Устройство кривошипно шатунного механизма: Кривошипно-шатунный механизм двигателя (КШМ): устройство и принцип работы

Общее устройство и работа кривошипно-шатунного механизма

Общее устройство и работа кривошипно-шатунного механизма

Кривошипно-шатунный механизм является основой двигателя внутреннего сгорания. Он состоит из следующих основных деталей: гильз цилиндров, установленных в блок-картере, головки, поршней с кольцами и поршневыми пальцами, шатунов, коленчатого вала с подшипниками и маховиком и поддона картера.

На данном рисунке изображен разрез двигателя Д-240. Цилиндры здесь размещены в блоке двигателя вертикально в один ряд. Сверху цилиндры закрываются общей головкой. Для надежного уплотнения полостей цилиндров в разъем блока и головки укладывается уплотнительная прокладка.

Поршни имеют пружинящие уплотнительные и масляные кольца. При помощи поршневых пальцев поршни шарнирно связаны с шатунами. Нижние концы шатунов имеют разъемы и шарнирно соединяются с коленчатым валом. В нижнюю расточку шатунов заложены вкладыши подшипников скольжения.

Рекламные предложения на основе ваших интересов:

Дополнительные материалы по теме:

Коленчатый вал укладывается в разъемные подшипники блока двигателя. На переднем конце коленчатого вала крепятся приводные детали: шкив, шестерни; на заднем — маховик.

Замкнутая полость, в которой вращается коленчатый вал и находится рабочий запас смазочного масла, называется картером. Он образуется нижней частью блока двигателя и поддоном, который крепится к блоку снизу. В плоскость разъема блока и поддона картера устанавливается уплотнительная прокладка.

Блок цилиндров и верхняя часть картера представляют собой деталь, которую называют блок-картером.

К блок-картеру и его головке, составляющим остов двигателя, крепятся детали и узлы других механизмов и систем двигателя.

Рис. 1. Разрез двигателя Д-240: 1 — шатун; 2 — маслосъемные кольца; 3 — уплотняющая часть поршня с компрессионными кольцами; 4 — камера сгорания в днище поршня; 5 — валик коромысел; 6 — клапан; 7 — опорная шайба пружин клапана; 8 — сухари крепления опорной шайбы на клапане; 9 — пружины клапана; 10 — направляющая втулка клапана; 11 — гильза цилиндра; 12 — стойка валика коромысел; 13 — регулировочный болт; 14 — контргайка; 15 — коромысло; 16 — штанги; /7 — головка цилиндров; 18 — прокладка головки цилиндров; 19 — вентилятор; 20 — шкив привода вентилятора; 21 — шестерня распределительного вала; 22 — промежуточная шестерня распределения; 23 — шкив коленчатого вала; 24 — шестерня распределения коленчатого вала; 25 — ведущая шестерня привода масляного насоса; 26 — уплотнение поддона картера; 27 — шестерня привода масляного насоса; 28 — маслоприемник; 29 — распределительный вал; 30 — толкатель; 31 — уплотняющие резиновые кольца гильзы цилиндров; 32 — поршневой палец; 33 — поддон картера; 34 — коленчатый вал; 35 — коренной подшипник коленчатого вала; 36 — перегородки нижней части блок-картера; 37 — маховик; 38 — блок-картер

Детали кривошипно-шатунного механизма во время работы двигателя испытывают как силовые, так и тепловые нагрузки.

Силовая нагрузка складывается из давления газов, сил инерции возвратно-поступательно и вращательно движущихся масс, сил трения и полезного сопротивления, нагрузки от упругих колебаний.

Максимальная сила давления газов Ргна поршень карбюраторного двигателя составляет 12…13 кН. Поршень дизеля испытывает давление газов порядка 45…100 кН.

Центробежная сила Рц у автомобильных и тракторных двигателей достигает 3…9 кН.

Упругие колебания деталей двигателя возникают вследствие того, что силы давления газов и силы инерции являются периодически изменяющимися. Дополнительные напряжения в деталях при упругих колебаниях, складываясь с основными напряжениями, могут приводить к разрушению деталей. Суммарные напряжения достигают максимума при явлениях резонанса.

Для ослабления вредного действия упругих колебаний детали двигателя делают достаточно жесткими из материалов с высоким пределом выносливости.

Тепловая нагрузка приводит к снижению механических свойств металлов, появлению тепловых напряжений, изменению формы деталей и зазора между ними, ухудшению условий смазки и т. п. Поэтому тепловой режим работы двигателя должен соответствовать расчетному и не вызывать нарушений в работе его деталей и узлов.

Детали кривошипно-шатунного механизма, работающие в условиях больших знакопеременных нагрузок, упругих колебаний и высокой температуры, должны иметь достаточную прочность, жесткость и износостойкость.

Кривошипно-шатунный механизм должен быть компактным и легким. Уменьшение массы движущихся относительно остова двигателя деталей при сохранении их прочности и жесткости снижает инерционные силы, а следовательно, нагрузки и износ деталей.

Для уменьшения утечки газов из цилиндров детали, образующие рабочие полости (цилиндры, поршни с кольцами, головки с прокладками), должны постоянно поддерживать требуемую герметичность цилиндров.

Устройство деталей кривошипно-шатунного механизма и компоновка его узлов на двигателе должны обеспечивать простоту технического обслуживания и ремонта.

Кривошипно-шатунный механизм – сердце автомобильного двигателя

Avto-Gurman. ru » АвтоРемонт » Двигатель » Кривошипно-шатунный механизм – сердце автомобильного двигателя

Содержание

  1. Кривошипно-шатунный механизм (КШМ)
  2. Что это такое?
  3. Устройство КШМ
  4. Подвижные
  5. Поршень
  6. Шатун
  7. Коленвал
  8. Маховик
  9. Неподвижные
  10. Блок и головка цилиндров
  11. Кривошипно-шатунный механизм: принцип работы
  12. Видео
  13. Заключение

Ни для кого не секрет, что основной механизм, который приводит автомобиль в движение, – это двигатель. Т.е. можно сказать, что силовой агрегат – это сердце любой машины. Но без кривошипно-шатунного механизма функционирование ДВС невозможно. Получается, что КШМ не что иное, как сердце двигателя. И именно об этом механизме Авто-Гурман.ру расскажет ниже.

Что это такое?

КШМ – это механизм, который преобразует одно движение в другое. То есть, например, вращение он может преобразовать в качательные, поступательно-толкательные и иные движения.

Встретить кривошипно-шатунный механизм можно не только в поршневых ДВС, но и в различных компрессорах, насосах и в других механических устройствах.

На сегодняшний день КШМ является самым популярным механизмом для преобразования одного движения в другое. Поэтому сейчас стоит рассмотреть его устройство.

Устройство КШМ

Основные элементы механизма делятся на две группы:

  1. Подвижные элементы – это поршни, поршневые кольца, пальцы, коленвал с маховиком и шатун. Все элементы поршней – это поршневая группа.
  2. Неподвижные элементы – это соединительные детали, блок цилиндра и его головка, а также поддон и картер с подшипниками коленвала.

Разберем каждый элемент более подробно.

Подвижные

Поршень

Это элемент КШМ, изменяющий давление газа. Такие изменения осуществляются путем его возвратно-поступательного движения. Внешне поршень выполнен в форме цилиндра, изготовленного из алюминиевого сплава. Основные детали поршня – днище, юбка и головка. Каждая деталь выполняет свою функцию. Днище имеет камеру сгорания. В головке находятся специальные нарезные канавки, в которых располагаются поршневые кольца. Основное предназначение колец – защита картера двигателя от газов и удаление излишек масла со стенок цилиндра. Юбка внутри себя имеет поршневой палец, который размещается в этом элементе механизма за счет специальных бобышек. В юбке находятся две бобышки для размещения поршня с шатуном пальца.

Шатун

Главный элемент кривошипно-шатунного механизма для передачи поршневого усилия к коленвалу. Данная деталь может быть кованой из стали или титана. По конструкции шатун состоит из стержня с двутавровым сечением, а также головок (верхней и нижней). Верхняя головка, как и юбка имеет бобышки, в которых находится поршневой палец, а нижняя разборная головка обеспечивает высокую точность соединения деталей.

Коленвал

Это элемент для восприятия усилий от шатуна, в дальнейшем преобразующий эти усилия в крутящий момент. Чаще всего его изготавливают из чугуна или стали. Состоит он из корневых и шатунных шеек. Шейки соединяются специальными щеками. Их основной рабочий процесс происходит непосредственно в подшипниках скольжения. Щеки и шейки имеют специальные отверстия, предназначенные для подачи масла.

Маховик

Маховик располагается на конце коленвала. Он играет одну из главных ролей в работе двигателя – участвует в запуске ДВС через стартер.

Неподвижные

Блок и головка цилиндров

Блок цилиндров имеет специальные охлаждающие рубашки, точки крепления для основных узлов и приборов, а также постель для подшипников коленвала и распредвала. Сам блок и головка отливаются из чугуна или алюминия. Ну, а основное назначение блока – направление поршней. Что касается головки блока, то она имеет внутри себя специальные отверстия под свечи зажигания, впускные-выпускные каналы, втулки, а также камеру сгорания и запрессованные седла.

Вот основные элементы кривошипно-шатунного механизма. Сейчас же Авто-Гурман.ру хочет познакомить вас принципом работы КШМ.

Кривошипно-шатунный механизм: принцип работы

И так, поршень находится на максимальном расстоянии от коленвала. Кривошип и шатун выстроились в одну линию. В этот момент в цилиндр поступает топливо, и оно начинает гореть. Продукты горения, а именно расширяющие газы, перемещают поршень к коленвалу. Вместе с этим перемещается и шатун, нижняя головка которого поворачивает коленвал на 180°. После этого шатун и его головка перемещаются и поворачиваются в обратном направлении, возвращаясь в исходное положение. Поршень также возвращается на первоначальное место. И такой процесс работы идет по кругу.

Видео

Заключение

Как видно кривошипно-шатунный механизм – главный механизм двигателя, от работы которого зависит исправность автомобиля. Поэтому за данным узлом нужно всегда следить и при любых признаках неисправности устранять ее как можно быстрее, так как результатом поломок КШМ может стать полный выход из строя двигателя, ремонт которого сильно отразится на личном бюджете.

Ну а в следующей статье мы рассказали: Как определить износ ремня ГРМ, не снимая его с мотора. Обязательно найдите минутку и узнайте основные правила экономии в обслуживании авто!

Кривошип (механизм) | История Вики

в: Страницы, использующие магические ссылки ISBN, Машиностроение, Ссылки

Файл:Кривошипный механизм геометрии sk.png

Кривошип представляет собой рычаг, прикрепленный под прямым углом к ​​вращающемуся валу, с помощью которого возвратно-поступательное движение передается валу или принимается от него. Он используется для преобразования кругового движения в возвратно-поступательное или возвратно-поступательного движения в круговое. Рычаг может представлять собой изогнутую часть вала или прикрепленный к нему отдельный рычаг. К концу кривошипа шарниром прикреплен стержень, обычно называемый шатуном. Конец стержня, прикрепленный к кривошипу, движется круговым движением, в то время как другой конец обычно вынужден двигаться линейным скользящим движением внутрь и наружу.

Этот термин часто относится к рукоятке с приводом от человека, которая используется для ручного поворота оси, например, в шатуне велосипеда или в скобе и дрели. В этом случае рука или нога человека служит шатуном, прикладывающим возвратно-поступательную силу к кривошипу. Часто имеется штанга, перпендикулярная другому концу руки, часто со свободно вращающейся ручкой на ней для удержания в руке или в случае работы ногой (обычно второй рукой для другой ноги), с свободно вращающаяся педаль.

Содержание

  • 1 История
  • 2 примера
    • 2.1 Руками
    • 2.2 Использование ножек
    • 2.3 Двигатели
  • 3 Механика
  • 4 См. также
  • 5 Каталожные номера
    • 5.1 Библиография
  • 6 Внешние ссылки

История[]

Файл: Bundesarchiv Bild 135-BB-152-11, Tibetexpedition, Tibeter mit Handmühle.jpg

Тибетец, работающий на печи (1938). Перпендикулярная рукоятка таких вращающихся ручных мельниц работает как рукоятка. [1] [2]

Эксцентриковый кривошипный механизм появился в Китае с 4 века до н. э. [3] Рукоятки с ручным приводом использовались во времена династии Хань (202 г. до н.э. — 220 г. н.э.), как модели гробниц из глазурованной глины эпохи Хань с изображениями 1-го века до н.э., а затем использовались в Китае для наматывания шелка и конопляного прядения, для сельскохозяйственного веялки, для водяного мукопросеивателя, для гидравлического металлургического меха и для колодезной лебедки.

[4] [5] Самое раннее использование кривошипа в машине происходит в веялке с кривошипным приводом в ханьском Китае. [6]

Римская железная рукоятка была найдена при раскопках в Августе Раурике, Швейцария. Кусок длиной 82,5 см с ручкой длиной 15 см имеет пока неизвестное назначение и датируется не позднее ок. 250 г. н.э. [7] На лесопилке позднего Иераполиса (Малая Азия) 3-го века обнаружены рукоятки, а две каменные лесопилки 6-го века были также найдены в Эфесе, Малая Азия, и Герасе, Иордания. [8] В Китае кривошипно-шатунный станок появился в 5 веке, а в 6 веке — кривошипно-шатунный станок с поршневым штоком.

[3]

Устройство, изображенное в каролингской рукописи начала 9 века Утрехтская псалтирь , представляет собой кривошипную рукоятку, используемую с вращающимся точильным камнем. [9] Ученые указывают на использование кривошипных рукояток в трепанационных сверлах в работе X века испанского хирурга-мусульманина Абу аль-Касима аль-Захрави (936–1013). [9] Бенедиктинский монах Феофил Пресвитер (ок. 1070–ок. 1125) описал кривошипные рукоятки, «используемые при токарной обработке литейных стержней», согласно Нидхэму. [10]

В мусульманском мире неручной кривошип появляется в середине 9-го века в нескольких гидравлических устройствах, описанных братьями Бану Муса в их Книге изобретательных устройств . [11] Эти кривошипы с автоматическим управлением появляются в нескольких устройствах, описанных в книге, два из которых имеют действие, близкое к действию коленчатого вала. Автоматическая рукоятка братьев Бану Муса не позволяла бы полностью вращаться, но потребовалась лишь небольшая модификация, чтобы преобразовать ее в коленчатый вал.

[12] Арабский изобретатель Аль-Джазари (1136–1206) описал кривошипно-шатунную систему во вращающейся машине двух своих водоподъемных машин. [13] Его двухцилиндровый насос включал в себя самый ранний из известных коленчатых валов, [14] , в то время как его другая машина включала в себя первый известный кривошипно-ползунковый механизм. [15] Итальянский врач и изобретатель Гвидо да Виджевано (ок. 1280–1349) сделал иллюстрации для байдарки и военной повозки, которые приводились в движение коленчатыми валами и зубчатыми колесами, вращаемыми вручную.
[16]
Кривошип стал обычным явлением в Европе к началу 15 века, его можно увидеть в работах таких людей, как военный инженер Конрад Кьезер (1366–после 1405). [16]

Кривошипные шатуны раньше использовались на некоторых машинах в начале 20-го века; например, почти все фонографы до 1930-х годов приводились в действие заводными двигателями с заводными рукоятками, а двигатели внутреннего сгорания автомобилей обычно запускались с помощью рукояток (известных как пусковые рукоятки в Великобритании), прежде чем электрические стартеры стали широко использоваться.

Примеры[]

Файл:Преобразование вращательного движения в линейное crank.jpg

Кривошипная рукоятка

Файл:CrankPencilShapener.jpg

Ручная рукоятка на точилке для карандашей

Знакомые примеры включают:

Рукой[]

  • Механическая точилка для карандашей
  • Рыболовная катушка и другие катушки для кабелей, проводов, канатов и т. д.
  • Окно автомобиля с ручным управлением
  • комплект рукояток, который приводит в движение трикке через ручки.

С помощью ножек[]

  • шатунов, приводящих в движение велосипед с помощью педалей.
  • швейная машина с педалью

Двигатели[]

Почти во всех поршневых двигателях используются кривошипы для преобразования возвратно-поступательного движения поршней во вращательное движение. Шатуны встроены в коленчатый вал.

Механика[]

Смещение конца шатуна примерно пропорционально косинусу угла поворота кривошипа при измерении от верхней мертвой точки. Таким образом, возвратно-поступательное движение, создаваемое постоянно вращающимся кривошипом и шатуном, приблизительно представляет собой простое гармоническое движение:

где x — расстояние от конца шатуна до оси кривошипа, l — длина шатуна, r — длина кривошипа, а α угол поворота коленчатого вала, измеренный от верхней мертвой точки (ВМТ). Технически возвратно-поступательное движение шатуна немного отличается от синусоидального из-за изменения угла шатуна во время цикла.

Механическое преимущество кривошипа, соотношение между силой, действующей на шатун, и крутящим моментом на валу, меняется на протяжении цикла кривошипа. Соотношение между ними примерно такое:

где крутящий момент и F сила на шатуне. Для данной силы на кривошипе крутящий момент максимален при углах кривошипа α = 90° или 270° от ВМТ. Когда кривошип приводится в движение шатуном, возникает проблема, когда кривошип находится в верхней мертвой точке (0°) или нижней мертвой точке (180°). В эти моменты цикла кривошипа сила, действующая на шатун, не вызывает крутящего момента на кривошипе. Следовательно, если кривошип неподвижен и находится в одной из этих двух точек, он не может быть приведен в движение шатуном. По этой причине в паровозах, колеса которых приводятся в движение кривошипами, два шатуна крепятся к колесам в точках 9.0° друг от друга, так что независимо от положения колес при запуске двигателя по крайней мере один шатун сможет создать крутящий момент для запуска поезда.

См. также[]

  • Лебедка
  • Уравнения движения поршня
  • Ничего шлифовального станка
  • Солнечная и планетарная передача

Ссылки[]

  1. ↑ Ritti, Grewe & Kessener 2007, p. 159
  2. ↑ Лукас 2005, с. 5, фн. 9
  3. 3,0 3,1 Джозеф Нидхэм (1975), «История и человеческие ценности: китайский взгляд на мировую науку и технику», Philosophy and Social Action II (1-2): 1-33 [4], http://citeseerx . ist.psu.edu/viewdoc/download?doi=10.1.1.122.293&rep=rep1&type=pdf#page=12, получено 13 марта 2010 г. .
  4. ↑ Needham 1986, стр. 118–119.
  5. ↑ Темпл, Роберт. (1986). Гений Китая: 3000 лет науки, открытий и изобретений , с. 46. ​​С нападающим Джозефом Нидхэмом. Нью-Йорк: Саймон и Шустер, Inc. ISBN 0671620282.
  6. Н. Сивин (август 1968 г.), «Обзор: Наука и цивилизация в Китае Джозефа Нидхэма», Журнал азиатских исследований (Ассоциация азиатских исследований) 27 (4): 859-864 [862 ], http://www.jstor.org/stable/2051584
  7. ↑ Лаур-Беларт 1988, с. 51–52, 56, рис. 42
  8. ↑ Ритти, Греве и Кессенер 2007, с. 161
  9. 9,0 9,1 Needham 1986, p. 112.
  10. ↑ Needham 1986, стр. 112–113.
  11. А. Ф. Л. Бистон, М. Дж. Л. Янг, Дж. Д. Латам, Роберт Бертрам Сержант (1990), Кембриджская история арабской литературы , Cambridge University Press, с. 266, ISBN 0521327636
  12. Бану Муса, Дональд Рутледж Хилл (1979), Книга гениальных устройств (Китаб аль-Хиял) , Springer, стр. 23-4, ISBN 08339
  13. ↑ Ахмад И Хассан. Кривошипно-шатунная система в машине с непрерывным вращением.
  14. Салли Ганчи, Сара Ганчер (2009), Ислам и наука, медицина и технологии , The Rosen Publishing Group, p. 41, ISBN 1435850661
  15. Лотфи Ромдхан и Саид Зеглул (2010), «Аль-Джазари (1136–1206)», History of Mechanism and Machine Science (Springer) 7 : 1-21, doi: 10.1007/978-90- 481-2346-9, ISBN 978-90-481-2346-9, ISSN 1875-3442
  16. 16,0 16,1 Needham 1986, p. 113.

Библиография []

  • Лукас, Адам Роберт (2005), «Промышленное измельчение в древнем и средневековом мире. Обзор свидетельств промышленной революции в средневековой Европе», Технология и культура 46 : 1–30  
  • Лаур-Беларт, Рудольф (1988), Führer durch Augusta Raurica (5-е изд. ), август  
  • Нидхэм, Джозеф (1991), Наука и цивилизация в Китае: Том 4, Физика и физические технологии: Часть 2, Машиностроение , издательство Кембриджского университета, ISBN 0521058031 .
  • Ритти, Тулия; Греве, Клаус; Кессенер, Пол (2007), «Рельеф каменной лесопилки с водным приводом на саркофаге в Иераполисе и ее последствия», Journal of Roman Archaeology 20 : 138–163  

Внешние ссылки []

  • Crank: гипервидео конструкции и работы четырехцилиндрового двигателя внутреннего сгорания, любезно предоставленное Ford Motor Company
  • Цифровая библиотека кинематических моделей для проектирования (KMODDL) — фильмы и фотографии сотен работающих моделей механических систем в Корнельском университете. Также включает электронную библиотеку классических текстов по механическому дизайну и инженерии.

Контент сообщества доступен по лицензии CC-BY-SA, если не указано иное.

Кривошип (механизм) | История Вики

в: Страницы, использующие магические ссылки ISBN, Машиностроение, Ссылки

Файл:Геометрия кривошипно-шатунного механизма sk.png

Кривошип представляет собой рычаг, прикрепленный под прямым углом к ​​вращающемуся валу, посредством которого возвратно-поступательное движение передается валу или принимается от него. Он используется для преобразования кругового движения в возвратно-поступательное или возвратно-поступательного движения в круговое. Рычаг может представлять собой изогнутую часть вала или прикрепленный к нему отдельный рычаг. К концу кривошипа шарниром прикреплен стержень, обычно называемый шатуном. Конец стержня, прикрепленный к кривошипу, движется круговым движением, в то время как другой конец обычно вынужден двигаться линейным скользящим движением внутрь и наружу.

Этот термин часто относится к рукоятке с приводом от человека, которая используется для ручного поворота оси, например, в шатуне велосипеда или в скобе и дрели. В этом случае рука или нога человека служит шатуном, прикладывающим возвратно-поступательную силу к кривошипу. Часто имеется штанга, перпендикулярная другому концу руки, часто со свободно вращающейся ручкой на ней для удержания в руке или в случае работы ногой (обычно второй рукой для другой ноги), с свободно вращающаяся педаль.

Содержание

  • 1 История
  • 2 примера
    • 2.1 Руками
    • 2.2 Использование ножек
    • 2.3 Двигатели
  • 3 Механика
  • 4 См. также
  • 5 Каталожные номера
    • 5.1 Библиография
  • 6 Внешние ссылки

История[]

Файл: Bundesarchiv Bild 135-BB-152-11, Tibetexpedition, Tibeter mit Handmühle.jpg

Тибетец, работающий на печи (1938). Перпендикулярная рукоятка таких вращающихся ручных мельниц работает как рукоятка. [1] [2]

Эксцентриковый кривошипный механизм появился в Китае с 4 века до н. э. [3] Рукоятки с ручным приводом использовались во времена династии Хань (202 г. до н.э. — 220 г. н.э.), как модели гробниц из глазурованной глины эпохи Хань с изображениями 1-го века до н.э., а затем использовались в Китае для наматывания шелка и конопляного прядения, для сельскохозяйственного веялки, для водяного мукопросеивателя, для гидравлического металлургического меха и для колодезной лебедки. [4] [5] Самое раннее использование кривошипа в машине происходит в веялке с кривошипным приводом в ханьском Китае. [6]

Римская железная рукоятка была найдена при раскопках в Августе Раурике, Швейцария. Кусок длиной 82,5 см с ручкой длиной 15 см имеет пока неизвестное назначение и датируется не позднее ок. 250 г. н.э. [7] На лесопилке позднего Иераполиса (Малая Азия) 3-го века обнаружены рукоятки, а две каменные лесопилки 6-го века были также найдены в Эфесе, Малая Азия, и Герасе, Иордания. [8] В Китае кривошипно-шатунный станок появился в 5 веке, а в 6 веке — кривошипно-шатунный станок с поршневым штоком. [3]

Устройство, изображенное в каролингской рукописи начала 9 века Утрехтская псалтирь , представляет собой кривошипную рукоятку, используемую с вращающимся точильным камнем. [9] Ученые указывают на использование кривошипных рукояток в трепанационных сверлах в работе X века испанского хирурга-мусульманина Абу аль-Касима аль-Захрави (936–1013). [9] Бенедиктинский монах Феофил Пресвитер (ок. 1070–ок. 1125) описал кривошипные рукоятки, «используемые при токарной обработке литейных стержней», согласно Нидхэму. [10]

В мусульманском мире неручной кривошип появляется в середине 9-го века в нескольких гидравлических устройствах, описанных братьями Бану Муса в их Книге изобретательных устройств . [11] Эти кривошипы с автоматическим управлением появляются в нескольких устройствах, описанных в книге, два из которых имеют действие, близкое к действию коленчатого вала. Автоматическая рукоятка братьев Бану Муса не позволяла бы полностью вращаться, но потребовалась лишь небольшая модификация, чтобы преобразовать ее в коленчатый вал. [12] Арабский изобретатель Аль-Джазари (1136–1206) описал кривошипно-шатунную систему во вращающейся машине двух своих водоподъемных машин. [13] Его двухцилиндровый насос включал в себя самый ранний из известных коленчатых валов, [14] , в то время как его другая машина включала в себя первый известный кривошипно-ползунковый механизм. [15] Итальянский врач и изобретатель Гвидо да Виджевано (ок. 1280–1349) сделал иллюстрации для байдарки и военной повозки, которые приводились в движение коленчатыми валами и зубчатыми колесами, вращаемыми вручную. [16] Кривошип стал обычным явлением в Европе к началу 15 века, его можно увидеть в работах таких людей, как военный инженер Конрад Кьезер (1366–после 1405). [16]

Кривошипные шатуны раньше использовались на некоторых машинах в начале 20-го века; например, почти все фонографы до 1930-х годов приводились в действие заводными двигателями с заводными рукоятками, а двигатели внутреннего сгорания автомобилей обычно запускались с помощью рукояток (известных как пусковые рукоятки в Великобритании), прежде чем электрические стартеры стали широко использоваться.

Примеры[]

Файл:Преобразование вращательного движения в линейное crank.jpg

Кривошипная рукоятка

Файл:CrankPencilShapener.jpg

Ручная рукоятка на точилке для карандашей

Знакомые примеры включают:

Рукой[]

  • Механическая точилка для карандашей
  • Рыболовная катушка и другие катушки для кабелей, проводов, канатов и т. д.
  • Окно автомобиля с ручным управлением
  • комплект рукояток, который приводит в движение трикке через ручки.

С помощью ножек[]

  • шатунов, приводящих в движение велосипед с помощью педалей.
  • швейная машина с педалью

Двигатели[]

Почти во всех поршневых двигателях используются кривошипы для преобразования возвратно-поступательного движения поршней во вращательное движение. Шатуны встроены в коленчатый вал.

Механика[]

Смещение конца шатуна примерно пропорционально косинусу угла поворота кривошипа при измерении от верхней мертвой точки. Таким образом, возвратно-поступательное движение, создаваемое постоянно вращающимся кривошипом и шатуном, приблизительно представляет собой простое гармоническое движение:

где x — расстояние от конца шатуна до оси кривошипа, l — длина шатуна, r — длина кривошипа, а α угол поворота коленчатого вала, измеренный от верхней мертвой точки (ВМТ). Технически возвратно-поступательное движение шатуна немного отличается от синусоидального из-за изменения угла шатуна во время цикла.

Механическое преимущество кривошипа, соотношение между силой, действующей на шатун, и крутящим моментом на валу, меняется на протяжении цикла кривошипа. Соотношение между ними примерно такое:

где крутящий момент и F сила на шатуне. Для данной силы на кривошипе крутящий момент максимален при углах кривошипа α = 90° или 270° от ВМТ. Когда кривошип приводится в движение шатуном, возникает проблема, когда кривошип находится в верхней мертвой точке (0°) или нижней мертвой точке (180°). В эти моменты цикла кривошипа сила, действующая на шатун, не вызывает крутящего момента на кривошипе. Следовательно, если кривошип неподвижен и находится в одной из этих двух точек, он не может быть приведен в движение шатуном. По этой причине в паровозах, колеса которых приводятся в движение кривошипами, два шатуна крепятся к колесам в точках 9.0° друг от друга, так что независимо от положения колес при запуске двигателя по крайней мере один шатун сможет создать крутящий момент для запуска поезда.

См. также[]

  • Лебедка
  • Уравнения движения поршня
  • Ничего шлифовального станка
  • Солнечная и планетарная передача

Ссылки[]

  1. ↑ Ritti, Grewe & Kessener 2007, p. 159
  2. ↑ Лукас 2005, с. 5, фн. 9
  3. 3,0 3,1 Джозеф Нидхэм (1975), «История и человеческие ценности: китайский взгляд на мировую науку и технику», Philosophy and Social Action II (1-2): 1-33 [4], http://citeseerx . ist.psu.edu/viewdoc/download?doi=10.1.1.122.293&rep=rep1&type=pdf#page=12, получено 13 марта 2010 г. .
  4. ↑ Needham 1986, стр. 118–119.
  5. ↑ Темпл, Роберт. (1986). Гений Китая: 3000 лет науки, открытий и изобретений , с. 46. ​​С нападающим Джозефом Нидхэмом. Нью-Йорк: Саймон и Шустер, Inc. ISBN 0671620282.
  6. Н. Сивин (август 1968 г.), «Обзор: Наука и цивилизация в Китае Джозефа Нидхэма», Журнал азиатских исследований (Ассоциация азиатских исследований) 27 (4): 859-864 [862 ], http://www.jstor.org/stable/2051584
  7. ↑ Лаур-Беларт 1988, с. 51–52, 56, рис. 42
  8. ↑ Ритти, Греве и Кессенер 2007, с. 161
  9. 9,0 9,1 Needham 1986, p. 112.
  10. ↑ Needham 1986, стр. 112–113.
  11. А. Ф. Л. Бистон, М. Дж. Л. Янг, Дж. Д. Латам, Роберт Бертрам Сержант (1990), Кембриджская история арабской литературы , Cambridge University Press, с. 266, ISBN 0521327636
  12. Бану Муса, Дональд Рутледж Хилл (1979), Книга гениальных устройств (Китаб аль-Хиял) , Springer, стр. 23-4, ISBN 08339
  13. ↑ Ахмад И Хассан. Кривошипно-шатунная система в машине с непрерывным вращением.
  14. Салли Ганчи, Сара Ганчер (2009), Ислам и наука, медицина и технологии , The Rosen Publishing Group, p. 41, ISBN 1435850661
  15. Лотфи Ромдхан и Саид Зеглул (2010), «Аль-Джазари (1136–1206)», History of Mechanism and Machine Science (Springer) 7 : 1-21, doi: 10.1007/978-90- 481-2346-9, ISBN 978-90-481-2346-9, ISSN 1875-3442
  16. 16,0 16,1 Needham 1986, p. 113.

Библиография []

  • Лукас, Адам Роберт (2005), «Промышленное измельчение в древнем и средневековом мире. Обзор свидетельств промышленной революции в средневековой Европе», Технология и культура 46 : 1–30  
  • Лаур-Беларт, Рудольф (1988), Führer durch Augusta Raurica (5-е изд.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *