 В :: Общая информация
- Устройства плавного пуска ABB типа SSM — среднее напряжение, 2300 — 13 800 В :: Каталожные номера
- Устройства плавного пуска ABB, тип SSM — среднее Напряжение, 2300–13 800 В :: Технические характеристики
- Устройства плавного пуска ABB, тип SSM, среднее напряжение, 2300–13 800 В :: прибл.Размеры
- Приводы переменного тока Yaskawa
- Устройства плавного пуска AuCom
- Приводы переменного тока Emerson Industrial Automation (методы управления и Saftronics)
- Методы управления — привод переменного тока Commander SE
- Методы управления — привод переменного тока Commander SK
- Методы управления — Commander Привод переменного тока SX
- Методы управления — Привод переменного тока Unidrive SP
- Приводы переменного тока Saftronics GP10
- Приводы переменного тока Saftronics S10
- Приводы переменного тока Saftronics CV10
- Привод переменного тока Saftronics VG10
- Saftronics PC10 (Устарело) Приводы переменного тока
- 41 Saftronics Опции и аксессуары
- Saftronics PC10 — Комплект Ethernet-модуля SF-10
- Saftronics PC10 — Вход 24 В постоянного тока или 24/120 В переменного тока + дополнительная плата реле
- Saftronics PC10 — Комплект интерфейсных карт 24 В постоянного тока или 24/120 В переменного тока (PC10, GP10 или инвертор VG10)
- Saftronics PC10 — Плата релейного выхода
- Saftronics PC10 — Контроллер насоса HMI 9004 2
- Saftronics PC10 — PC10 Дополнительная карта 120 В переменного тока
- Saftronics PC10 — Комплект Saftronics Palm Pilot
- Saftronics PC10 — Динамическое торможение
- Saftronics PC10 — Номинальные характеристики привода и потери мощности
- Saftronics PC10 — Стандартные характеристики
- Saftronics PC10 — Деталь Номер: PC102F12-9, PC102F25-9, PC102F50-9 и PC102001-9
- Saftronics PC10 — Номер детали: PC102002-9, PC102003-9, PC104F50-9, PC104001-9, PC104002-9 и PC104003-9
- Saftronics PC10 — номер детали: PC102005-9 и PC104005-9
- Saftronics PC10 — номер детали: PC102007-9, PC102010-9, PC104007-9 и PC104010-9
- Saftronics PC10 — размеры комплекта NEMA 1
- Saftronics PC10 — Базовая электрическая схема
- Fincor серии 5700 (Устарело) Привод переменного тока
- Fincor серии 5740 (Устарело) Привод переменного тока
- Fincor серии 5750 (Устарело) Приводы переменного тока
- Устройства плавного пуска Motortronics
- SOLCON Sof t Пускатели
- Magnetek — Устройства плавного пуска
- Частотно-регулируемые приводы, блоки управления и двигатели WEG
- Приводы постоянного тока с регулируемой скоростью
- Двигатели переменного и постоянного тока GE (G.E. Motors — General Electric AC & DC Motor)
- Avtron — Приводы, измерения и тахометры
- Датчики и датчики Dynapar
Компьютерная система
Компьютер определение системы
Компьютерная система — это электронная система. состоит из множества частей, которые работают вместе, чтобы заставить компьютер работать. Компьютеры работают в основном для выполнения конкретной задачи, поставленной пользователь.
На настольном компьютере мы видим три части компьютер, такой как блок ввода (клавиатура и мышь), блок вывода (монитор и принтер) и системный блок (прямоугольная коробка).
В портативном компьютере все части компьютера встроены в одном месте. Следовательно, их легко носить с одно место в другое место. Вместо мыши мы используем сенсорный Pad в ноутбуках.
Важно компоненты компьютерной системы
Обычно компьютерная система состоит из четырех важные компоненты:
- Блок ввода
- ЦП (центральный процессор)
- Блок вывода
- Блок памяти
Ввод Отряд
Блок ввода состоит из устройств ввода, таких как клавиатура, мышь, сканер и джойстик.Устройства ввода используются для отправить данные на компьютер.
Устройство ввода принимает инструкции и данные от пользователя и преобразует их в форму, которая компьютер понятен. Конвертированные данные отправляются в ЦП (центральный процессор) для дальнейшей обработки. Различные устройства ввода включают:
- Клавиатура
- Компьютерная мышь
- Сканер
- Джойстик
Клавиатура
Само название говорит о том, что это доска состоит из расположения ключей.Это основное устройство ввода для большинство компьютеров.
Клавиатура — это устройство ввода, используемое в основном для ввод в компьютер таких символов, как буквы и цифры. Ввод вводится в компьютер нажатием кнопок или клавиш.
Обычно он используется для набора текста и числа в MS Word, блокноте и других программах. Клавиатуры также используется для игр.
Клавиатура состоит из нескольких клавиш, на которых печатаются алфавиты, числа и некоторые другие символы. Входить любой текст в компьютер нажимаем буквенные клавиши, а чтобы вводим числа в компьютер нажимаем цифровые клавиши. Большинство из клавиатуры обычно подключаются к компьютеру через порт USB. В Клавиши или кнопки клавиатуры выполнены из пластика.
Как клавиатуры на пишущей машинке, компьютере клавиатуры имеют клавиши для цифр и букв. Однако компьютер клавиатуры также имеют специальные клавиши.
Функциональные клавиши находятся в верхней части компьютерная клавиатура. Функциональные клавиши компьютерной клавиатуры включают F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12. Oни выполняют разные функции в зависимости от того, где они используются.За Например, пользователи Microsoft Windows могут использовать Alt + F4, чтобы закрыть текущую программу или выключите компьютер. F1 используется как помощь ключ. Когда пользователь нажимает кнопку F1, открывается экран справки. Точно так же другие функциональные клавиши также используются для различных целей.
Компьютер мышь
Компьютерная мышь — это устройство ввода, используемое для выбор элементов, открытие и закрытие элементов, копирование и удаление элементы на экране, управляя движением курсора или указатель на экране компьютера.Он также используется для создания новых папки и просмотр Интернета.
Мышь поворачивает движение руки (влево, вправо, вперед и назад) в эквивалентные электронные сигналы которые, в свою очередь, используются для перемещения указателя. Когда вы двигаете мышью положив руку на поверхность, курсор или указатель на компьютере экран также движется в том же направлении. Например, если мы двинемся указатель мыши направлен вправо, курсор на экране компьютера также движется вправо.Аналогично, если мы переместим мышь влево, курсор на экране компьютера также движется в левую сторону.
Как правило, мышь имеет две кнопки: основная кнопка (левая кнопка) и вторичная кнопка (правая кнопка). Нажатие левой кнопки открывает файлы, а правая кнопка — используется для копирования файлов, удаления файлов и создания папок. В между двумя кнопками присутствует колесико.Это колесо используется для прокрутите вниз или вверх по экрану.
Сканер
Сканер — это устройство ввода, используемое в основном для захват печатных документов и загрузка их в компьютер как цифровые изображения. Эти цифровые изображения легко просматривать и редактировать. за компьютером. Сканер можно подключить к компьютеру через USB или SCSI.
Джойстик
Джойстик — это устройство ввода, используемое для управления курсор или предметы в компьютерных играх.Джойстики также используются для управление машинами, такими как грузовики, краны и наблюдение камеры.
процессор (Центральный процессор)
CPU (Центральный процессор) считается как мозг компьютера. Центральный процессор — это электронная схема, выполняющая инструкции компьютера программа.Он выполняет основную арифметику, логику, контроль и операции ввода / вывода. Пользователь или человек пишет программу к компьютеру. У компьютеров нет интеллекта, поэтому они не мог самостоятельно выполнять какие-либо операции. Следовательно, все инструкции компьютеру даются пользователем для выполнения конкретная задача. ЦП контролирует операции на всех частях компьютер, включая основную память.
CPU также иногда называют центральным процессор, микропроцессор или просто процессор. Это самый важная часть компьютерной системы. Во всех современных малых В компьютерах центральный процессор размещен на едином кремниевом кристалле. Следовательно размер процессора уменьшен.
CPU состоит из двух основных компонентов:
- ALU (Арифметико-логический блок)
- Блок управления
Арифметика Логический блок (ALU)
Арифметико-логический блок (АЛУ) — цифровой электронная схема, выполняющая арифметические и логические операции операции.В некоторых компьютерах Арифметико-логический блок (АЛУ) разделен на две части: арифметический блок (AU) и логический блок (LU). Арифметический блок выполняет арифметические операции и логический блок выполняет логические операции. Различная арифметика операции, выполняемые арифметическим блоком (AU), включают сложение, вычитание, умножение и деление. Арифметический блок выполняет эти арифметические операции с высокой скоростью.Различные логические операции, выполняемые логическим блоком (LU), включают НЕ, AND, OR, NAND, NOR, XOR, XNOR и т. Д. Результаты ALU хранится в памяти для дальнейшего использования. Результаты, которые хранятся в память передается на устройства вывода.
Контроль Единица (CU)
Блок управления контролирует все операции компьютер.Он сообщает Арифметико-логическому устройству (ALU), компьютерам память, устройства ввода и вывода как реагировать на программу инструкции. Он контролирует поток данных между ЦП и другими устройств.
блок управления эффективно управляет ресурсами компьютера, чтобы снизить энергопотребление. Он также проверяет правильность последовательность операций. Устройства, требующие блока управления, включают центральный процессор (ЦП) и графический процессор (GPU).
Выход Отряд
Блок вывода состоит из устройств вывода, таких как как монитор, принтер и динамик. Устройства вывода отображают результат (который получается после обработки данных) пользователю в понятной форме.
Различные устройства вывода включают:
Монитор
Монитор — это электронный визуальный дисплей для компьютеры.Это самое важное устройство вывода на компьютер. Без монитора мы не можем видеть, что делает или выполняет компьютер внутри. Монитор также иногда называют компьютерным монитором или компьютерный дисплей. Компьютерные мониторы бывают двух типов: CRT (Cathode Ray Tube) и ЖК-монитор (жидкокристаллический дисплей).
Принтер
Принтер — устройство вывода, используемое для печати текста, изображения, фотографии или что-либо еще на бумаге.Различные типы принтеры включают лазерный принтер, 3D-принтер, струйный принтер, плоттер, матричный принтер, термопринтер, ромашковый принтер, строчный принтер и т. д. принтеры печатают текст или объекты на бумага в черно-белом или цветном виде.
Динамик
Динамик — это устройство вывода, которое преобразует электронные сигналы от компьютера в аудиосигналы.В Пользователь легко слышит эти звуковые сигналы и понимает их. Иногда наушники также используются для прослушивания песен и музыки. с компьютера. Спикеры вообще подключил к компу через кабели. В некоторых компы как ноутбуки, динамики встроенные.
Память Отряд
Как и человеческий мозг, компьютеры также хранят Информация.Блок памяти используется для хранения цифровых данных для будущее использование. В памяти компьютера информация хранится временно или постоянно.
Компьютерная память в основном подразделяется на два типы:
- Первичная память
- Вторичная память
Первичный память
Первичная память используется для хранения частей программа, данные и инструкция, на каком компьютере в данный момент за работой.Он также хранит промежуточные и окончательные результаты обработка. После завершения обработки полученные результаты передаются на устройство вывода.
Первичная память хранит данные только тогда, когда питание включено. Когда нет питания, данные хранятся в первичная память будет потеряна. Первичная память также иногда называется основной памятью, временной памятью или энергозависимой памятью.Этот память работает быстрее, чем вторичная память. RAM является примером первичная память. Первичная память современных компьютеров состоит из полупроводниковые приборы.
Среднее память
Вторичная память также называется энергонезависимая память или постоянная память. Работает медленнее, чем первичная память. Однако он хранит данные постоянно.
Вторичная память хранит данные, даже если питание отключено. Вторичная память имеет большой объем памяти чем первичная память.
Во вторичной памяти хранится операционная система, текстовые файлы, изображения, песни, видео и т. д. Центральная обработка Модуль (ЦП) не считывает информацию непосредственно из вторичная память. Информация, хранящаяся во вторичной памяти сначала передается в первичную память.После этого CPU читает данные из первичной памяти. Вторичная память намного дешевле, чем основная память. Диски оптические, магнитные диски и магнитные ленты являются примерами вторичной памяти.
Что такое операционная система? Типы ОС и функции
- Главная
Тестирование
- Назад
- Гибкое тестирование
- BugZilla
- Cucumber
- Тестирование базы данных
- Тестирование ETL
- Jmeter
- JIRA
- Назад JUnit
- LoadRunner
- Ручное тестирование
- Мобильное тестирование
- Mantis
- Почтальон
- QTP
- Назад
- Центр качества (ALM)
- RPA
- SAP Testing
- Selenium
- Управление тестированием SoapUI 900
- TestLink
SAP
- Назад
- ABAP
- APO
- Начинающий
- Basis
- BODS
- BI
- BPC
- CO
- Назад
- CRM
- Crystal Reports
- FICO
- HANA
- HR
- MM
- QM
- Зарплата
- Назад
- PI / PO
- PP
- SD
- SAPUI5
- Безопасность
- Менеджер решений
- Successfactors
- Учебники SAP
Интернет
- Назад
- Apache
- AngularJS
- ASP.Net
- C
- C #
- C ++
- CodeIgniter
- СУБД
- JavaScript
- Назад
- Java
- JSP
- Kotlin
- Linux
- MariaDB
- MS Access
- MYSQL
- Node. js
- Perl
- Назад
- PHP
- PL / SQL
- PostgreSQL
- Python
- ReactJS
- Ruby & Rails
- Scala
- SQL
- SQLite
- Назад
- SQL Server
- UML
- VB.Net
- VBScript
- Веб-службы
- WPF
Обязательно изучите!
- Назад
- Бухгалтерский учет
- Алгоритмы
- Android
- Блокчейн
- Бизнес-аналитик
- Создание веб-сайта
- Облачные вычисления
- COBOL
- Дизайн компилятора
- Назад
- Встроенные системы
- Этический взлом
- Учебники Excel
- Программирование Go
- IoT
- ITIL
- Jenkins
- MIS
- Сеть
- Операционная система
- Назад
- Prep
- PMP
- Photoshop
- Управление проектами
- Обзоры
- Salesforce
- SEO
- Разработка программного обеспечения
- VBA
Big Data
- Назад
- AWS
- BigData
- Cassandra
- Cognos
- Хранилище данных
- DevOps
- HBase
- Back
- Hive
- Inform
- MongoDB
- NiFi
Прогнозирование оставшегося срока службы авиационного двигателя с использованием составного разреженного автоэнкодера с многоуровневым самообучением
Потому что они являются ключевыми компонентами самолета, повышая безопасность, надежность и экономичность двигатели имеет решающее значение.Для обеспечения безопасности полета и снижения затрат на техническое обслуживание во время работы авиационного двигателя для решения проблем введена система прогнозирования и управления здоровьем, которая фокусируется на диагностике неисправностей, оценке состояния здоровья и прогнозировании жизни. Прогнозирование оставшегося срока полезного использования (RUL) является наиболее важной информацией для принятия решений о работе и техническом обслуживании авиационных двигателей, и оно в значительной степени зависит от выбора характеристик ухудшения характеристик. Выбор таких функций очень важен, но в текущем алгоритме прогнозирования RUL есть некоторые недостатки, в частности невозможность получить тенденции из данных.В частности, для авиационных двигателей извлечение полезных характеристик деградации из мультисенсорных данных со сложными корреляциями является ключевой технической проблемой, которая препятствует реализации оценки деградации. Для решения этих проблем в последние годы было предложено глубокое обучение для использования нескольких уровней нелинейной обработки информации для неконтролируемого самообучения функций. В этой статье представлен подход глубокого обучения для прогнозирования RUL авиационного двигателя на основе сложного разреженного автокодировщика и логистической регрессии.Многослойный разреженный автоэнкодер используется для автоматического извлечения признаков ухудшения характеристик из нескольких датчиков на двигателе самолета и для объединения нескольких функций посредством многоуровневого самообучения. Для прогнозирования оставшегося срока полезного использования используется логистическая регрессия. Однако гиперпараметры глубокого обучения, которые значительно влияют на производительность извлечения признаков и прогнозирования, в большинстве случаев определяются на основе опыта экспертов. В данной статье представлен метод поиска по сетке для оптимизации гиперпараметров предлагаемой модели прогнозирования RUL авиационного двигателя.Применение этого метода прогнозирования RUL авиационного двигателя с помощью набора контрольных данных используется для демонстрации эффективности предлагаемого подхода.
1. Введение
Поскольку они являются основными компонентами самолета, отказ двигателей часто является основной причиной крупных аварий и несчастных случаев [1]. Поэтому безопасность и надежность двигателей жизненно важны для летных характеристик самолета. Однако обеспечить их безопасность и надежность сложно из-за их сложной конструкции, а отказ двигателя неизбежно возникает из-за воздействия старения, окружающей среды и переменной нагрузки по мере увеличения рабочего времени.По этой причине важно обнаружить лежащую в основе деградацию, спрогнозировать, как скоро двигатель выйдет из строя, оперативно провести техническое обслуживание и, в конечном итоге, предотвратить катастрофический отказ.
В области технического обслуживания самолетов традиционное техническое обслуживание является либо чисто реактивным (исправление или замена компонента авиационного двигателя после его отказа), либо слепо проактивным (при условии определенного уровня ухудшения характеристик без участия самого авиационного двигателя и обслуживания самолета. двигатель по обычному графику, независимо от того, действительно ли требуется техническое обслуживание).Оба сценария довольно расточительны и неэффективны, и ни один из них не проводится в реальном времени [2–5]. Учитывая планирование задач обслуживания, основанное на диагностике неисправностей, оценке ухудшения характеристик и прогнозируемом оставшемся сроке службы авиационного оборудования, а также необходимости заранее предотвращать неисправности, прогнозирование и управление работоспособностью (PHM) постепенно заменяют эти две стратегии обслуживания. Прогнозирование как ядро PHM включает в себя управление процессами ухудшения характеристик или неисправностей в двигателе самолета и прогнозирование, когда компоненты / системы двигателя выйдут из строя или когда производительность достигнет неприемлемого уровня.
Существует три основных класса методов прогнозирования RUL: (1) методы, управляемые данными, (2) методы, основанные на физических моделях, и (3) методы, сочетающие методы, управляемые данными, и методы, основанные на физических моделях [6–9] . Методы, управляемые данными, используют прошлые данные мониторинга состояния, текущее состояние работоспособности системы и данные о деградации аналогичных систем. Методы, основанные на физических моделях, используют специфические для системы знания о механизмах, регулирование отказов и данные мониторинга состояния для прогнозирования RUL системы или компонента.В прогнозировании, основанном на физике, есть две основные проблемы: (1) недостаточно физических знаний для построения модели физической деградации и (2) значения параметров физической модели трудно определить точно. Поэтому важно правильно понимать механизм отказа системы, а для моделей, основанных на физике, требуется опытный персонал [10, 11]. Кроме того, периферийная среда во время работы устройства (например, температура и влажность) и условия эксплуатации (например,g., скорость вентилятора) могут использоваться в качестве входных данных и представляют собой дополнительные параметры, которые необходимо учитывать. Следовательно, в реальности легче удовлетворить требования методов, управляемых данными, для моделирования деградации и прогнозирования RUL. В настоящее время методы, управляемые данными, широко используются в предсказании RUL [12, 13].
Производительность многих методов прогнозирования на основе данных в значительной степени зависит от выбора данных о снижении производительности, к которым они применяются [14]. Однако у двигателей много параметров датчиков.Чувствительность данных от разных датчиков различается с точки зрения демонстрации ухудшения характеристик двигателя; данные с одних датчиков являются конфиденциальными, а данные с других датчиков — нет. Следовательно, необходимо выбрать подходящие параметры датчика, данные которых более чувствительны к тенденции ухудшения характеристик двигателя, в качестве обучающих данных для модели прогнозирования RUL. Наблюдая за характерными вариациями данных всех параметров датчика, используется квадратичная подгоночная кривая для подбора данных о деградации от различных датчиков и ранжирования параметров датчика двигателя по чувствительности.
Три проблемы препятствуют реализации извлечения признаков снижения производительности на практике. Первый — выбрать наиболее чувствительные функции снижения производительности для легкого определения тенденций снижения производительности. Во-вторых, соответствующие функции снижения производительности часто недоступны и неизвестны априори; было предложено большое количество возможных признаков снижения производительности, чтобы лучше представить состояние снижения производительности. Последнее заключается в том, что большинство традиционных методов извлечения признаков ухудшения производительности для прогнозов являются неконтролируемыми и не могут автоматически настраивать модальные параметры извлечения признаков на основе обратной связи от прогноза [15–17].Такое извлечение и выбор признаков имеет большое значение, но представляет собой главный недостаток популярных алгоритмов прогнозирования: неспособность извлекать и систематизировать различительную информацию или информацию о тенденциях из данных. Следовательно, важно разработать метод автоматического извлечения признаков, который позволяет извлекать характерные особенности, чтобы лучше понять лежащее в основе состояние снижения производительности.
Глубокое обучение, новый метод, который был предложен в последние несколько лет, можно использовать для извлечения многоуровневых функций из данных, что означает, что метод может выражать данные на разных уровнях абстракции [18].Глубокое обучение — это сквозная система машинного обучения. Он может автоматически обрабатывать исходный сигнал, определять отличительные признаки и особенности тренда на уровне входных данных по слою, а затем напрямую выводить результат классификации / регрессии. Весь процесс обучения признакам и модели классификатора / регрессии основан на оптимизации общей целевой функции. Напротив, традиционные процессы машинного обучения делятся на несколько прерывистых этапов предварительной обработки данных, таких как ручное извлечение признаков и обучение модели классификатора / регрессии, и каждый этап основан на оптимизации отдельной целевой функции.Благодаря преимуществу функции самообучения, глубокое обучение имело большой успех в приложениях в области искусственного интеллекта, включая компьютерное зрение (CS), обработку естественного языка (NLP) [19, 20], распознавание объектов [21] и информацию об изображениях. поиск [22, 23]. Глубокое обучение популярно не только в академическом мире, но и в промышленном мире. Такие компании, как Google, Microsoft, Apple, IBM и Baidu [24], чьи продукты широко используются, исследуют глубокое обучение и добились таких успехов, как AlphaGo.
Существует множество методов глубокого обучения: например, были предложены глубокие нейронные сети (DNN), сверточные глубокие нейронные сети (CNN), сети глубоких убеждений (DBN) и так далее [25]. Пакетный разреженный автоэнкодер (SAE) [26] — один из наиболее часто используемых подходов к глубоким нейронным сетям. SAE состоит из многослойного автоэнкодера, такого как разреженный автоэнкодер, шумоподавляющий автоэнкодер и так далее. Разреженный автокодер основан на автокодировщике, и в нем введено условие разреженного ограничения, чтобы код выражения был как можно более разреженным.Снижающий шум автоэнкодер может научиться удалять шум, который добавляется к исходным входным данным, и извлекать более надежное выражение входных данных [27]. По этой причине SAE может эффективно фиксировать важный фактор входных данных, извлекать более полезные и надежные функции данных, а затем обеспечивать отличную производительность в распознавании образов и машинном обучении.
В последние годы различные исследователи продемонстрировали успех моделей DNN и SAE в применении мониторинга состояния машин, таких как классификация неисправностей асинхронного двигателя, работающего в шести различных условиях, диагностика неисправностей подшипников качения и гидравлического насоса на основе вибрации, неисправности обнаружение в генераторе приливной турбины по данным вибрации, полученным от датчика акселерометра, размещенного в гондоле турбины, мониторинг состояния воздушных компрессоров на основе вибрации, многоклассовая классификация неисправностей космических аппаратов с использованием большого количества данных, сгенерированных во время испытаний космических аппаратов, обнаружение аномалий и неисправностей устранение неоднозначности в больших полетных данных, мониторинг состояния бурового долота и стального листа с использованием данных о вибрации, распознавание неисправностей трансформатора напряжения в электроэнергетике и т. д. [28–36].Большинство исследований по мониторингу состояния на основе SAE в настоящее время в основном сосредоточены на обнаружении аномалий и диагностике неисправностей. Однако существует несколько приложений для прогнозирования RUL, особенно для прогнозирования RUL для авиационных двигателей.
Следовательно, метод прогнозирования, основанный на сложенном разреженном автокодировщике, предлагается для содействия самообучению многослойных функций и прогнозирования RUL авиационного двигателя. Остальная часть этого документа организована следующим образом: Раздел 2 представляет всю процедуру и структуру метода прогнозирования.В разделе 3 представлены и обсуждаются результаты прогнозов. Наконец, в Разделе 4 сделаны выводы.
2. Методология
В этом разделе представлены соответствующие алгоритмы, используемые в данном исследовании. Как показано на рисунке 1, вся процедура прогнозирования RUL для авиационного двигателя состоит из двух основных этапов: предварительной обработки данных и прогнозирования RUL с использованием SAE.
2.1. Предварительная обработка данных
Выбор датчиков, чувствительных к снижению производительности, и стандартизация данных датчиков с различными размерами являются первоочередными задачами, необходимыми для получения высокой точности прогнозирования RUL.Для предварительной обработки данных необходимо выполнить три шага.
2.1.1. Выбор датчика
Различные датчики в авиационном двигателе очень по-разному реагируют на процесс ухудшения характеристик. Некоторые датчики показывают нечеткие тенденции из-за шума или нечувствительности к тенденциям деградации. Выбор данных нечувствительных параметров может снизить точность предсказания RUL. Чтобы улучшить производительность модели прогнозирования, датчики, которые более чувствительны к процессу снижения производительности, выбираются в качестве входных данных для модели прогнозирования RUL.Для измерения чувствительности предлагается метод, называемый анализом наклона. Его три основных шага заключаются в следующем: Шаг 1: аппроксимация кривой выполняется для данных о деградации для каждого параметра каждого двигателя. Затем параметры наиболее подходящих кривых, называемые наклонами, используются для анализа чувствительности данных о деградации. Шаг 2: вычисляются средние значения всех параметров двигателя на шаге 1, которые принадлежат одному и тому же датчику. Затем разные средние значения параметров для разных датчиков показывают индивидуальную чувствительность данных деградации.Шаг 3: данные деградации с большими наклонами выбираются для прогнозирования RUL двигателя.
2.1.2. Нормализация данных
Линейная функция, которая лучше всего сохраняет исходную картину ухудшения характеристик авиационного двигателя, выбирается для сопоставления данных для каждого выбранного датчика с [0, 1].
2.1.3. Нормализация RUL
Предлагаемый метод прогнозирования выводит результат в диапазоне от 0 до 1. На этапе обучения модели прогнозирования RUL каждого цикла авиационного двигателя также следует нормализовать до [0, 1] с использованием линейной функции. .Тестовые выходные данные модели прогнозирования должны быть обратно преобразованы из [0, 1] в реальный RUL.
2.2. Конструкция модели SAE
2.2.1. Глубокая архитектура
Кортикальные вычисления в мозге имеют глубокую архитектуру и многоуровневую обработку. Например, визуальное изображение обрабатывается мозгом в несколько этапов, сначала кортикальной областью «V1», затем кортикальной областью «V2» и так далее [37]. Вдохновленные схемой обработки информации мозга, глубокие нейронные сети имеют схожую глубокую архитектуру и несколько скрытых слоев, которые могут поддерживать сложные задачи распознавания [6, 37].Как типично для глубоких нейронных сетей, составной разреженный автокодировщик (SAE) состоит из нескольких автокодировщиков. По сравнению с традиционными нейронными сетями с мелкой архитектурой, он может лучше изучать функции и извлекать более глубокие дискриминативные представления [38].
Однако обучить глубокие архитектуры сложно [39]. Эта проблема была рассмотрена Hinton et al. [40–42], которые показали, что глубокие архитектуры можно обучать, полагаясь на две основные процедуры: (1) на основе неконтролируемого автокодировщика, уровни глубокой архитектуры обрабатываются путем предварительного обучения, а вывод автокодера верхнего уровня является используется в качестве входных данных для логистической регрессии, и (2) точная настройка на основе обратного распространения ошибок используется для корректировки параметров модели для получения точных результатов прогнозирования.