Устройство тнвд: принцип работы, устройство, назначение, конструкция

Содержание

ТНВД — что это? Принцип работы

ТНВД представляет собой один из ключевых узлов двигателя транспортного средства. Его важность показывает сравнение с сердечной мышцей в организме человека, задачей которой выступает обеспечение циркуляции крови по телу. Назначение ТНВД аналогично, с той лишь разницей, что он отвечает за перемещение горючего по топливной системе.

 

Определение

 

ТНВД или топливный насос высокого давления – это сложный с конструктивной и технологической точек зрения узел системы подачи топлива в дизельном или бензиновом двигателе. Английское название устройства — injection pump. Основными функциями ТНВД выступают такие:

  • подача горючего к форсункам с одновременным нагнетанием давления;
  • дозирование топлива в зависимости от выбранного водителем режима эксплуатации;
  • определение оптимальной периодичности впрыска топлива в цилиндры двигателя.

Ключевым отличием топливного насоса высокого давления от выполняющего в целом аналогичные функции карбюратора выступает впрыск четко дозированного количества горючего в камеры внутреннего сгорания двигателя. Это достигается установлением непосредственной связи с коленчатым валом, что позволяет при разгоне автомобиля увеличивать порцию подаваемой топливно-воздушной смеси, а при уменьшении оборотов – снижать объем впрыскиваемого горючего. Как следствие – уменьшается расход топлива и обеспечивается более высокий КПД работы двигателя, что и выступает главным достоинством ТНВД.

 

История разработки и совершенствования

 

Разработчиком ТНВД считается Роберт Бош. Активное использование рассматриваемой разновидности топливного насоса на легковых автомобилях началось во второй половине 30-х годов прошлого века.

Изначально топливный насос высокого давления предназначался исключительно для дизельных двигателей. Однако, в настоящее время ТНВД применяется и для бензиновых агрегатов, оборудованных инжекторной системой, обеспечивающей впрыскивание топлива непрямую в цилиндры.

Постоянный рост требований в части охраны труда и соблюдения экологических стандартов объясняет еще одно важное направление улучшения ТНВД. В современных условиях произошло вытеснение механических топливных насосов устройствами, оснащенными электронной регулировкой подачи горючего. Второй вариант системы впрыска топлива намного экономичнее и сводит к минимуму количество вредных выбросов в атмосферу.

 

Устройство

 

Различают несколько видов топливных насосов высокого давления. Несмотря на существенные конструктивные различия, основным рабочим узлом ТНВД является так называемая плунжерная пара. Основной ее задачей является нагнетание давления в топливной системе.

Устройство плунжерной пары включает две детали – поршень или плунжер, давший название рабочему узлу, и втулка или гильза. Принцип работы устройства основан на возвратно-поступательном движении, которое плунжер осуществляет внутри втулки. При этом каналы и клапаны, расположенные внутри ТНВД обеспечивают подачу горючего в полость, размещенную над плунжером, а также его отвод после сжатия и нагнетания давления.

Узел может эффективно работать только при обеспечении высокого уровня герметичности. Для этого рабочие поверхности и поршня, и втулки тщательно обрабатываются, что дало еще одно название плунжерной пары – прецизионная, то есть высокоточная. Еще одно обязательное требование к поршню и втулке – изготовление из крайне прочных марок стали, способной выдержать серьезные нагрузки.

Наличие других конструктивных элементов, деталей и узлов топливного насоса высокого давления зависит от конкретной разновидности устройства. Конструкция наиболее простого и широко распространенного рядного ТНВД предусматривает присутствие следующих деталей:

  • плунжерная пара, подробно описанная выше;
  • специальные канавки, назначение которых – подача горючего к плунжерной паре;
  • кулачковый вал, оснащенный центробежной муфтой, который вращается при помощи ремня ГРМ;
  • толкатели плунжера, передающие энергию, поступающую от кулачкового вала;
  • пружины, предназначенные для возврата плунжера в исходное положение;
  • нагнетательные клапаны, обеспечивающие движение топлива в нужном для эксплуатации двигателя направлении;
  • зубчатые рейки, штуцеры и так называемый всережимный регулятор, активируемый педалью газа.

Некоторые особенности других разновидностей ТНВД описываются ниже. Но независимо от различий в конструкции, принцип работы любых топливных насосов высокого давления примерно одинаков.

 

Принцип работы

 

Схема работы рассматриваемой модели топливного насоса напоминает эксплуатацию двухтактного двигателя внутреннего сгорания. Она включает в себя несколько последовательно реализуемых этапов:

  1. Вращение кулачкового вала с оказанием давления на толкатели плунжера.
  2. Перемещение поршня по втулке.
  3. Увеличение давления топлива, в результате которого открываются нагнетательные клапаны.
  4. Поступление горючего к форсункам через открытые клапаны.

Важной особенностью ТНВД выступает попадание в форсунки не всей топливно-воздушной смеси, а только четко определенной дозы. Оставшееся топливо через специальные сливные клапаны возвращается в систему. Наличие центробежной муфты обеспечивает поступление горючего в нужный момент, а присутствие в конструкции всережимного регулятора обеспечивает точное определение необходимого объема смеси. В результате одновременной работы всех узлов топливного насоса высокого давления удается добиться продуктивной работы двигателя при минимально возможном расходе топлива.

Дальнейшего увеличения КПД двигателей, оснащенных ТНВД, позволяет добиться использование электронных систем управления работой топливного насоса. Современные высокоточные датчики контролируют все ключевые параметры системы, к числу которых относятся:

  • изменение положения педали газа;
  • количество оборотов распределительного вала;
  • уровень температуры охлаждающей жидкости;
  • скорость транспортного средства;
  • уровень давления в системе наддува воздуха;
  • изменение положения иглы форсунки и т.д.

Дополнительный плюс ТНВД с электронным блоком контроля и управления – наличие эффективных программ самодиагностики системы. Они позволяют быстро выявлять возникшие проблемы и обеспечивают работу двигателя даже в случае отказа отдельных узлов или деталей.

Классификация

Для классификации ТНВД применяется несколько признаков. По принципу работы различают топливные насосы непосредственного действия и системы, предусматривающие аккумуляторный впрыск. Первая разновидность также делится на два типа – с механическим и пневматическим приводом. Она обеспечивает одновременное осуществление процессов нагнетания давления и впрыска, а потому проще и намного чаще применяется на практике.

Вторая разновидность – топливный насос с гидроаккумулятором – разделяет выполнение накачки топливно-воздушной смеси и ее впрыска в форсунки. Сначала горючее собирается в специальном хранилище, который и называется аккумулятором, после чего передается для сжигания. В результате повышается эффективность работы двигателя, но при этом заметно усложняется конструкция ТНВД. Последний аргумент стал главной причиной того, что насосы с гидроаккумулятором не относятся к числу популярных.

Второй классифицирующий признак – конструктивные особенности насоса. В соответствии с ними принято различать три типа ТНВД:

  1. Рядные. Наиболее простая и надежная конструкция, предусматривающая наличие нескольких ниш или секций, каждая из которых предназначена для подачи топлива в одну форсунку двигателя. При этом плунжерные пары размещаются в ряд, что и дало название агрегату. Сегодня такая разновидность ТНВД применяется исключительно на грузовых автомобилях, что объясняется надежностью и низким уровнем требований к качеству топлива. Однако, из-за больших габаритов и невысокого, по сравнению с альтернативными вариантами, КПД, установка на легковые авто прекращена в 2000 году.
  2. Распределительные. Данная разновидность насоса предполагает наличие одного или двух плунжеров, количество которых определяется объемом двигателя. Благодаря особенностям конструкции, этого оказывается вполне достаточно для обслуживания цилиндров, число которых варьируется в пределах от 4 до 12. В результате, достигается уменьшение массы и размеров ТНВД, что позволяет использование на двигателях легковых авто. Основной минус – сравнительная недолговечность насосов распределительного типа.
  3. Магистральные. ТНВД этого типа предусматривает систему подачи топлива Common Rail, которая стала в последние годы одной из наиболее востребованных. Главная особенность – накапливание топлива перед поступлением к форсункам в специальной рампе. Основное достоинство магистральных ТНВД – высокий уровень давления (свыше 180 МПа), благодаря которому достигается более эффективное сжигание горючего, обеспечивающее рост КПД при снижении расхода топлива.

 

Частые неисправности

 

Несмотря на достаточно серьезные конструктивные различия между разновидностями топливных насосов высокого давления, их эксплуатация сопровождается необходимостью выполнение ряда обязательных требований. Первое и главное из них – использование топлива, соответствующего характеристикам конкретной модели насоса.

Второе необходимое условие – своевременное и регулярное техническое обслуживание агрегата. Третье требование – применение в процессе эксплуатации качественных смазочных материалов.

Невыполнение любого из перечисленных условий приводит к необходимости дорогостоящего и весьма трудоемкого ремонта, что связано со сложностью конструкции ТНВД и, как следствие, большим объемом работ по снятию плунжерной пары или других пришедших в негодность деталей. Наиболее частыми неисправностями топливного насоса высокого давления являются:

  • увеличение количества образуемого в ходе выхлопа дыма;
  • повышенный расход топлива;
  • снижение мощности двигателя;
  • возникновение посторонних шумов;
  • трудности с запуском двигателя;
  • скачки такого важного показателя, как количество оборотов.

Несмотря на внушительный перечень возможных неисправностей, необходимо отметить, что качественно изготовленный ТНВД при грамотной эксплуатации является надежным и долговечным устройством. Следование приведенным выше рекомендациям и правильное использование топливного насоса гарантирует экономичную и эффективную работу двигателя в течение всего нормативного срока службы.

Устройство и принцип действия электронного ТНВД

Радиально-поршневой распределительный ТНВД представляет собой насос впрыска с электронным регулированием, имеющий собственный блок управления. Насос создаёт давление впрыска 1500 бар. Высокое давление впрыска позволяет достичь мелкодисперсного распыления топлива. Это приводит к более полному сгоранию топливно-воздушной смеси и меньшему
содержанию вредных веществ в ОГ

Основные задачи радиально-поршневого распределительного ТНВД:

  • забор топлива из топливного бака
  • сжатие топлива до 1500 бар
  • распределение топлива по цилиндрам

Всасывание
Радиально-поршневой распределительный ТНВД расположен там, где раньше был установлен пластинчатый насос, всасывает топливо из топливного бака и создаёт давление в ТНВД.

За счёт давления, созданного в ТНВД, при открытом электромагнитном клапане топливо подаётся в камеру сжатия.

Сжатие
Топливо сжимается двумя плунжерами, которые приводятся от кулачковой обоймы через ролики. Привод осуществляется приводным валом.

 

За счёт вращательного движения приводного вала ролики нажимают на кулачки обоймы и перемещают плунжеры вовнутрь. Это приводит к сжатию топлива между плунжерами.

Распределение
Если электромагнитный клапан закрыт, топливо распределяется по отдельным цилиндрам с помощью вала распределителя и распределительной головки через обратный дроссель нагнетательного клапана и форсунку впрыска.

В распределительной головке имеются отверстия, соответствующие отдельным цилиндрам. Вал распределителя проворачивается приводным валом и соединяет камеру сжатия попеременно с каждым отверстием в распределительной головке

Радиально-поршневой распределительный ТНВД имеет собственный блок управления. Задачей блока является управление и контроль исполнительных элементов насоса впрыска. Для этого в блоке управления сохранены характеристики, точно соответствующие характеристикам насоса впрыска. Блок управления и насос впрыска образуют единый блок и прочно соединены друг с другом

 

Что чем управляет?
Датчики отправляют на блок управления двигателя информацию о режиме работы двигателя и о положении педали акселератора. Блок управления двигателя анализирует эту информацию и рассчитывает момент начала впрыска и необходимое количество подаваемого топлива. Полученные значения блок управления двигателя отправляет на блок управления топливного насоса. Блок управления топливного насоса рассчитывает команды управления для электромагнитного клапана регулирования количества подаваемого топлива и клапана управления опережением впрыска. При этом учитываются сигналы, поступающие в насос впрыска от блока управления двигателя и датчика угла поворота. Для контроля управления двигателя блок управления топливного насоса отправляет на блок управления двигателя обратное сообщение о режиме работы насоса впрыска. Передача сигналов между блоком управления двигателя и блоком управления топливного насоса осуществляется по шине CAN. Преимуществом шины CAN является то, что обмен всей информацией между блоком управления топливного насоса и блоком управления двигателя может осуществляться по двум проводам. Блок управления двигателя выполняет и другие задачи, например, управление исполнительными элементами системы рециркуляции ОГ и регулирование давления наддува.

Регулирование количества подаваемого топлива

На приведённом ниже обзоре системы показаны датчики, на основании сигналов которых определяется количество подаваемого топлива Сигнал, поступающий от блока управления двигателя, преобразуется блоком управления топливного насоса в сигнал для электромагнитного клапана регулирования количества подаваемого топлива. Задачей регулирования количества подаваемого топлива является точная адаптация количества топлива к различным режимам работы двигателя.


Принцип действия:
Процесс наполнения Если электромагнитный клапан регулирования количества подаваемого топлива открыт, топливо из внутреннего пространства насоса подаётся в камеру сжатия.

Впрыск
Блок управления топливного насоса подаёт сигнал управления на электромагнитный клапан регулирования количества подаваемого топлива, клапан перекрывает подачу топлива. Все время, пока электромагнитный клапан закрыт, топливо сжимается и подаётся на форсунки впрыска. При достижении заданного блоком управления двигателя количества топлива электромагнитный клапан открывает подачу топлива из внутреннего пространства насоса. Давление падает; впрыск завершён.

При полной нагрузке двигателя объём топлива на каждый цикл впрыска составляет ок. 50 мм3.
Это равно объёму одной капли воды.

На оборотах холостого хода на каждый цикл впрыска требуется ок. 5 мм3 топлива.
Это соответствует размеру булавочной головки диаметром 2 мм.

Дополнительной задачей электромагнитного клапана регулирования количества подаваемого топлива является остановка двигателя. При выключении зажигания электромагнитный клапан открывается, сжатие топлива не происходит.

Регулирование момента впрыска

На приведённом ниже обзоре системе представлены датчики, на основании сигналов которых определяется момент начала впрыска. Сигнал, поступающий от блока управления двигателя, преобразуется блоком управления топливного насоса в сигнал для клапана управления опережением впрыска. Задачей регулирования момента впрыска является адаптация момента впрыска к частоте вращения двигателя.

Принцип действия:
При увеличении частоты вращения впрыск должен происходить раньше. Опережение впрыска осуществляется регулятором впрыска. За счёт силы действия пружины управляющий поршень прижимается к поршню регулятора впрыска. В кольцевую полость управляющего поршня через отверстие из внутреннего пространства ТНВД поступает топливо под давлением. Клапан управления опережением впрыска определяет давление топлива в кольцевой полости управляющего поршня.

При увеличении частоты вращения клапан управления опережением впрыска увеличивает давление топлива в кольцевой полости. За счёт этого управляющий поршень отжимается от поршня регулятора впрыска, преодолевая силу действия пружины, и открывает канал. Топливо поступает в полость за поршнем регулятора впрыска.

За счёт давления топлива поршень регулятора впрыска перемещается вправо. Поршень регулятора впрыска соединён с кулачковой обоймой так, что горизонтальное движение регулятора впрыска проворачивает кулачковую обойму в направлении опережения впрыска.

Топливный насос высокого давления (ТНВД): виды, устройство, принцип работы

Топливный насос (сокращенно ТНВД) предназначен для выполнения следующих функций —  подачи горючей смеси под высоким давлением в топливную систему ДВС, а также регулирования его впрыска в определенные моменты. Именно поэтому топливный насос считается наиболее важным устройством для дизельных и бензиновых двигателей.

Преимущественно ТНВД применяются, конечно же, в дизельных двигателях. А в бензиновых двигателях ТНВД встречаются лишь в тех агрегатах, на которых используется система непосредственного впрыска топлива. При этом насос в бензиновом двигателе работает куда с меньшей нагрузкой, поскольку такое высокое давление, как в дизеле не требуется.

Основные конструктивные элементы топливного насоса — плунжер (поршень) и цилиндр (втулка) малого размера, которые объединяются в единую плунжерную систему (пару), изготовленную из высокопрочной стали с большой точностью.

На самом деле изготовление плунжерной пары довольно трудная задача, требующая специальных высокоточных станков. На весь Советский союз был, если не изменяет память, всего один завод, на котором изготавливались плунжерные пары.

Как делают плунжерные пары в нашей стране сегодня можно увидеть в этом видео:

Между плунжерной парой предусматривается очень маленький зазор, так называемое прецизионное сопряжение. Это отлично показано в видео, когда плунжер очень плавно, с зависанием под действием собственного веса входит в цилиндр.

Итак, как мы уже сказали ранее, топливный насос применяется не только для своевременной подачи горючей смеси в топливную систему, но и для распределения его через форсунки в цилиндры в соответствии с типом двигателя.

Форсунки – связующее звено в этой цепи, поэтому они соединены с насосом трубопроводами. С камерой сгорания форсунки соединяются нижней распылительной частью, оснащенной небольшими отверстиями для эффективного впрыска топлива с дальнейшим его воспламенением.  Определить точный момент впрыска ТС в камеру сгорания позволяет угол опережения.

Типы топливных насосов

В зависимости от особенностей конструкции различают три основных типа ТНВД – распределительный, рядный, магистральный.

Рядный ТНВД

Этот тип топливного насоса высокого давления оснащается плунжерными парами, расположенными рядом друг с другом (потому и такое название). Их количество строго соответствует количеству рабочих цилиндров двигателя.

Таким образом, одна плунжерная пара обеспечивает подачу топлива в один цилиндр.

Пары устанавливаются в насосном корпусе, в котором предусмотрены каналы входа и выхода. Запускается плунжер при помощи кулачкового вала, соединенного, в свою очередь, с коленвалом, от которого и передается вращение.

Кулачковый вал насоса, при вращении кулачками воздействует на толкатели плунжеров, заставляя их двигаться внутри втулок насоса. При этом поочередно открываются и закрываются впускные и выпускные отверстия. При движении плунжера вверх по втулке создается давление, необходимое для открывания нагнетательного клапана, через который топливо под давлением направляется по топливопроводу к определенной форсунке.

Момент подачи топлива и регулировка его количества, необходимого в конкретный момент времени может осуществляться либо с помощью механического устройства, либо с помощью электроники. Такая регулировка нужна для корректировки подачи топлива в цилиндры двигателя в зависимости от частоты вращения коленчатого вала (оборотов двигателя).

Механическое управление обеспечивается за счет использования специальной муфты центробежного типа, которая закреплена на кулачковом валу. Принцип действия такой муфты заключен в грузиках, которые находятся внутри муфты и имеют возможность перемещаться под действием центробежной силы.

Центробежная сила изменяется с ростом (или уменьшением) величины оборотов двигателя, благодаря чему грузики либо расходятся к внешним краям муфты, либо снова сближаются к оси. Это приводит к смещению кулачкового вала относительно привода из-за чего и изменяется режим работы плунжеров и, соответственно, при увеличении частоты вращения коленвала двигателя обеспечивается ранний впрыск топлива, а поздний, как вы догадались, при снижении оборотов.

Рядные топливные насосы весьма надежны. Их смазка осуществляется моторным маслом, поступающим из системы смазки двигателя. Они совершенно не привередливы к качеству топлива. На сегодняшний день применение таких насосов из-за их громоздкости ограничено грузовыми автомобилями средней и большой грузоподъемности. Примерно до 2000 года они применялись и на легковых дизельных моторах.

Распределительный ТНВД

В отличие от рядного насоса высокого давления, у распределительного ТНВД может быть либо один, либо два плунжера в зависимости от объема двигателя и, соответственно, необходимого объема топлива.

И эти один или два плунжера обслуживают все цилиндры двигателя, которых может быть и 4, и 6, и 8, и 12. Благодаря своей конструкции, в сравнении с рядными ТНВД, распределительный насос более компактен и меньше весит, и при этом способен обеспечить более равномерную подачу топлива.

К основному недостатку данного типа насосов можно отнести их относительную недолговечность. Распределительные насосы устанавливаются только в легковые автомобили.

Распределительный ТНВД может оснащаться различными типами приводов плунжера. Все эти типы привода являются кулачковыми и бывают: торцевыми, внутренними, внешними.

Наиболее эффективными считаются торцевые и внутренние приводы, которые лишены нагрузок, создаваемых давлением топлива на приводной вал, вследствие чего они служат несколько дольше, нежели насосы с внешним кулачковым приводом.

Кстати, стоит отметить, что импортные насосы фирм Bosch и Lucas, наиболее часто использующиеся в автомобилестроении оснащены именно торцевым и внутренним приводом, а внешний привод имеют насосы серии НД отечественного производства.

Торцевой кулачковый привод

В этом типе привода, используемом в насосах Bosch VE, основным элементом является распределительный плунжер, предназначенный для создания давления и распределения топлива в топливных цилиндрах. При этом плунжер-распределитель совершает вращательные и возвратно-поступательные перемещения при вращательных движениях кулачковой шайбы.

Возвратно-поступательное перемещение плунжера осуществляется одновременно с вращением кулачковой шайбы, которая, опираясь на ролики, перемещается вдоль неподвижного кольца по радиусу, то есть, как бы обегает его.

Воздействие шайбы на плунжер обеспечивает высокое давление топлива. Возврат плунжера в исходное состояние осуществляется благодаря пружинному механизму.

Распределение топлива в цилиндрах происходит за счет того, что приводной вал обеспечивает вращательные движения плунжера.

Величина подачи топлива может быть обеспечена с помощью электронного (электромагнитный клапан) или механического (центробежная муфта) устройства. Регулировка осуществляется за счет поворота на определенный угол неподвижного (не вращающегося), регулировочного кольца.

Цикл работы насоса состоит из следующих стадий: закачка порции топлива в надплунжерное пространство, нагнетание давления за счет сжатия и распределение топлива по цилиндрам. Затем плунжер возвращается в исходное положение и цикл повторяется заново.

Внутренний кулачковый привод

Внутренний привод применяется в распределительных ТНВД роторного типа, например, в насосах Bosch VR, Lucas DPS, Lucas DPC. В таком типе насоса подача и распределение топлива осуществляется посредством двух устройств: плунжера и распределительной головки.

Распределительный вал оснащается двумя противоположно-расположенными плунжерами, которые обеспечивают процесс нагнетания топлива, чем меньше расстояние между ними, тем выше давление топлива. После нагнетания давления топливо устремляется к форсункам по каналам распредголовки через нагнетательные клапана.

Подачу топлива к плунжерам обеспечивает специальный подкачивающий насос, который может отличаться в зависимости от типа своей конструкции. Это может быть либо шестеренчатый насос, либо роторно-лопастной. Подкачивающий насос находится в корпусе насоса и приводится в действие приводным валом. Собственно, он прямо на этом валу и установлен.

Распределительный насос с внешним приводом рассматривать не будем, поскольку, скорее всего, их звезда близка к закату.

Магистральный ТНВД

Такой вид топливного насоса применяется системе подачи топлива Common Rail, в которой топливо перед тем, как поступить к форсункам сначала накапливается в топливной рампе. Магистральный насос способен обеспечить высокую подачу топлива — свыше 180 МПа.

Магистральный насос может быть одно-, двух- или трехплунжерным. Привод плунжера обеспечивается кулачковой шайбой или валом (тоже кулачковым, разумеется), которые в насосе совершают вращательные движения, проще говоря, крутятся.

При этом в определенном положении кулачков, под действием пружины плунжер перемещается вниз. В этот момент происходит расширение компрессионной камеры, за счет чего в ней снижается давление и образуется разряжение, которое заставляет открыться впускной клапан, через который топливо проходит в камеру.

Поднятие плунжера сопровождается увеличением внутрикамерного давления и закрытием клапана впуска. При достижении давления, на который настроен насос, открывается выпускной клапан, через который топливо нагнетается в рампу.

В магистральном насосе управление процессом подачи топлива реализуется дозирующим топливным клапаном (который приоткрывается или закрывается на необходимую величину) при помощи электроники.

Насосы ТНВД: устройство, принцип работы, модели

Содержание   

Насосы ТНВД – это топливные насосы высокого давления, которые применяются для дизельных двигателей. Дизельные автомобили очень сильно отличаются от бензиновых. Разница именно в том, каким образом происходит воспламенение топлива.

Многие производители, такие как Бош, Тойота, Мицубиси, Ниссан, Форд и другие с каждым годом усовершенствуют свои линейки техники с применением насосов высокого давления. Лучшими производителями ТНВД считаются Bosch, Lucas, Delphi, Denso, Zexel.

Принцип действия

Воздух, нагнетаемый в камеру сгорания дизеля, сжимается под давлением. Кроме того, он нагревается. Таким образом, в камере сгорания дизельного двигателя находится горячий сжатый под давлением воздух.

В тот момент, когда впрыскивается топливо, при соприкосновении с горячим сжатым воздухом оно воспламеняется. И подают дизель в цилиндры мотора под давлением и с определенными промежутками времени, чтобы топливная смесь нормально воспламенялась, именно насосы ТНВД.

Устройство ТНВД

Мощность двигателя и его крутящий момент регулируются количеством топлива, которое насос впрыснул в камеру сгорания. Насосы ТНВД бывают:

  • непосредственного действия, т.е. механический вариант;
  • аккумуляторные, т.е. с аккумуляторным впрыском, или автоматический вариант.

В первом случае срабатывает принцип механического плунжера, при котором нагнетание воздуха и топливный впрыск происходят одновременно. Во втором случае гидравлический аккумулятор или система пружин и форсунок сначала нагнетает давление впрыснутого топлива в аккумулятор, а затем происходит процесс зажигания.

В зависимости от метода подачи топлива в цилиндры двигателя есть три разновидности нопорных установок:

  • рядные;
  • многосекционные или магистральные;
  • распределительные.

Рядные напорные установки – подают в расположенные один за другим цилиндры топливную смесь строго по очереди в каждый из цилиндров. В распределительных вариантах одна и та же секция может подавать топливо сразу в несколько цилиндров. К слову, распределительные установки могут быть одноплунжерными и двухплунжерными. Магистральные только нагнетают топливо внутрь аккумулятора.

Рядные модели различают по количеству цилиндров и давлению при впрыске топлива:

  • М – это 4-6 цилиндровый, при давлении впрыска в 550 бар;
  • А – это 2-12 цилиндровый, при давлении впрыска в 950 бар;
  • P-3000 – это 4-12 цилиндровый, при давлении впрыска в 950 бар;
  • P-7100 – это 4-12 цилиндровый, при давлении впрыска в 1200 бар;
  • P-8000 – это 6-12 цилиндровый, при давлении впрыска в 1300 бар;
  • P-8500 – это 4-12 цилиндровый, при давлении впрыска в 1300 бар;
  • R – это 4-12 цилиндровый, при давлении впрыска в 1150 бар;
  • P-10 – это 6-12 цилиндровый, при давлении впрыска в 1200 бар;
  • ZW (M) – это 4-12 цилиндровый, при давлении впрыска в 950 бар;
  • P-9 – это 6-12 цилиндровый, при давлении впрыска в 1200 бар;
  • CW – это 6-10 цилиндровый, при давлении впрыска в 1000 бар;
  • H-1000 – это 5-8 цилиндровый, при давлении впрыска в 1350 бар.

    Топливный Насос Т 25 Рядный

к меню ↑

Внутреннее устройство

Через муфту опережения впрыска и зубчатую передачу коленвала на кулачковый вал передается вращение. Кулачок смещает толкатель, толкатель сжимает пружину и толкает плунжер. Плунжер поднимается, толкает заслонку впускного канала и начинает вытеснять топливо через нагнетательный клапан к форсунке. Чтобы впрыск топлива происходит нормально, нужно, чтобы винтовой и сливной каналы совмещались вовремя.

Распределительная установка ТНВД состоит из:

  • редукционногоклапана;
  • всережимного регулятора;
  • дренажного штуцера;
  • корпуса напорной секции высокого давления в комплекте с плунжерной парой (золотникового устройства) и нагнетательными клапанами;
  • топливоподкачивающего насоса;
  • лючка регулятора (муфты) опережения впрыска;
  • корпуса ТНВД;
  • крышка;
  • электромагнитного клапана выключения подачи топлива;
  • кулачково-роликового устройство привода плунжера.

Муфта впрыска изменяет в зависимости от количества оборотов двигателя угол впрыска топлива. Назначение всережимного регулятора — изменять количество подаваемого топлива в зависимости от режима работы двигателя (запуск, уменьшение или увеличение оборотов, холостой ход, остановка и т.д.).
к меню ↑

Возможные причины поломок

Как только вы заметили отклонения в привычной работе насоса ТНВД нужно выяснить и по возможности как можно быстрее устранить причину поломки. Визуально поломку можно определить по утечкам топлива из корпуса насоса, по затрудненному запуску двигателя, по нехарактерным шумам при работе насоса и по тому, как при уменьшении мощности двигателя увеличивается расход топлива.

Насос ТНВД магистрального типа

Среди самых распространенных поломок можно выделить износ комплектующих и использование топлива низкого качества. И то и другое для уязвимого насоса крайне нежелательно.

Износ приводит к деформации деталей, образованию пустот и снижению надежности напорного аппарата. А примеси в топливных смесях низкого качества приводят к постепенному загрязнению деталей, и, в итоге, к выводу насоса из строя. Если устройство подъедает масло, значит, износились уплотнители. А если заклинит плунжерную пару, то на форсунки перестанет поступать топливная смесь.

В качестве обязательной профилактики стоит всегда следить за качеством топлива, которое вы заливаете в бак. Кроме того, всегда следите за уровнем масла. Периодически, загоняя машину на стенд, нужно регулировать количество и равномерность впрыскивания топлива в ТНВД. Для этого разбирают муфту впрыскивания и соединяют с приводом на стенде кулачковый вал машины.
к меню ↑

ДИАГНОСТИКА И РЕМОНТ ТОПЛИВНОГО НАСОСА ВЫСОКОГО ДАВЛЕНИЯ (ВИДЕО)


к меню ↑

Модельный ряд

Различные компании и корпорации выпускают модели рядных, магистральных и распределительных насосов ТНВД для любых сфер применения. Грузовые и легковые автомобили, трактора, погрузчики и экскаваторы, комбайны и многая другая техника используют все преимущества дизельных насосов ТНВД.
к меню ↑

Модель#1-ТНВД Bosch и Lucas

Это одни из самых надежных производителей напорной техники ТНВД. Модельный ряд установок ТНВД компании Бош достаточно обширен. Модели ТНВД представлены на рынке линейкой рядной и распределительной техники с маркировками: A, M, ММС , P, MW, H, VP29, VP30, VP44. В модельный ряд включены также насосы-форсунки PDE и индивидуальные насосы PLD, VE, Lucas DPS, DPCN.

Особое внимание стоит уделить модели ESR. Это – последняя разработка компании Lucas, которая фактически является роторной моделью ТНВД для высокоскоростных двигателей с системой непосредственного впрыска. Так же внимание производителей внедорожников с системой непосредственного впрыска привлекла модель DP200.

Насос ТНВД и его комплектующие

ТНВД с аккумуляторной топливной системой воплощена в моделях Common Rail.

Это системы магистального типа, на которые в последнее время наблюдается достаточно высокий спрос. Delphi DFP 1.x, DFP 3.x и Bosch CP1, CP2, CP3.2, CP3.4. Они применяются для автомобилей марок Вольво FH-12, FM-12, Мерседес Actros, Атего, Скания 114, 124, R, P, T, Рено Магнум, Премиум DXI, DCI, Ивеко Крузор 8, 10, 13, DAF CF, LF, MACK.
к меню ↑

Модель#2-ТНВД Delphi

Компания Delphi выпускает серию ТНВД EPIC для автомобилей марок Мерседес, Рено Кенго 1.9, Фиат Добло 1.9, Форд Транзит 2.5. А также серию DP200, 210, 310 для автомобилей и погрузчиков JCB, Перкинс, Катерпиллар и John Deere.

Основной проблемой этих насосов стала металлическая стружка, которая образуется в процессе эксплуатации техники от трения механических деталей друг об друга. Поэтому, в них чаще всего приходится заменять плунжеры. Вал в этих моделях ремонту не подлежит. Он только заменяется на новый.

Дозировочный блок тоже подлежит полной замене, потому что выходит из строя по причине износа деталей в процессе наполнения бака некачественным топливом с примесями бензина, воды или твердых частиц.
к меню ↑

Модель#3-DENSO

Эта компания специализируется на производстве моделей ТНВД V3, V4, V5 для автомобилей Тойота, Мицубиси, Опель. А их аккумуляторная система Common Rail маркируется как HP0, HP2, HP3, HP4 и успешно применяется в автомобилях Тойота, Мицубиси, Ниссан, Форд Транзит, Пежо Боксер и Ситроен.

Насос ТНВД DENSO

Отличительной особенностью этой марки стали ECD-регуляторы (Electronically Controlled Diesel system). Это система впрыскивает дизельное топливо при полном контроле электроники. Отрегулировать такие ТНВД можно только на специальных стендах, с использованием контроллеров и форсунок.

Славится своим распределительными ТНВД VRZ для Мицубиси Паждеро 3-Canter, Мазды, Коматсу и других автомобилей. В этих моделях ТНВД без труда можно восстановить плунжерные пары. Кроме того, распределительная техника Zexel используется для японских машин, а от моделей Бош их отличает только номера деталей. В остальном строение абсолютно идентично.
 Главная страница » Насосы

устройство, поломки и ремонт насоса высокого давления дизельного двигателя

Дизельный двигатель работает на тяжёлом топливе, которое в обычных условиях практически не испаряется. Поэтому для обеспечения полного сгорания в цилиндрах дизеля, горючее необходимо максимально качественно распылить форсункой прямого впрыска. Для этого создаётся перепад давления, измеряемый сотнями атмосфер, что помимо прочего ещё и необходимо из-за высокой степени сжатия такого двигателя.

Содержание статьи:

Следовательно, топливная аппаратура должна быть значительно усложнена по сравнению с обычным бензиновым мотором, даже прямого впрыска. Кроме подкачивающего, ставится ещё и насос высокого давления – ТНВД.

Что из себя представляет топливный насос высокого давления

Общим для всех многочисленных разновидностей ТНВД является значительное механическое сжатие дизтоплива, попадающего между плунжером или аналогичной по назначению деталью с одной стороны и подпружиненным клапаном с другой.

Любую жидкость можно считать практически несжимаемой, солярка не исключение. Поэтому давление может достигать тысяч атмосфер, особенно на современных моторах со сверхтонким распылением и электронным дозированием.

На каких двигателях устанавливается

Помимо дизелей, такие насосы могут применяться в бензиновых с прямым впрыском. Но всё же свойства бензина не требуют настолько значительного сжатия. Компрессия там ниже, да и распылять лёгкое топливо проще.

Читайте также: Как завести дизельный мотор после простоя зимой

Не применяются ТНВД в двухтактных дизелях, где горючее смешивается с воздухом в картере перед тактом продувки. Но такие моторы сейчас практически не используются на автомобилях.

Устройство и принцип работы ТНВД

Классический образ насоса высокого давления содержит в своём составе:

  • Поршень в цилиндре, который в подобной технике принято называть плунжером, тем самым подразумевая очень точную подгонку с практически отсутствующим зазором и работу в жидкостной среде;
  • Вал с кулачками, который при вращении давит на плунжеры снизу через толкатели, заставляя их перемещаться с большим усилием, сжимая надплунжерный объём;
  • Каналы, по которым подаётся топливо к плунжерам, с клапанами, срабатывающими на обратном ходе;
  • Штуцеры с металлическими трубками, подающие топливо под давлением к форсункам;
  • Регулирующие рейки, клапаны, дозаторы и прочую аппаратуру.

Для обеспечения конкурентоспособных характеристик двигателей от механики в питающей аппаратуре приходится уходить, передавая регулирующие и распределяющие функции электронике.

Классификация

ТНВД можно различать по организации плунжерной системы, их приводу и способу дозирования топлива

Многоплунжерные (Рядные и V-образные)

Распространённые ранее многоплунжерные насосы схематично имели простую конструкцию, где на каждый плунжер работал свой кулачок вала, а надплунжерное пространство заканчивалось штуцером, соединённым с форсункой отдельного цилиндра двигателя. При набегании кулачка на каждый плунжер давление на форсунке резко нарастало, после чего открывался её клапан и происходил впрыск.

Регулирование количества топлива производилось поворотом плунжеров через рейку, а момент впрыска изменялся центробежной муфтой привода кулачкового вала.

На многоцилиндровых двигателях компактность конструкции обеспечивалась двухрядным расположением плунжерных пар по V-образной схеме с двумя управляющими рейками.

Распределительные

Распределительные насосы имели лишь один плунжер, приводимый в действие кулачковой вращающейся шайбой. Отсечка нужного количества топлива производится поворотом корпуса нагнетающего цилиндра.

Распределяет топливо по форсункам сам поршень, вращаясь вместе с кулачковой шайбой с приводом от двигателя. Получалась очень компактная конструкция, хорошо подходящая к легковым дизелям, но излишне нагруженная, отсюда и недолговечная.

Магистральные (Common Rail)

Наиболее совершенная система имеет в своём составе единый насос, роль которого сводится к созданию и поддержанию давления в общей для всех форсунок рампе. Все функции по своевременному открытию и дозированию подаваемого топлива возлагаются на форсунки.

По теме: Как понять что пробита прокладка ГБЦ

Форсунка системы Common Rail представляет собой электрически управляемый клапан, который способен очень быстро открываться и полностью закрываться, находясь под значительным давлением.

Приводится клапан управляющим давлением, а открывается электрическим сигналом от блока управления. Используются как электромагнитные, так и пьезоэлектрические инжекторы, что ещё больше увеличивает быстродействие.

Стало возможным применять многократный впрыск за один рабочий такт, разделив питание цилиндра на предварительное (пилотное) и несколько основных. Всё это влияет на экономичность и чистоту выхлопа.

Само устройство насоса базируется на том же принципе сжатия топлива плунжером через систему из двух клапанов. Привод может быть, как кулачковым валом, так и шайбой. Количество плунжеров разное, причём на частичных нагрузках некоторые не задействованы.

Признаки неисправности ТНВД

Всякая проблема с ТНВД ведёт к нарушению оптимального горения в цилиндрах. Отсюда и внешние проявления, подобные таковым в любом двигателе внутреннего сгорания:

  • снижение мощностных и динамических показателей;
  • дымность выхлопа;
  • неуверенный запуск холодного или нагретого двигателя;
  • увеличенный расход дизельного топлива;
  • жёсткая работа и стуки в двигателе.

Практически все неисправности могут быть связаны с насосом или форсунками, поэтому проверка должна носить комплексный характер.

Внутренние поломки насоса высокого давления и их причины

ТНВД очень чувствительны к качеству топлива, особенно к наличию в его составе твёрдых включений, серы и воды. Несмотря на тщательную многоступенчатую фильтрацию полностью избежать повышенного износа не всегда удаётся.

Снижение давления становится следствием износа плунжерных пар. Топливо плохо распыляется, двигатель дымит и работает жёстко. Возможны отклонения по отдельным цилиндрам, что приводит к росту вибронагруженности.

Это интересно: Что из себя представляет двигатель TSI, характеристики и ресурс

Износ и подклинивание регулирующего механизма может стать причиной отклонений в настройке момента впрыска, что для дизеля равносильно изменению опережения зажигания бензиновых моторов.

Диагностика и ремонт ТНВД

Проверка топливной аппаратуры дизеля требует специализированного оборудования, своими силами можно лишь грубо убедиться в элементарной работоспособности, например, ослабляя штуцеры питания форсунок на старых механических насосах.

Современный ТНВД, да ещё с электрическим приводом, без диагностической аппаратуры не проверить. Надо располагать манометром для очень высокого давления, порядка двух тысяч атмосфер, сканером, опрашивающим датчики и сверяющим показатели с номинальными, форсуночным стендом.

Главное – знать взаимодействие всех узлов системы подачи топлива. Иначе отклонение в работе какого-нибудь клапана может стать причиной выбраковки дорогостоящего насоса.

На стенде насос выводится в калибровочный режим с прокачкой жидкости, строго нормированной по параметрам и очищенной. От качества топлива тоже многое зависит.

Замеряется давление и параметры расхода, их соответствие табличным во всех тестовых режимах. Только после этого выдвигаются версии и производится ремонт или замена.

устройство, схема, принцип работы, характеристики

Основным узлом топливной системы дизельного двигателя является топливный насос высокого давления — ТНВД. Функцией узла является создание рабочего давления в системе, дозированная подача топлива к распылителям синхронно циклам работы двигателя в начале такта сжатия в каждый отдельный цилиндр с учётом режимов работы силового агрегата. Техническое состояние и регулировка узла прямо влияет на работу дизеля и создаваемую им мощность.

ТНВД трактора МТЗ 80

Трактора мтз 80(82) оснащаются ,в зависимости от года выпуска, топливными насосами в ранних комплектациях УТН 5 и более поздних 4 УТНИ, 4 УТНМ производства Ногинского завода топливной аппаратуры. По классификации данные узлы являются механическими со всережимным регулятором и корректором, имеют одинаковый принцип работы и конструкцию. Топливный насос трактора МТЗ 80 (82) установлен с левой стороны машины в передней части моторного отсека. Механический привод узла осуществляется через газораспределительную шестерню от коленчатого вала двигателя.

Марки ТНВД для тракторов МТЗ

Марка двигателя ММЗМарка ТНВД старой комплектацииМарка ТНВД новой комплектации
Д-2404 УТНМ-11110054 УТНИ-1111005-20
Д-2434 УТНМ-1111005-1104 УТНИ-1111005-20
Д-2414 УТНМ-1111005-104 УТНИ-1111005
Д-2424 УТНМ-1111005-204 УТНИ-1111005-10
Д-2444 УТНМ-1111005-100-014 УТНИ-1111005-30
Д-2454 УТНМ-Т-11110054 УТНИ-Т-1111005
Д-245.3, Д-245.24 УТНМ-Т-1111005-304 УТНИ-Т-1111005-30
Д-245.4, Д-245.54 УТНМ-Т-1111005-204 УТНИ-Т-1111005-20
Д-245Л-83, Д-245.14 УТНМ-Т-1111005-404 УТНИ-Т-1111005

Принцип работы топливного насоса МТЗ

Нагнетание топлива и создание рабочего давления осуществляется возвратно-поступательной работой плунжерных пар. В состав пары входит цилиндрическая втулка 4 и плунжер 3, выполняющий функцию поршня. Движение плунжерам передаётся вращением кулачкового вала 1 узла через толкатели 2. Всасывание топлива осуществляется из питающего канала в корпусе узла в надплунжерную полость через окно В во втулке при движении плунжера вниз. При набегании кулачка вала на толкатель , плунжер движением вверх и созданным импульсом давления, открывает нагнетательный клапан Е и пропускает дозированную порцию топлива непосредственно к распылителю.

схема работы плунжерной пары

Детали пары не имеют дополнительных компрессионных уплотнителей и давление создают за счёт высокоточной индивидуальной подгонки с точностью до микрона ( 1 микрометр= 1 метр* 10̄̄̄̄ ̄⁶). В технической терминологии такие пары называются прецизионными и при эксплуатации пары деталей разукомплектовывать запрещено.

В технических учебных заведениях преподаватели для демонстрации подтверждения высокоточной подгонки прецизионной пары показывают небольшой опыт, основанный на принципе действия коэффициента теплового расширения материалов:

  • Поршень – плунжер оставляют в руке, передавая детали температуру тела, а цилиндр-втулку плунжерной пары выносят на улицу с температурой ниже 0˚С .
  • Затем по истечении 10 мнут части пары получают разницу температуры 36 — 40˚С, при этом втулка в границах коэффициента расширения под действием холода уменьшает свои линейные размеры, а плунжер от тепла руки увеличивает.
  • В момент достижения потенциала разности температур преподаватель показывает невозможность вхождения плунжера в цилиндр втулки, тем самым доказывая высокую точность подгонки деталей.

Устройство ТНВД трактора МТЗ 80(82)

УТН 5 и 4 УТНИ представляют собой узел с рядным расположением четырёх секций плунжерных пар с присоединённым регулятором и подкачивающей помпой для преодоления сопротивления прохода топлива через фильтры при заполнении системы. Механизм насоса помещён в алюминиевом корпусе, к передней части которого присоединена чугунная плита для монтажа узла к двигателю. Задний фланец насоса соединяется с регулятором. Кулачковый вал вращается на двух подшипниках. Деталь имеет четыре кулачка для привода плунжеров и один эксцентрик для подкачивающего насоса системы.

Устройство ТНВД УТН 5

В задней части насоса размещён перепускной клапан, который пропускает лишне топливо, подаваемое подкачивающим насосом в его всасывающую полость. Таким образом, давление в головке топливного насоса поддерживается в пределах  0,07- 0,12 мПа обеспечивая бесперебойную подачу к плунжерным парам. В четырёх вертикальных сверленниях корпуса, расположенных в ряд, установлены толкатели с секциями плунжерных пар, каждая из которых работает как отдельный насос.

Секции оборудованы поворотным механизмом плунжера для осуществления изменения количества подачи топлива в автоматическом режиме при взаимодействии с регулятором. Для осуществления поворота каждая пара оснащена поворотной гильзой 14 с зубчатым венцом 6, который зацепляется с рейкой, связанной с регулятором насоса. На гильзу одета возвратная пружина 8 с упорными тарелками 7 и 12 нижняя часть, которой упирается в болт 11 толкателя 10, а верхняя в корпус насоса.

Корпус насоса оборудован боковым люком для регулировки подачи топлива отдельной секцией и контрольным отверстием с резьбовой пробкой для проверки уровня моторного масла в узле. В крышке регулятора установлен сапун с фильтрующим воздух элементом для сообщения внутренней полости насоса с атмосферой. В нижней части регулятора размещена сливная пробка.

Плунжерная пара

В состав каждой секции входит цилиндрический плунжер 13 со втулкой 5, выполняющей функцию цилиндра. Пара выполнена с высоколегированной термически закалённой стали, обеспечивающей повышенную прочность и плотность прилегания рабочих поверхностей. Верхняя часть втулки имеет утолщённое тело для устойчивости к высоким нагрузкам действующего созданного давления и имеет выступ для посадки в корпус. Втулка оборудована двумя окнами 18 и 19, через одно всасывается топливо в надплунжерную полость, а другое выполняет перепускную функцию для отсекания порции топлива. Оба окна соединены с продольными каналами в корпусе насоса. Для противодействия проворачиванию деталь фиксируется штифтом. Верхний торец втулки оборудован полированным седлом, к которому прижат отдельный нагнетательный клапан К секции.

Детали секции ТНВД

Каждый плунжер имеет две спиральные симметрично расположенные проточки. Одна предназначена для регулировки количества, подаваемого плунжером топлива путём поворота детали без изменения хода. При совпадении кромок перепускного окна втулки и проточки плунжера давление в надплунжерной полости  резко падает и подача топлива через нагнетательный клапан к форсунке прекращается. Вторая проточка предназначена для обеспечения выравнивания удельного давления топлива, действующего на боковую поверхность плунжера при рабочем ходе детали. Таким образом,  устраняется одностороннее действие сил во время впрыска, что значительно увеличивает рабочий ресурс прецизионной пары. В нижней части плунжера находится кольцевая проточка, в которую собирается просочившееся топливо из нагнетательной полости. Собранное  топливо в проточке обеспечивает смазку пары. Основание плунжера оборудовано двумя выступами для управления его поворотом и упорной головкой для тарелки возвратной пружины.

Нагнетательный клапан

Клапан служит для разделения нагнетательной полости пары и трубки высокого давления идущей к форсунке, а также для резкого снижения давления в топливопроводе в конце подачи горючего плунжером. Это обеспечивает резкое прекращение подачи топлива  без подтекания форсунки в конце впрыска. Детали клапана изготовлены из высокопрочной легированной стали индивидуально подобраны и тщательно притёрты. Разукомплектование деталей клапана при замене или ремонте, так как и плунжерной пары не допускается. Пружина, установленная сверху, прижимает пояски клапана к седлу и старается держать его в закрытом состоянии. Выше основного пояска, отделяющего надплунжерное пространство от трубопровода проточена разгрузочная канавка, которая при закрытии клапана забирает на себя часть топлива, находящегося в трубопроводе. Таким образом, снижается давление в трубке, что обеспечивает резкое прекращение впрыска.

Устройство нагнетательного клапана ТНВД

Подкачивающая помпа топливного насоса

В отдельном чугунном корпусе помпы размещён поршень, приводимый в движение толкателем из прочной легированной стали. Толкатель прижимается пружиной к приводящему его в движение эксцентрику кулачкового вала насоса. Стержень 13 толкателя двигается во втулке, ввёрнутой в корпус. Детали являются прецизионной парой и выполняет функцию основного рабочего органа подкачивающего устройства. Впускной и нагнетательный клапаны изготовлены из капрона. Направляющей впускного клапана является корпус 8 ручного подкачивающего устройства, а нагнетательного корпус 19. Клапаны прижаты пружинами к стальным втулкам, запрессованным в корпус устройства.

устройство подкачивающей помпы ТНВД

Всережимный регулятор топлива насоса

Автоматическое изменение количества подаваемого насосом регулируется устройством в зависимости от действующей нагрузки на двигатель. Принцип работы регулятора заключается во взаимодействии грузов размещённых на конце кулачкового вала насоса через муфту на систему тяг, связанных с поворотной зубчатой рейкой, управляющей поворотом плунжеров.

Механизм регулятора УТН 5

Ступица с четырьмя грузами 6 и муфта регулятора 5 с упорным подшипником 26 установлена на хвостовике кулачкового вала. На оси в нижней части корпуса регулятора установлены шарнирно соединённые основная 23 и промежуточная 22 тяги. Верхний конец промежуточной тяги связан с рейкой 11 ТНВД через тягу 14. Промежуточная тяга оборудована автоматическим корректором топливоподачи 20, который состоит из корпуса и размещённым в нём подпружиненного штока 17. Пружина 10 корректора-обогатителя связывает промежуточную тягу 22 и рычаг 9. Пружина 10 создаёт усилие, поворачивая тягу 9 для обогащения в пусковом режиме. Верхний край основной тяги 23 соединён пружиной 15 с рычагом 9 через серьгу 13, который жёстко соединён с осью рычага управления 29.

Задняя стенка оборудована ввёрнутым регулировочным болтом  19«наминала», который ограничивает амплитуду перемещения основной тяги 23 в сторону увеличения подачи топлива. Таким образом, ограничивается часовая производительность насоса. Болтом 18 регулируют остановку подачи топлива. В опорный прилив корпуса регулятора ввёрнут специальный болт 32, который ограничивает угловой поворот рычага управления 29, а следовательно, и частоту вращения двигателя. 

Работа регулятора ТНВД

Параметры режимов работы регулятора устанавливаются путем регулировки механизма устройства и должны соответствовать эксплуатационным показателям силового агрегата согласно данным завода производителя.

Режим пуска

Рычаг управления 29 устанавливают в сторону максимальной скорости вращения до упора в болт 32. Рычаг 9 растягивает одновременно две пружины 10 обогатителя и 15 регулятора. Пружина 15 прижимает основную тягу 23 к головке регулировочного болта «наминала» 19, а пружина 10 обогатителя подаёт промежуточную тягу 22 с тягой 14 в сторону передвижения рейки для увеличения подачи топлива. (рис I) С увеличением частоты вращения после запуска двигателя, грузы на конце вала под действием центробежных сил расходятся и преодолевая усилие основной пружины 15 и обогатителя 10, передвигают муфту 5 назад. При этом тяга 22 перемещается, действуя на рейку насоса через тягу 14 в сторону уменьшения подачи топлива до установки оборотов холостого хода. (рис. II)

Схема работы режимов работы регулятора ТНВД

Рабочий режим

В случае достижения максимальной частоты вращения двигателем центробежная сила грузов регулятора уравновешивается пружиной 15 и рейка занимает промежуточное положение. При этом шток корректора 17 находится в утопленном состоянии, пружина обогатителя 10 сжата, тяги 22 и 23 прижаты друг к другу и работают как одно целое.(рис. II)

При увеличении нагрузки на двигатель до номинальной частота вращения уменьшается, вследствие этого центробежная сила на грузах снижается и муфта перестаёт воздействовать на промежуточную тягу 22. Основная тяга  23 при этом упирается в головку болта «наминала» и  под действием пружины 15 перемещают рейку насоса в сторону увеличения подачи топлива.(рис III)

Схема работы режимов работы регулятора ТНВД

С достижением уровня номинальной частоты вращения устанавливается подвижное равновесие механизма регулятора. Усилие пружины 15 уравновешивают центробежные силы грузов, а основная тяга 23 касается головки болта «номинала».

При возникновении кратковременной нагрузки, превышающей номинальную, частота вращения двигателя и насоса резко снижается. Сила действия грузов на промежуточную тягу 22 падает. В этом случае пружина 7 в корректоре выталкивает шток 7 и упирается в основную тягу 23, в следствие чего, промежуточная тяга 22 вместе с рейкой под действием пружины 15 перемещается в сторону увеличения подачи топлива. Таким образом, крутящий момент двигателя возрастает и преодолевает нагрузку. (рис IV)

Корректировка подачи топлива при преодолении временных нагрузок в сравнении с подачей при номинальных оборотах происходит в пределах 15-22% и зависит от степени выхода штока из корпуса корректора, а также от степени натяжения пружины 14.

Режим остановки двигателя

Для остановки рычаг 29 управления переводят до конца в направлении часовой стрелки. При этом рычаг 9 под действием пружины регулятора 15 передвигает основную тягу 23 к задней стенке корпуса регулятора. Упираясь в ограничительный болт 18, тяга 23 увлекает за собой промежуточную тягу 22 и соответственно рейку насоса назад в сторону выключения подачи топлива.

Технические характеристики ТНВД для  МТЗ 80 82

ПоказателиУТН 54 УТНИ4 УТНМ
Диаметр плунжера мм8,599
Ход плунжера мм8108
Номинальная частота вращения вала ТНВД об/мин110011001100
Частота вращения, соответствующая холостому ходу дизеля об/мин117011601160
Частота вращения начала работы регулятора об/мин11151115-11251115-1125
Частота вращения максимального крутящего момента об/мин850850850
Частота вращения прекращения коррекции об/мин1040-11001040-11001030-1090
Цикловая подача топлива при 40-50 об/мин. кулачкового вала ммᶾ/цикл120140140
Частота вращения автоматического выключения подачи топлива к форсункам об/мин95012101250
Неравномерность подачи топлива секциями %  мин. частоте вращения/максимальной частоте6/306/306/30
Угол начала подачи топлива секцией по мениску до ВМТ( по профилю кулачка)575757

Обслуживание ТНВД

В регламентные мероприятия по уходу за узлом входят:

  • Проверка уровня масла в корпусе ТНВД производится через каждые 60 часов работы.
  • Замена масла осуществляется с периодичностью 240 рабочих часов.
  • Через каждые 960 часов производят проверку насоса на специальном стенде.

В процессе диагностики ТНВД проверяют следующие параметры:

  • давление, создаваемое отдельной секцией
  • производительность отдельной секции
  • равномерность подачи топлива секциями
  • производительность секций в режиме коррекции
  • режимы работы регулятора

При выявлении несоответствия технических параметров, выдаваемых узлом в процессе проверки, производят регулировку или при необходимости ремонт узла с заменой, вышедших из строя деталей. Для осуществления ремонта, а также правильной настройки узла необходима соответствующая материальная база и специалист соответствующей квалификации.

Устройство топливного насоса высокого давления дизельного двигателя – АвтоТоп

ТНВД в системе питания дизеля. Нарушения в работе прибора, их внешние проявления. Как можно отремонтировать насос своими силами, последовательность действий. Советы для прибегающих к помощи специализированных сервисов.

У любого дизельного двигателя рано или поздно может потребоваться ремонт топливного насоса высокого давления. Как человеческое сердце с годами начинает «барахлить», так и этот аппарат подвержен возрастным изменениям. Наряду с естественным износом деталей, сказывается и заправка некачественным топливом. Дизельные агрегаты в этом плане более чувствительны, чем бензиновые моторы.

Предлагаемая статья поможет владельцам дизельных авто при возникновении проблем с топливным насосом. В ней также приводятся советы: как отремонтировать этот узел своими руками.

Устройство прибора

Топливный насос высокого давления (ТНВД) представляет собой самостоятельный узел системы питания двигателей внутреннего сгорания (ДВС), в первую очередь — дизельных. Хотя это устройство применяется и на бензиновых моторах с инжекторным впрыском, впервые оно было использовано именно на дизеле.

Главная функция его состоит в создании разницы давлений между напорной магистралью и камерой сжатия, чтобы обеспечить надежный впрыск горючего в полость цилиндра. Но этого мало.

Насос задает также последовательность подачи топлива к рабочим форсункам, то есть выполняет распределительную функцию. Помимо этого, он регулирует объем подачи в зависимости от режима движения (частоты вращения коленвала) и от некоторых других факторов: температура двигателя, включение и выключение кондиционера.

Наконец, подобно тому, как в карбюраторных моторах регулируется угол опережения зажигания, на дизельном двигателе ТНВД автоматически корректирует опережение момента впрыска.

Существуют насосы трех основных типов: рядные, с распределенным впрыском и магистральные. Устройство их рассматривается в отдельной статье. Здесь же стоит упомянуть лишь, что рядные насосы использовались до недавнего времени на грузовых дизельных автомобилях, тракторах и специализированной дорожно-транспортной технике.

Распределительные аппараты устанавливают на все легковые дизельные авто и на некоторые грузовые. Магистральные применяются в современных топливных системах Common Rail. Такие насосы лишены функции распределения топлива, эту задачу выполняет электронный блок управления двигателем (ЭБУ), который согласно программе командует рабочими форсунками.

Внешние проявления топливной недостаточности

Какие могут быть признаки неисправности топливного насоса? Как было сказано в начале статьи, основными причинами потери работоспособности ТНВД являются износ трущихся поверхностей и низкое качество топлива. Здесь можно уточнить, что под низким качеством солярки следует подразумевать и попадание в топливо воды. Ниже перечисляются внешние симптомы неблагополучной работы топливного насоса:

  • Затруднен пуск двигателя — скорее всего, наступил износ плунжерной пары (или пар), и насос не развивает нужного давления. Проверяется простым способом. Нужно положить на ТНВД тряпку, полить ее холодной водой и выждать несколько минут. После чего повторить попытку. Если двигатель заведется, значит, причина действительно в износе. При охлаждении происходит уменьшение зазоров в сопряжении и повышается вязкость топлива, в результате чего насос обеспечивает необходимое давление.
  • Потеря мощности. Из-за увеличившихся зазоров снижается давление впрыска, ухудшается работа всережимного регулятора оборотов.
  • Перегрев двигателя. Причинами могут быть неправильная работа автомата опережения впрыска. В этом случае нельзя откладывать ремонт ТНВД «на потом».
  • Растущий «аппетит» силового агрегата. Вызывается утечками топлива, износом плунжерных сопряжений, неправильным углом опережения впрыска.
  • Жесткая работа мотора, которая может быть следствием чересчур раннего момента впрыска и неравномерностью подачи солярки в разные цилиндры. Правда последнее на распределительных ТНВД практически невозможно, так что, скорее всего, дело в форсунках.
  • Черный выхлоп из выпускной трубы. Причина может быть в слишком позднем угле впрыска горючего.

Если есть уверенность в своих силах

При наличии перечисленных выше признаков необходимо подумать о ремонте топливного нагнетателя. Ниже рассматривается, как устранить некоторые неисправности аксиального ТНВД распределительного типа своими руками.

Следует оговориться, что прежде чем браться за эту работу, следует изучить устройство ремонтируемого агрегата, выяснить — какие могут понадобиться инструменты, потому что в некоторых случаях не обойтись без специальной оснастки, съемника, например.

Также следует приготовить фотоаппарат, чтобы фиксировать каждый этап разборки. В противном случае можно забыть — где находились те или иные детали. Для разборки необходимо приготовить подходящий стол и покрыть его чистой тканью или хотя бы листом белой бумаги. На полу не должно быть мусора, иначе случайно упавшую деталь можно и не найти.

Итак, что может самостоятельно сделать автолюбитель, не имеющий специальной квалификации?

  1. устранить утечку топлива из корпуса насоса;
  2. проверить исправность электромагнитного клапана;
  3. проверить плунжерный механизм подачи горючего;
  4. проверить автоматический регулятор частоты вращения;
  5. очистить фильтрующие сетки;
  6. проверить давление, развиваемое прибором;
  7. отрегулировать автомат опережения впрыска.

Разборка и устранение утечек

Ниже описывается последовательность действий при самостоятельном ремонте ТНВД. На работающем двигателе отсоединяют тягу, соединяющую педаль газа с рычагом, регулирующим подачу топлива. После чего вручную покачивают рычаг в радиальном направлении, стараясь растянуть возвратную пружину.

Если через кольцевую щель не наблюдается просачивания солярки, значит, уплотнение не изношено. В противном случае требуется восстановительный ремонт сопряжения.

Пока насос еще не снят с двигателя, убеждаются в исправности электромагнитного клапана отключения подачи топлива. Если двигатель пускается и глушится при повороте ключа — клапан исправен. Как поступать в ситуации, когда этот компонент отказывает во время движения, будет рассказано несколько ниже.

Теперь же остается переходить к разборке насоса. Перед тем как отсоединять от агрегата топливные магистрали и электроподводку, необходимо протереть его корпус и соединения смоченной в солярке ветошью, после чего вытереть насухо, чтобы исключить попадание грязи в топливную систему. Снятый насос еще раз промыть, после чего снять крышку и слить с него топливо.

В первую очередь нужно разобрать привод регулировки подачи горючего и произвести ревизию уплотнений, а также оценить степень износа сопряженных деталей. Уплотнительные кольца обязательно меняют. Для этой цели необходимо купить ремкомплект для ремонтируемого прибора.

Что касается изношенных деталей, есть два способа отреставрировать их: восстановить изношенную ось с помощью хромирования, или выточить и поставить в корпус ремонтную бронзовую втулку. Корпус перед этим придется расточить.

Ремонт плунжерного механизма

Далее следует перейти к разборке и ревизии плунжерного нагнетателя. Отсоединяют от корпуса распределительную головку насоса, после чего кладут его шкивом вниз, чтобы не высыпались внутренности. Перед тем как вынуть кулачки, приводную шестеренку и муфту центробежного регулятора, нужно проверить, не заедают ли эти детали при движении, а затем, аккуратно поддерживая их пальцами, извлечь из корпуса.

Ролики, шайбы, оси кулачковой муфты целесообразно пометить маркером, потому что все сопряженные поверхности уже притерлись друг к другу, и будет лучше, если они так и останутся после сборки. После разборки нужно внимательно осмотреть детали на предмет обнаружения сколов или выработки. Сильно изношенные элементы следует заменить новыми.

Степень износа плунжерной пары оценить можно только приблизительно. Работоспособность прецизионного сопряжения проверяется после сборки насоса путем измерения его рабочего давления. Наконец, нужно продуть сжатым воздухом все фильтрующие элементы (сетки), после чего можно собирать насос в обратной последовательности.

Сборка и регулировка оборотов

Когда агрегат будет собран, нужно залить его соляркой, проворачивая вручную приводной валик, после чего можно устанавливать на место и подсоединять топливопроводы, шланги и электропроводку системы управления.

После того как мотор будет заведен, следует убедиться в правильности работы автомата опережения впрыска горючего, в зависимости от давления в полости низконапорного лопастного насоса. На этом блоке имеется свой регулятор холостых оборотов. При необходимости регулируют этот параметр, завинчивая или вывинчивая регулировочный винт.

Перед выполнением этой процедуры рекомендуется запомнить положение винта, сосчитав количество выступающих из контргайки витков резьбы, чтобы, в крайнем случае, вернуться к исходной настройке. В мануале на двигатель указывается требуемое количество оборотов на холостом ходу двигателя. Обычно они понижаются с 1100 оборотов после запуска до 750 — после прогрева дизеля с механической коробкой, и до 850 — на двигателе с автоматом.

Проверка давления

В заключение проверяют давление в напорной магистрали, что является косвенной проверкой состояния плунжерной пары. Для этой цели понадобится манометр, рассчитанный на давление до 350 бар, соединительный шланг для подключения к насосу и переходник, включающий в себя стравливающий клапан.

В качестве измерительного прибора подойдет манометр ТАД-01А или более старый — КИ-4802. Если переходника в продаже не найдется, придется изготовить его самостоятельно.

Конечно, необходимо принимать во внимание размеры присоединительной резьбы, и куда планируется вворачивать соединительный шланг. Для измерения прибор подключают к центральному отверстию распределительного блока или к одному из напорных штуцеров.

После присоединения манометра к ТНВД проворачивают вал насоса с помощью стартера и фиксируют показание стрелочного индикатора. Если прибор показывает больше 250 атмосфер — это нормально (при работающем двигателе давление будет выше).

Аварийный ремонт электромагнитного клапана

Как было обещано выше, несколько слов о том, что делать, если откажет в пути электромагнитный клапан отключения топлива. В этом случае двигатель внезапно остановится. Правда, причин этому может быть несколько. Чтобы отбросить версию неисправности электроклапана, его необходимо исключить из работы, поскольку в нормальном режиме он всегда открыт.

Для этого нужно снять питающий провод, изолировать его от массы, после чего вывернуть клапан, удалить из него наконечник с пружиной и поставить устройство обратно. Если двигатель все равно не заведется, причина, очевидно, — в чем-то другом. Если же мотор запустится, нужно искать неисправность в клапане.

Чтобы делать это не в дороге, нужно сначала добраться до дома. Правда глушить двигатель потом придется грубо, но просто: поставить машину на ручник, включить повышенную передачу и отпустить педаль сцепления.

А затем уже приступать к ремонту. Сначала следует проверить, — не сгорела ли обмотка электромагнита. Для этого соединяют клапан с плюсом аккумулятора с помощью отрезка исправного провода, после чего пытаются завести двигатель. Если он заводится, значит, сгорела обмотка. В противном случае ищут место утечки напряжения с подводящего провода.

Обращение к специалистам

Тем же, кто не имеет желания или возможности делать ремонт ТНВД самостоятельно, следует обратиться на специализированную станцию ремонта топливной аппаратуры. Хотя существуют и дилерские центры, выполняющие обслуживание и ремонт автомобилей определенной марки, топливной аппаратурой они, как правило, не занимаются, поскольку для этого требуется дорогостоящее диагностическое оборудование.

Основным стендом для диагностики и регулировки ТНВД является Bosch EPS-815. На нем проверяются различные параметры, заданные для данного насоса производителем. Например: пусковая подача горючего, объемная подача на различных режимах, давление на выходе и некоторые другие.

При выборе сервиса следует учитывать его надежность. Для этого нужно предварительно приехать на собеседование, где поинтересоваться мнением обслуживаемых клиентов. В таких случаях обращают внимание на историю выбранного сервиса. Как правило, недобросовестные фирмы существуют в сфере услуг не более одного года.

Слабым звеном ТНВД дизельных двигателей является чувствительность их к попаданию в топливную систему воды. Особенно подвержены этому легковые иномарки, для которых вода является главным врагом. Для уменьшения этой опасности зимой нужно поддерживать максимально возможный уровень топлива в баке, чтобы свести к минимуму образование конденсата.

Насосы ТНВД – это топливные насосы высокого давления, которые применяются для дизельных двигателей. Дизельные автомобили очень сильно отличаются от бензиновых. Разница именно в том, каким образом происходит воспламенение топлива.

Многие производители, такие как Бош, Тойота, Мицубиси, Ниссан, Форд и другие с каждым годом усовершенствуют свои линейки техники с применением насосов высокого давления. Лучшими производителями ТНВД считаются Bosch, Lucas, Delphi, Denso, Zexel.

1 Принцип действия

Воздух, нагнетаемый в камеру сгорания дизеля, сжимается под давлением. Кроме того, он нагревается. Таким образом, в камере сгорания дизельного двигателя находится горячий сжатый под давлением воздух.

В тот момент, когда впрыскивается топливо, при соприкосновении с горячим сжатым воздухом оно воспламеняется. И подают дизель в цилиндры мотора под давлением и с определенными промежутками времени, чтобы топливная смесь нормально воспламенялась, именно насосы ТНВД.

Мощность двигателя и его крутящий момент регулируются количеством топлива, которое насос впрыснул в камеру сгорания. Насосы ТНВД бывают:

  • непосредственного действия, т.е. механический вариант;
  • аккумуляторные, т.е. с аккумуляторным впрыском, или автоматический вариант.

В первом случае срабатывает принцип механического плунжера, при котором нагнетание воздуха и топливный впрыск происходят одновременно. Во втором случае гидравлический аккумулятор или система пружин и форсунок сначала нагнетает давление впрыснутого топлива в аккумулятор, а затем происходит процесс зажигания.

В зависимости от метода подачи топлива в цилиндры двигателя есть три разновидности нопорных установок:

  • рядные;
  • многосекционные или магистральные;
  • распределительные.

Рядные напорные установки – подают в расположенные один за другим цилиндры топливную смесь строго по очереди в каждый из цилиндров. В распределительных вариантах одна и та же секция может подавать топливо сразу в несколько цилиндров. К слову, распределительные установки могут быть одноплунжерными и двухплунжерными. Магистральные только нагнетают топливо внутрь аккумулятора.

Рядные модели различают по количеству цилиндров и давлению при впрыске топлива:

  • М – это 4-6 цилиндровый, при давлении впрыска в 550 бар;
  • А – это 2-12 цилиндровый, при давлении впрыска в 950 бар;
  • P-3000 – это 4-12 цилиндровый, при давлении впрыска в 950 бар;
  • P-7100 – это 4-12 цилиндровый, при давлении впрыска в 1200 бар;
  • P-8000 – это 6-12 цилиндровый, при давлении впрыска в 1300 бар;
  • P-8500 – это 4-12 цилиндровый, при давлении впрыска в 1300 бар;
  • R – это 4-12 цилиндровый, при давлении впрыска в 1150 бар;
  • P-10 – это 6-12 цилиндровый, при давлении впрыска в 1200 бар;
  • ZW (M) – это 4-12 цилиндровый, при давлении впрыска в 950 бар;
  • P-9 – это 6-12 цилиндровый, при давлении впрыска в 1200 бар;
  • CW – это 6-10 цилиндровый, при давлении впрыска в 1000 бар;
  • H-1000 – это 5-8 цилиндровый, при давлении впрыска в 1350 бар.

Топливный Насос Т 25 Рядный

1.1 Внутреннее устройство

Через муфту опережения впрыска и зубчатую передачу коленвала на кулачковый вал передается вращение. Кулачок смещает толкатель, толкатель сжимает пружину и толкает плунжер. Плунжер поднимается, толкает заслонку впускного канала и начинает вытеснять топливо через нагнетательный клапан к форсунке. Чтобы впрыск топлива происходит нормально, нужно, чтобы винтовой и сливной каналы совмещались вовремя.

Распределительная установка ТНВД состоит из:

  • редукционногоклапана;
  • всережимного регулятора;
  • дренажного штуцера;
  • корпуса напорной секции высокого давления в комплекте с плунжерной парой (золотникового устройства) и нагнетательными клапанами;
  • топливоподкачивающего насоса;
  • лючка регулятора (муфты) опережения впрыска;
  • корпуса ТНВД;
  • крышка;
  • электромагнитного клапана выключения подачи топлива;
  • кулачково-роликового устройство привода плунжера.

Муфта впрыска изменяет в зависимости от количества оборотов двигателя угол впрыска топлива. Назначение всережимного регулятора — изменять количество подаваемого топлива в зависимости от режима работы двигателя (запуск, уменьшение или увеличение оборотов, холостой ход, остановка и т.д.).
к меню ↑

1.2 Возможные причины поломок

Как только вы заметили отклонения в привычной работе насоса ТНВД нужно выяснить и по возможности как можно быстрее устранить причину поломки. Визуально поломку можно определить по утечкам топлива из корпуса насоса, по затрудненному запуску двигателя, по нехарактерным шумам при работе насоса и по тому, как при уменьшении мощности двигателя увеличивается расход топлива.

Насос ТНВД магистрального типа

Среди самых распространенных поломок можно выделить износ комплектующих и использование топлива низкого качества. И то и другое для уязвимого насоса крайне нежелательно.

Износ приводит к деформации деталей, образованию пустот и снижению надежности напорного аппарата. А примеси в топливных смесях низкого качества приводят к постепенному загрязнению деталей, и, в итоге, к выводу насоса из строя. Если устройство подъедает масло, значит, износились уплотнители. А если заклинит плунжерную пару, то на форсунки перестанет поступать топливная смесь.

В качестве обязательной профилактики стоит всегда следить за качеством топлива, которое вы заливаете в бак. Кроме того, всегда следите за уровнем масла. Периодически, загоняя машину на стенд, нужно регулировать количество и равномерность впрыскивания топлива в ТНВД. Для этого разбирают муфту впрыскивания и соединяют с приводом на стенде кулачковый вал машины.
к меню ↑

1.3 ДИАГНОСТИКА И РЕМОНТ ТОПЛИВНОГО НАСОСА ВЫСОКОГО ДАВЛЕНИЯ (ВИДЕО)


к меню ↑

2 Модельный ряд

Различные компании и корпорации выпускают модели рядных, магистральных и распределительных насосов ТНВД для любых сфер применения. Грузовые и легковые автомобили, трактора, погрузчики и экскаваторы, комбайны и многая другая техника используют все преимущества дизельных насосов ТНВД.
к меню ↑

2.1 ТНВД Bosch и Lucas

Это одни из самых надежных производителей напорной техники ТНВД. Модельный ряд установок ТНВД компании Бош достаточно обширен. Модели ТНВД представлены на рынке линейкой рядной и распределительной техники с маркировками: A, M, ММС , P, MW, H, VP29, VP30, VP44. В модельный ряд включены также насосы-форсунки PDE и индивидуальные насосы PLD, VE, Lucas DPS, DPCN.

Особое внимание стоит уделить модели ESR. Это – последняя разработка компании Lucas, которая фактически является роторной моделью ТНВД для высокоскоростных двигателей с системой непосредственного впрыска. Так же внимание производителей внедорожников с системой непосредственного впрыска привлекла модель DP200.

Насос ТНВД и его комплектующие

ТНВД с аккумуляторной топливной системой воплощена в моделях Common Rail

Это системы магистального типа, на которые в последнее время наблюдается достаточно высокий спрос. Delphi DFP 1.x, DFP 3.x и Bosch CP1, CP2, CP3.2, CP3.4. Они применяются для автомобилей марок Вольво FH-12, FM-12, Мерседес Actros, Атего, Скания 114, 124, R, P, T, Рено Магнум, Премиум DXI, DCI, Ивеко Крузор 8, 10, 13, DAF CF, LF, MACK.
к меню ↑

2.2 ТНВД Delphi

Компания Delphi выпускает серию ТНВД EPIC для автомобилей марок Мерседес, Рено Кенго 1.9, Фиат Добло 1.9, Форд Транзит 2.5. А также серию DP200, 210, 310 для автомобилей и погрузчиков JCB, Перкинс, Катерпиллар и John Deere.

Основной проблемой этих насосов стала металлическая стружка, которая образуется в процессе эксплуатации техники от трения механических деталей друг об друга. Поэтому, в них чаще всего приходится заменять плунжеры. Вал в этих моделях ремонту не подлежит. Он только заменяется на новый.

Дозировочный блок тоже подлежит полной замене, потому что выходит из строя по причине износа деталей в процессе наполнения бака некачественным топливом с примесями бензина, воды или твердых частиц.
к меню ↑

2.3 DENSO

Эта компания специализируется на производстве моделей ТНВД V3, V4, V5 для автомобилей Тойота, Мицубиси, Опель. А их аккумуляторная система Common Rail маркируется как HP0, HP2, HP3, HP4 и успешно применяется в автомобилях Тойота, Мицубиси, Ниссан, Форд Транзит, Пежо Боксер и Ситроен.

Насос ТНВД DENSO

Отличительной особенностью этой марки стали ECD-регуляторы (Electronically Controlled Diesel system). Это система впрыскивает дизельное топливо при полном контроле электроники. Отрегулировать такие ТНВД можно только на специальных стендах, с использованием контроллеров и форсунок.

Славится своим распределительными ТНВД VRZ для Мицубиси Паждеро 3-Canter, Мазды, Коматсу и других автомобилей. В этих моделях ТНВД без труда можно восстановить плунжерные пары. Кроме того, распределительная техника Zexel используется для японских машин, а от моделей Бош их отличает только номера деталей. В остальном строение абсолютно идентично.

Топливный насос (сокращенно ТНВД) предназначен для выполнения следующих функций – подачи горючей смеси под высоким давлением в топливную систему ДВС, а также регулирования его впрыска в определенные моменты. Именно поэтому топливный насос считается наиболее важным устройством для дизельных и бензиновых двигателей.

Преимущественно ТНВД применяются, конечно же, в дизельных двигателях. А в бензиновых двигателях ТНВД встречаются лишь в тех агрегатах, на которых используется система непосредственного впрыска топлива. При этом насос в бензиновом двигателе работает куда с меньшей нагрузкой, поскольку такое высокое давление, как в дизеле не требуется.

Основные конструктивные элементы топливного насоса – плунжер (поршень) и цилиндр (втулка) малого размера, которые объединяются в единую плунжерную систему (пару), изготовленную из высокопрочной стали с большой точностью.

На самом деле изготовление плунжерной пары довольно трудная задача, требующая специальных высокоточных станков. На весь Советский союз был, если не изменяет память, всего один завод, на котором изготавливались плунжерные пары.

Как делают плунжерные пары в нашей стране сегодня можно увидеть в этом видео:

Между плунжерной парой предусматривается очень маленький зазор, так называемое прецизионное сопряжение. Это отлично показано в видео, когда плунжер очень плавно, с зависанием под действием собственного веса входит в цилиндр.

Итак, как мы уже сказали ранее, топливный насос применяется не только для своевременной подачи горючей смеси в топливную систему, но и для распределения его через форсунки в цилиндры в соответствии с типом двигателя.

Форсунки – связующее звено в этой цепи, поэтому они соединены с насосом трубопроводами. С камерой сгорания форсунки соединяются нижней распылительной частью, оснащенной небольшими отверстиями для эффективного впрыска топлива с дальнейшим его воспламенением. Определить точный момент впрыска ТС в камеру сгорания позволяет угол опережения.

Типы топливных насосов

В зависимости от особенностей конструкции различают три основных типа ТНВД – распределительный, рядный, магистральный.

Рядный ТНВД

Этот тип топливного насоса высокого давления оснащается плунжерными парами, расположенными рядом друг с другом (потому и такое название). Их количество строго соответствует количеству рабочих цилиндров двигателя.

Таким образом, одна плунжерная пара обеспечивает подачу топлива в один цилиндр.

Пары устанавливаются в насосном корпусе, в котором предусмотрены каналы входа и выхода. Запускается плунжер при помощи кулачкового вала, соединенного, в свою очередь, с коленвалом, от которого и передается вращение.

Кулачковый вал насоса, при вращении кулачками воздействует на толкатели плунжеров, заставляя их двигаться внутри втулок насоса. При этом поочередно открываются и закрываются впускные и выпускные отверстия. При движении плунжера вверх по втулке создается давление, необходимое для открывания нагнетательного клапана, через который топливо под давлением направляется по топливопроводу к определенной форсунке.

Момент подачи топлива и регулировка его количества, необходимого в конкретный момент времени может осуществляться либо с помощью механического устройства, либо с помощью электроники. Такая регулировка нужна для корректировки подачи топлива в цилиндры двигателя в зависимости от частоты вращения коленчатого вала (оборотов двигателя).

Механическое управление обеспечивается за счет использования специальной муфты центробежного типа, которая закреплена на кулачковом валу. Принцип действия такой муфты заключен в грузиках, которые находятся внутри муфты и имеют возможность перемещаться под действием центробежной силы.

Центробежная сила изменяется с ростом (или уменьшением) величины оборотов двигателя, благодаря чему грузики либо расходятся к внешним краям муфты, либо снова сближаются к оси. Это приводит к смещению кулачкового вала относительно привода из-за чего и изменяется режим работы плунжеров и, соответственно, при увеличении частоты вращения коленвала двигателя обеспечивается ранний впрыск топлива, а поздний, как вы догадались, при снижении оборотов.

Рядные топливные насосы весьма надежны. Их смазка осуществляется моторным маслом, поступающим из системы смазки двигателя. Они совершенно не привередливы к качеству топлива. На сегодняшний день применение таких насосов из-за их громоздкости ограничено грузовыми автомобилями средней и большой грузоподъемности. Примерно до 2000 года они применялись и на легковых дизельных моторах.

Распределительный ТНВД

В отличие от рядного насоса высокого давления, у распределительного ТНВД может быть либо один, либо два плунжера в зависимости от объема двигателя и, соответственно, необходимого объема топлива.

И эти один или два плунжера обслуживают все цилиндры двигателя, которых может быть и 4, и 6, и 8, и 12. Благодаря своей конструкции, в сравнении с рядными ТНВД, распределительный насос более компактен и меньше весит, и при этом способен обеспечить более равномерную подачу топлива.

К основному недостатку данного типа насосов можно отнести их относительную недолговечность. Распределительные насосы устанавливаются только в легковые автомобили.

Распределительный ТНВД может оснащаться различными типами приводов плунжера. Все эти типы привода являются кулачковыми и бывают: торцевыми, внутренними, внешними.

Наиболее эффективными считаются торцевые и внутренние приводы, которые лишены нагрузок, создаваемых давлением топлива на приводной вал, вследствие чего они служат несколько дольше, нежели насосы с внешним кулачковым приводом.

Кстати, стоит отметить, что импортные насосы фирм Bosch и Lucas, наиболее часто использующиеся в автомобилестроении оснащены именно торцевым и внутренним приводом, а внешний привод имеют насосы серии НД отечественного производства.

Торцевой кулачковый привод

В этом типе привода, используемом в насосах Bosch VE, основным элементом является распределительный плунжер, предназначенный для создания давления и распределения топлива в топливных цилиндрах. При этом плунжер-распределитель совершает вращательные и возвратно-поступательные перемещения при вращательных движениях кулачковой шайбы.

Возвратно-поступательное перемещение плунжера осуществляется одновременно с вращением кулачковой шайбы, которая, опираясь на ролики, перемещается вдоль неподвижного кольца по радиусу, то есть, как бы обегает его.

Воздействие шайбы на плунжер обеспечивает высокое давление топлива. Возврат плунжера в исходное состояние осуществляется благодаря пружинному механизму.

Распределение топлива в цилиндрах происходит за счет того, что приводной вал обеспечивает вращательные движения плунжера.

Величина подачи топлива может быть обеспечена с помощью электронного (электромагнитный клапан) или механического (центробежная муфта) устройства. Регулировка осуществляется за счет поворота на определенный угол неподвижного (не вращающегося), регулировочного кольца.

Цикл работы насоса состоит из следующих стадий: закачка порции топлива в надплунжерное пространство, нагнетание давления за счет сжатия и распределение топлива по цилиндрам. Затем плунжер возвращается в исходное положение и цикл повторяется заново.

Внутренний кулачковый привод

Внутренний привод применяется в распределительных ТНВД роторного типа, например, в насосах Bosch VR, Lucas DPS, Lucas DPC. В таком типе насоса подача и распределение топлива осуществляется посредством двух устройств: плунжера и распределительной головки.

Распределительный вал оснащается двумя противоположно-расположенными плунжерами, которые обеспечивают процесс нагнетания топлива, чем меньше расстояние между ними, тем выше давление топлива. После нагнетания давления топливо устремляется к форсункам по каналам распредголовки через нагнетательные клапана.

Подачу топлива к плунжерам обеспечивает специальный подкачивающий насос, который может отличаться в зависимости от типа своей конструкции. Это может быть либо шестеренчатый насос, либо роторно-лопастной. Подкачивающий насос находится в корпусе насоса и приводится в действие приводным валом. Собственно, он прямо на этом валу и установлен.

Распределительный насос с внешним приводом рассматривать не будем, поскольку, скорее всего, их звезда близка к закату.

Магистральный ТНВД

Такой вид топливного насоса применяется системе подачи топлива Common Rail, в которой топливо перед тем, как поступить к форсункам сначала накапливается в топливной рампе. Магистральный насос способен обеспечить высокую подачу топлива – свыше 180 МПа.

Магистральный насос может быть одно-, двух- или трехплунжерным. Привод плунжера обеспечивается кулачковой шайбой или валом (тоже кулачковым, разумеется), которые в насосе совершают вращательные движения, проще говоря, крутятся.

При этом в определенном положении кулачков, под действием пружины плунжер перемещается вниз. В этот момент происходит расширение компрессионной камеры, за счет чего в ней снижается давление и образуется разряжение, которое заставляет открыться впускной клапан, через который топливо проходит в камеру.

Поднятие плунжера сопровождается увеличением внутрикамерного давления и закрытием клапана впуска. При достижении давления, на который настроен насос, открывается выпускной клапан, через который топливо нагнетается в рампу.

В магистральном насосе управление процессом подачи топлива реализуется дозирующим топливным клапаном (который приоткрывается или закрывается на необходимую величину) при помощи электроники.

Вспомогательное устройство для левого желудочка (LVAD)

Что такое LVAD?

Вспомогательное устройство для левого желудочка (LVAD) — это помпа, которую мы используем для пациентов с сердечной недостаточностью в терминальной стадии. Мы хирургическим путем имплантируем LVAD, механический насос с батарейным питанием, который затем помогает левому желудочку (главной насосной камере сердца) перекачивать кровь к остальному телу. LVAD могут использоваться как:

  • Терапия от моста к трансплантату : Это терапия, спасающая жизнь пациентов, ожидающих трансплантации сердца.Пациенты используют LVAD до тех пор, пока сердце не станет доступным. В некоторых случаях LVAD может восстановить больное сердце, устраняя необходимость в трансплантации. Узнайте больше о пересадке сердца.
  • Целевое лечение : Некоторые пациенты не являются кандидатами на пересадку сердца. В этом случае пациенты могут получать длительное лечение с использованием LVAD, которое может продлить и улучшить жизнь пациентов.

Программа LVAD в Stanford Health Care: почему выбирают нас?

Для пациентов с сердечной недостаточностью в терминальной стадии наша программа LVAD дает надежду.Мы одна из самых опытных клиник LVAD в регионе. Фактически, наши исследователи сыграли важную роль в разработке терапии LVAD, что привело к созданию первого успешного имплантата «мост-трансплантат» в 1984 году. Наши услуги включают:

Имплантация LVAD: чего ожидать

Сначала мы определим, какой у вас тип пациента с LVAD: мост-трансплантат или целевое лечение. Это обозначение может меняться в зависимости от вашего здоровья.Узнайте больше о том, чего ожидать во время имплантации LVAD, включая предоперационные инструкции, ваше восстановление и последующие действия.

Об устройстве LVAD

Задача LVAD — помочь ослабленному левому желудочку перекачивать кровь. В отличие от прошлого, устройства LVAD теперь портативны. Это означает, что вы можете вернуться домой с LVAD и продолжить свою обычную деятельность, ожидая, когда станет доступно сердце. Чтобы получить LVAD, нам необходимо выполнить ряд тестов, чтобы определить, подходите ли вы для этого устройства.

Узнайте больше об устройстве LVAD и процессе оценки LVAD.

Осложнения из-за LVAD

Как и с любым сердечным устройством, здесь могут быть осложнения. Мы внимательно следим за вами, чтобы предотвратить и устранить любые осложнения, связанные с устройством. Узнайте больше об осложнениях, связанных с LVAD.

LVAD: Часто задаваемые вопросы

Узнайте ответы на некоторые часто задаваемые вопросы, в том числе:

  • Кто может получить LVAD?
  • Как мои лекарства изменятся после процедуры LVAD?
  • Какова жизнь после имплантации VAD?

Medtronic отзывает комплекты имплантатов помпы HVAD из-за задержки или неудачного перезапуска после остановки помпы

FDA определило это как отзыв класса I, наиболее серьезный тип отзыва.Использование этих устройств может привести к серьезным травмам или смерти.

Отозванный продукт

  • Комплекты имплантатов помпы HVAD для системы HeartWare HVAD
  • Модель
  • : Комплекты имплантатов помпы Medtronic HVAD, помеченные как:
    • НАСОС 1103
    • НАСОС 1104
    • НАСОС 1104JP
  • Даты распространения: с 23 октября 2017 г. по 30 апреля 2020 г.
  • устройств, отозванных в США: 157
  • Дата инициирования фирмой: 19 ноября 2020 г.

Использование устройства

Комплект для имплантации помпы HeartWare Ventricular Assist Device (HVAD) является частью системы HeartWare HVAD, которая используется, чтобы помочь сердцу продолжать перекачивать кровь к остальным частям тела.Система HVAD используется в качестве моста к трансплантации сердца у пациентов, которые подвержены риску смерти от терминальной стадии левожелудочковой сердечной недостаточности, для восстановления сердечной ткани или в качестве целевой терапии (DT) у пациентов, которым новые трансплантаты не планируются.

Причина отзыва

Medtronic отзывает комплект для имплантации помпы HVAD, поскольку устройство может не запускаться, перезапускаться или иметь задержку при перезапуске после остановки помпы. Эти задержки или сбои при запуске или перезапуске произошли во время доимплантационного тестирования, во время имплантации или в различных ситуациях после имплантации.Если устройство задерживается или не запускается или не перезапускается, это может нанести серьезный вред пациенту, включая сердечный приступ, обострение сердечной недостаточности, необходимость дополнительных процедур и госпитализаций или смерть.

На эту проблему с устройством было подано 29 жалоб, в том числе 19 серьезных травм и 8 случаев пациентов, у которых было опасное для жизни событие, но они выздоровели без долгосрочных последствий. Сообщается о двух смертельных случаях.

Кто может пострадать

  • Медицинские работники, использующие комплекты имплантатов для помпы HVAD
  • Пациенты, которым выполняются процедуры с пораженным устройством

Что делать

18 декабря 2020 года Medtronic разослала письмо о срочном сообщении о медицинском устройстве всем пострадавшим клиентам, а 23 декабря 2020 года Medtronic отправила письмо о срочном уведомлении о медицинском устройстве всем клиентам, которые ранее приобрели помпу Medtronic HVAD.В уведомлении клиентам было указано:

  • Посоветуйте медицинским работникам и персоналу следующие пункты из текущих инструкций по применению (IFU), чтобы избежать ненужных остановок помпы:
    • Не отсоединяйте трансмиссию от контроллера.
    • Не отключайте оба источника питания (батареи и адаптер переменного или постоянного тока) от контроллера одновременно; один внешний источник питания всегда должен оставаться подключенным к контроллеру.
    • Не меняйте контроллер, если это явно не указано в условиях тревоги высокого приоритета или от члена группы VAD.
    • Обеспечивает правильную реакцию на аварийный сигнал [Ошибка контроллера] и аварийный сигнал [Ошибка электрики]. Это сигналы тревоги среднего приоритета, не связанные с немедленной остановкой насоса. Эти сигналы тревоги приведут к появлению слова [Call] на дисплее контроллера, уведомляющего пациента о том, что он должен позвонить своему врачу.
    • Усиление правильного подключения источников питания и кабеля данных в портах контроллера.
  • Сообщите пациентам, которым имплантирован один из этих идентифицированных насосов, чтобы они связались со своим координатором желудочкового вспомогательного устройства перед любой заменой контроллеров, а также для координации выполнения обмена контроллерами в клинических условиях.
  • Определите необходимость замены контроллера для пациентов, которым имплантирован один из этих идентифицированных насосов, и примите во внимание следующее:
    • Замена контроллера должна выполняться под наблюдением врача в контролируемой среде с возможностью немедленного оказания пациенту гемодинамической поддержки. Отсутствие перезапуска может быть фатальным.
    • После остановки насоса аварийный сигнал высокого приоритета [VAD Stopped] приведет к появлению слов [Change Controller] или [Connect Driveline] на дисплее контроллера.После восстановления подключения питания и трансмиссии, если насос не перезапускается:
    • Рассмотрите включение и выключение питания контроллера тока или рассмотрите возможность замены контроллера. Это позволит сбросить алгоритм перезапуска и начать заново. Контроллер автоматически пытается перезапустить насос максимум 30 раз; сигнал тревоги [VAD Stopped] срабатывает после пяти (5) попыток.
    • Если помпа по-прежнему не перезапускается, продолжите временную гемодинамическую поддержку и замену помпы.
  • Запланируйте замену контроллера до истечения срока службы внутренней батареи контроллера и срабатывания сигнала тревоги [Ошибка контроллера], если срок службы контроллера пациента превышает два (2) года.
    • Хотя сигнал тревоги [Ошибка контроллера] является сигналом тревоги среднего приоритета, который не связан с остановкой насоса, упреждающее планирование замены контроллера может помочь избежать реакции пациента на сигнал тревоги путем замены контроллера вне клинических условий. Согласно IFU, пациенты должны позвонить своему врачу при получении сигнала тревоги среднего приоритета.
  • Проверьте серийные номера в письме и подтвердите, получают ли пациенты поддержку.
  • Поделитесь этим письмом со всеми, кому необходимо знать, в организациях или любой организации, куда были переведены потенциально затронутые пациенты.
  • Заполните форму подтверждения врача (прилагается к письму) и отправьте ее по электронной почте на адрес [email protected].

Контактная информация

Клиенты, которым нужна дополнительная информация об отзыве, могут связаться со службой поддержки клиентов Medtronic Mechanical Circulatory Support по телефону 877-367-4823 или по почте:

Medtronic Inc
710 Medtronic Pkwy Mailstop Ls245
Миннеаполис MN 55432-5603

Дополнительные ресурсы:

  1. Запись в базе данных отзыва медицинских устройств
  2. Medtronic Служба экстренной медицинской помощи

Как сообщить о проблеме?

Медицинские работники и потребители могут сообщать о побочных реакциях или проблемах с качеством, с которыми они столкнулись при использовании этих устройств, в MedWatch: Программу FDA по безопасности информации и нежелательных явлениях, используя онлайн-форму, обычную почту или факс.

  • Текущее содержание с:

Amazon.com: Электрический вакуумный насос для пениса с 4 интенсивностями всасывания, перезаряжаемый автоматический высоковакуумный насос для увеличения пениса Adorime, устройство для увеличения давления воздуха для пениса для более сильной эрекции: Здоровье и личная гигиена

Перед покупкой я был немного скептически настроен, потому что ReviewMeta / Fakespot были не очень довольны легитимностью некоторых обзоров.Но поскольку некоторые из более подробных обзоров насоса казались правдоподобными, я пошел на это и очень рад, что сделал.

Предыстория:
Я никогда раньше не владел автоматическим насосом и, честно говоря, был удивлен, что этот насос не продавался по более высокой цене.
Раньше у меня был ручной насос, но мне никогда не нравились ощущения, и я, кажется, переусердствовал, несмотря на то, что на помпе был датчик.

Отзыв:
Прелесть этого насоса в том, что он поддерживает диапазон всасывания. На выбор предлагается четыре уровня, которые соответствуют диапазону в мбар (33 миллибар ~ 1 дюйм рт. Ст.).

Он качает до тех пор, пока вы не достигнете верхнего предела выбранного уровня, а затем очень медленно ослабит всасывание, пока вы не достигнете нижнего порога диапазона. В это время насос вернется в действие и вернет вас к верхнему пределу и так далее. По моему опыту, эти циклы занимают около 6 минут.

Я считаю, что этот гений, кажется, намного мягче воздействует на пенис, и я обнаружил, что в настоящее время применяется то, что я не обращал внимания на точное отсасывание.

Уровень 1 в основном резервный.Никакой реальной прокачки не будет
Уровень 2 хорош для меня как новичка. Диапазон составляет 125-200 мбар (прибл. 3,7-5,9 дюйма рт.

В первый раз, когда я использовал помпу и установил ее на Уровень 2, помпа сработала, я немного волновался, что она не остановится вовремя. Но это прекратилось прежде, чем случился какой-либо дискомфорт. Когда он достигает максимума, фактически сразу после этого всасывание немного падает, добавляя комфорта.

В качестве бонуса на экране также отображается таймер, поэтому можно легко отслеживать, как долго длился ваш сеанс.Это упрощает безопасное и постепенное увеличение продолжительности с течением времени.

Насос фактически отсоединяется от главного цилиндра, что упрощает очистку.

Устройства сердечной помпы, связанные с серьезными осложнениями у некоторых пациентов вскоре после процедуры стентирования сердца

Посетите новостной центр

Требуются дополнительные данные о вспомогательных устройствах для желудочков Impella

Getty Images

У тяжелобольных пациентов, которым требуется сердечный насос для поддержки кровообращения в рамках процедуры стента, проведен большой анализ данных, проведенный Медицинской школой Вашингтонского университета в Санкт-Петербурге.Луи обнаружил связь между серьезными осложнениями и использованием сердечных насосов Impella.

Согласно новому исследованию, проведенному кардиологами из Медицинской школы Вашингтонского университета в Сент-Луисе, у тяжелобольных пациентов, которым требуется сердечный насос для поддержки кровообращения в рамках процедуры стента, определенные сердечные насосы были связаны с серьезными осложнениями.

Хотя обсервационное исследование не доказывает, что сердечные насосы — вспомогательные устройства для желудочков — являются причиной осложнений, оно предполагает, что при нынешних моделях практики существует связь между использованием помп и повышенным риском кровотечения, проблемами с почками. , инсульт и смерть у пациентов, перенесших процедуры стентирования.Авторы исследования призывают к дополнительным исследованиям по оценке сердечных насосов, продаваемых под торговой маркой Impella.

Результаты исследования будут представлены 17 ноября на научных сессиях Американской кардиологической ассоциации 2019 в Филадельфии и одновременно опубликованы в журнале Circulation.

После статистической корректировки определенных переменных исследователи обнаружили повышенный риск смерти, кровотечения, острого повреждения почек и инсульта среди пациентов, которые все еще находились в госпитале после получения насосов Impella, по сравнению с баллонными насосами.В частности, использование насоса Impella было связано с повышенным риском смерти на 24% по сравнению с баллонным насосом и на 34% повышенным риском инсульта по сравнению с баллонным насосом. Оба эти различия статистически значимы. Ни в одной категории помпа Impella не ассоциировалась с улучшенными результатами.

«Эти результаты заслуживают более внимательного изучения, чтобы попытаться лучше понять связь между устройством и его осложнениями», — сказал ведущий автор исследования Амит П. Амин, доктор медицины, кардиолог Вашингтонского университета и доцент медицины, который представляет данные.«Они предполагают, что, возможно, для этой тяжелобольной группы необходим более взвешенный подход — тот, который уравновешивает риски и выгоды. Эти данные являются наблюдательными, поэтому они не могут доказать причинно-следственную связь. Но они подчеркивают необходимость крупных рандомизированных клинических испытаний и проспективных регистров, чтобы лучше понять и направить использование устройств поддержки сердца ».

Исследователи проанализировали данные из базы данных Premier Healthcare, которая включала информацию о 48000 пациентов, пролеченных в 432 U.С. больницы. Каждому пациенту в исследовании была сделана процедура стента сердца, которая включает открытие заблокированной артерии в сердце для улучшения кровотока. Некоторые пациенты, перенесшие процедуру стента, серьезно больны, часто у них есть другие заболевания, включая сердечную недостаточность, низкое кровяное давление, сложные закупорки и другие сердечные проблемы, которые могут побудить врачей принять решение о добавлении механического вспомогательного устройства во время процедуры, чтобы помочь сердцу перекачивать кровь. больший объем крови. Из пациентов в этом исследовании чуть менее 10% (4782 пациента) получили сердечный насос Impella.Остальным 90% (43 524 пациента) была установлена ​​внутриаортальная баллонная помпа.

Большинству пациентов, которым выполняется установка стента, не требуется вспомогательное устройство для желудочков. Это исследование сосредоточено на небольшом сегменте (примерно от 3% до 5%) пациентов, перенесших процедуры стента по поводу более серьезных проблем с сердцем, таких как сложные закупорки, сердечная недостаточность или кардиогенный шок, при котором сердце теряет способность перекачивать достаточное количество крови — и нуждаются в вспомогательном желудочковом аппарате. Большинство пациентов получают внутриаортальный баллонный насос, который ритмично надувает и спускает воздух в соответствии с естественным ритмом сердца, помогая проталкивать кровь по сосудам.Эти насосы используются с 1960-х годов. Но с 2008 года все больше и больше пациентов получают недавно одобренные насосы Impella с небольшими роторами, которые создают непрерывный поток крови.

Данные получены от пациентов, пролеченных с 2004 по 2016 год. Насос Impella был введен в клиническую практику в 2008 году, что позволяет проводить сравнения за периоды времени до и после того, как этот тип помпы начал использоваться. Использование импеллы неуклонно увеличивалось с примерно 1% пациентов, получавших помпу в 2008 году, до почти 32% всех пациентов в 2016 году, перенесших процедуры стента с поддерживающими устройствами.

Исследователи также обнаружили большие различия в том, как часто в больницах используются насосы Impella. Больницы, которые чаще использовали насосы Impella, имели более высокие неблагоприятные исходы, а также более высокие затраты, связанные с уходом за этими пациентами, несмотря на контроль клинических факторов. Исследователи проанализировали возможность того, что более тяжелые пациенты с большей вероятностью получат помпу Impella, что, возможно, объясняет, по крайней мере, часть этой связи. Вместо этого они обнаружили тенденцию к снижению использования Импеллы среди более тяжелых пациентов.

Авторы предупреждают, что у этого наблюдательного исследования есть ограничения, такие как предпочтение врачом использования импеллы или баллонных насосов или невозможность учесть факторы, которые не были измерены в наблюдательном исследовании. Но поскольку большинство данных свидетельствуют об отсутствии улучшения результатов, связанных с использованием помпы Impella, а также о серьезных осложнениях, Амин и его коллеги призывают к более определенным исследованиям, чтобы лучше понять соответствующую роль устройств поддержки кровообращения в клинической практике.

«Эти механические поддерживающие устройства являются инновационными и могут эффективно перекачивать кровь в организм, но в этом исследовании мы не обнаружили связи с улучшенными результатами с насосами Impella», — сказал Амин. «Это требует дополнительных исследований, чтобы мы могли понять, какие пациенты могут получить пользу от этих вспомогательных сердечных устройств, а у каких с большей вероятностью возникнут проблемы».

Доктор Амин получил награду за развитие карьеры в рамках исследования сравнительной эффективности KM1 по программе Премии клинических и трансляционных наук (CTSA) Национального центра развития трансляционных наук Национальных институтов здравоохранения, номера грантов UL1TR000448, KL2TR000450 и TL1TR000449; Национальный институт рака при Национальных институтах здоровья, грант № 1KM1CA156708‐01; награда AHRQ R18, номер гранта R18HS0224181‐01A1; и неограниченный грант от MedAxiom Synergistic Healthcare Solutions Austin, TX.

Amin AP и др. Развивающийся ландшафт использования Impella в США среди пациентов, перенесших чрескожное коронарное вмешательство с механической поддержкой кровообращения. Тираж. 17 ноября 2019 г.

Медицинский факультет Вашингтонского университета состоит из 1 500 врачей-преподавателей, которые также являются медицинским персоналом детских больниц Барнс-Еврей и Сент-Луис. Медицинский факультет является лидером в области медицинских исследований, обучения и ухода за пациентами, входя в десятку лучших медицинских школ страны по версии У.S. News & World Report. Медицинская школа связана с BJC HealthCare через свои связи с больницами Barnes-Jewish и St. Louis Children’s.

Вспомогательное устройство для желудочков | NHLBI, NIH

Эти устройства могут поддерживать функцию левого, правого или обоих желудочков сердца. Желудочки — это нижние камеры вашего сердца. VAD включает в себя трубки для отвода крови от сердца к кровеносным сосудам, источник питания и блок управления для контроля работы устройства.Устройство можно использовать для поддержки вашего сердца до тех пор, пока оно не выздоровеет, для поддержки вашего сердца, пока вы ждете пересадки сердца, или для того, чтобы помочь вашему сердцу работать лучше, если вы не имеете права на пересадку сердца.

Для подключения VAD к сердцу требуется операция. Операция будет проводиться в больнице. Вам будет проведена общая анестезия, и вы не будете бодрствовать и не будете чувствовать боли во время операции. Вы получите лекарство от свертывания крови через внутривенную (IV) трубку в руку.Дыхательная трубка, подключенная к аппарату ИВЛ, поможет вам дышать. Хирург откроет вам грудную клетку и подключит артерии и вены вашего сердца к аппарату искусственного кровообращения. Хирург поместит помпу в верхнюю часть брюшной стенки и подключит помпу к сердцу с помощью трубки. Другая трубка подключит помпу к одной из ваших главных артерий. VAD будет подключен к блоку управления и источнику питания вне вашего тела. Когда аппарат искусственного кровообращения выключен, VAD поддерживает кровоток и берет на себя насосную функцию вашего сердца.

После операции вы выздоровеете в отделении интенсивной терапии (ICU) и сможете оставаться в больнице от двух до восьми недель. Персонал больницы поможет вам постепенно увеличивать активность, чтобы набраться сил. Вы можете начать программу кардиологической реабилитации. Ваша медицинская бригада будет внимательно следить за признаками инфекции. Чтобы предотвратить заражение, важно соблюдать правила гигиены, делать обычные вакцины, а также правильно чистить устройство и отверстие в брюшной полости и ухаживать за ним. Вам будут даны инструкции, что делать, если устройство выдает предупреждение о том, что оно работает некорректно.Если вы находитесь в очереди на пересадку сердца, вы будете поддерживать тесный контакт с центром трансплантации.

Получение VAD сопряжено с серьезными рисками, такими как образование тромбов и кровотечение в результате операции или вызванных лекарствами, препятствующими свертыванию крови. Другие риски включают инфекцию, неисправность устройства и правостороннюю сердечную недостаточность, если использовалась левая VAD. Поскольку кровь имеет тенденцию к большему свертыванию при контакте с VAD, вам, вероятно, придется принимать лекарства против свертывания крови, пока у вас есть устройство.Важно принимать лекарства точно так, как прописал врач, чтобы предотвратить образование тромбов.

Посетите желудочковое вспомогательное устройство для получения дополнительной информации по этой теме.

Рецидив тромбоза помпы является обычным явлением после замены вспомогательного устройства левого желудочка с осевым непрерывным потоком

У отдельных пациентов с инфекцией или неисправностью, связанной с вспомогательным устройством левого желудочка, замена помпы может стать необходимой после того, как консервативные варианты лечения не работают и трансплантация сердца становится недоступной.Мы изучили выживаемость и частоту осложнений у пациентов (≥19 лет), которые прошли замену HeartMate II на HeartMate II в нашем учреждении с 1 января 2010 г. по 28 февраля 2018 г. Клинические результаты были проанализированы и сравнены для пациентов, перенесших замену на тромбоз помпы. (14 пациентов), нарушение целостности трансмиссии (5 пациентов) и инфекция, связанная с устройством (2 пациента). Не было различий в 30-дневной смертности (p = 0,58), необходимости во временной заместительной почечной терапии (p = 0.58), механическая поддержка правого желудочка (p = 0,11) и послеоперационный инсульт (p = 0,80) среди групп. Выживаемость через 1 год составила 90% ± 7% для всей когорты и 85% ± 10% для тех, кто перенес обмен на тромбоз помпы. У пациентов, которых заменили на тромбоз устройства, отсутствие повторного тромбоза и выживаемость без повторного тромбоза помпы через 1 год составили 49% ± 16% и 42% ± 15%, соответственно. Связи демографических и клинических переменных с риском рецидивирующего тромбоза помпы после первой замены выявлено не было.Выживаемость после замены вспомогательного устройства для левого желудочка хорошо сопоставима с опубликованными результатами после имплантации вспомогательного устройства для левого желудочка. Однако рецидив тромбоза был обычным явлением среди пациентов, которым потребовалась замена вспомогательного устройства левого желудочка из-за тромбоза помпы. В этой подгруппе следует рассмотреть альтернативные стратегии для улучшения результатов.

Ключевые слова: Кровяной насос; осевой поток; центробежный поток; поддержка кровообращения; экстракорпоральное жизнеобеспечение; желудочковое вспомогательное устройство.

Насос | инженерия | Британника

Полная статья

Насос , устройство, расходующее энергию для подъема, транспортировки или сжатия жидкостей. Самые ранние насосы были устройствами для подъема воды, такими как персидские и римские водяные колеса и более сложный винт Архимеда ( q.v. ).

Горные работы в средние века привели к развитию всасывающего (поршневого) насоса, многие типы которого описаны Георгиусом Агриколой в книге De re Metallica (1556).Всасывающий насос работает при атмосферном давлении; когда поршень поднимается, создавая частичный вакуум, внешнее атмосферное давление заставляет воду попадать в цилиндр, откуда она выходит через выпускной клапан. Одно только атмосферное давление может поднять воду на максимальную высоту около 34 футов (10 метров), поэтому силовой насос был разработан для осушения более глубоких шахт. В силовом насосе ход поршня вниз выталкивает воду через боковой клапан на высоту, которая просто зависит от силы, приложенной к поршню.

Классификация насосов.

Насосы классифицируются по способу передачи энергии жидкости. Основными методами являются (1) объемное смещение, (2) добавление кинетической энергии и (3) использование электромагнитной силы.

Жидкость может быть вытеснена механически или с использованием другой жидкости. Кинетическая энергия может быть добавлена ​​к жидкости либо путем ее вращения с высокой скоростью, либо путем создания импульса в направлении потока. Чтобы использовать электромагнитную силу, перекачиваемая жидкость должна иметь хороший электрический провод.Насосы, используемые для транспортировки или нагнетания газов, называются компрессорами, нагнетателями или вентиляторами. Насосы, в которых перемещение осуществляется механически, называются объемными насосами прямого вытеснения. Кинетические насосы передают кинетическую энергию жидкости с помощью быстро вращающейся крыльчатки.

Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

Вообще говоря, поршневые насосы прямого вытеснения перемещают относительно небольшие объемы жидкости при высоком давлении, а кинетические насосы перемещают большие объемы при низком давлении.

Требуется определенное давление, чтобы заставить жидкость течь в насос, прежде чем можно будет добавить дополнительное давление или скорость. Если давление на входе слишком мало, возникнет кавитация (образование пустого пространства в насосе, которое обычно занято жидкостью). Испарение жидкости во всасывающей линии — частая причина кавитации. Пузырьки пара, попадающие в насос вместе с жидкостью, схлопываются, когда попадают в область с более высоким давлением, что приводит к чрезмерному шуму, вибрации, коррозии и эрозии.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *