8 самых известных типов двигателей в мире и их отличия
После прочтения нашего обзора вы будете понимать, как работают восемь типов двигателей в мире.
Двигатель – это агрегат, который может преобразовать одну энергию в механическую. В эту категорию входит множество видов двигателей, начиная от паровых (двигатели внешнего сгорания) и электрических и заканчивая двигателями внутреннего сгорания (бензиновые, дизельные моторы и т. д.). Мы покажем вам восемь самых известных в мире двигателей, а также просто и интуитивно понятно расскажем вам, как они работают, описав принципы их работы.
1. Оппозитный двигатель
В горизонтально противоположном двигателе (оппозитном) поршни двигаются по обеим сторонам коленчатого вала влево и вправо в горизонтальном направлении. В этом случае высота двигателя уменьшена. За счет использования оппозитного двигателя уменьшается центр тяжести транспортного средства – автомобиль движется более плавно. Крутящий момент, создаваемый поршнями с обеих сторон, компенсирует друг друга, значительно уменьшая вибрацию транспортного средства во время движения.
Двигатели с горизонтальным ходом поршней использует компания Porsche почти во всех моделях. Но, например, в Porsche Cayenne и Panamera оппозитные двигатели не применяются.
2. Рядный двигатель
В рядном двигателе все его цилиндры расположены рядом друг с другом в одной плоскости. Конструкция цилиндров и коленвала довольно-таки проста. Головка блока цилиндров имеет небольшую стоимость при изготовлении. Также рядные двигатели отличаются высокой стабильностью, характеристиками крутящего момента на низких оборотах, низким расходом топлива и компактным размером. Рядные двигатели обычно обозначаются латинской буквой «L-n», где n – количество цилиндров рядного двигателя. Современные автомобили в основном имеют двигатели с обозначением L3, L4, L5, L6.
3. Двигатель V-типа (V-образный силовой агрегат)
V-образный двигатель разделяет все цилиндры на две группы друг напротив друга под определенным углом. В итоге мотор образует плоскость под углом. Если посмотреть на этот тип двигателя со стороны, то он будет иметь V-образную форму. V-образные двигатели имеют небольшую высоту и длину. Этот тип моторов удобнее размещать в автомобиле по сравнению с обычными рядными моторами, которые по своим размерам гораздо больше.
В настоящее время во многих автомобилях среднего и люкс-класса используются V-образные двигатели. Чаще всего это 6-цилиндровые силовые агрегаты. Например, такие двигатели стоят на Volkswagen Passat, Audi A6 и Mercedes E-класса AMG.
4. Квазитурбинный двигатель
Квазидвигатель представляет собой модифицированный двигатель, основанный на роторном силовом агрегате. Если в обычном роторном двигателе задействованы три лопасти, то квазидвигатель использует цепной ротор, состоящий из четырех частей. Это беспоршневой роторный мотор с ромбовидным ротором. Преимущество двигателя: это новый тип двигателя небольшого размера, с высокой мощностью, высоким крутящим моментом, который может работать на множестве источников энергии.
В настоящий момент квазидвигатель не используется ни на одном автомобиле, поэтому невозможно проверить, подходит ли он для замены обычных поршневых двигателей внутреннего сгорания или в качестве лучшей альтернативы обычным роторным моторам. Квазидвигатель все еще находится в стадии создания прототипа.
5. Роторный двигатель
Внутреннее пространство корпуса роторного двигателя всегда разделено на три рабочие камеры. Во время движения ротора объем трех рабочих камер постоянно изменяется. Двигатель также имеет четыре такта: впуск, сжатие, сгорание и выпуск последовательно завершаются в циклоидальном цилиндре.
Роторный двигатель сильно отличается от обычных поршневых двигателей внутреннего сгорания. Себестоимость производства роторных моторов существенно больше, также как и их последующее обслуживание и ремонт. Кроме того поршневой двигатель по сравнению с роторным эффективней с точки зрения мощности, веса, выбросов и энергопотребления.
В сочетании с этим, а также в связи со странности технологий роторного двигателя, крупные автомобильные компании пришли к выводу, что использование роторных силовых агрегатов в автопромышленности бессмысленно. Так как роторные моторы не показали своих преимуществ перед обычными, у автомобильных компаний не появилось энтузиазма по их дальнейшей разработке. Только компания Mazda до сих пор тратит огромные деньги на разработку новых поколений роторных моторов.
6. Двигатель Green Steam
Green Steam – эффективный, экономичный и простой двигатель, разработанный изобретателем Робертом Грином из Лагуна Вудс, Калифорния, США. Этот мотор преобразует избыточное тепло в водяной пар, который и приводит в движение силовой агрегат. Легкий и компактный двигатель Green Steam преобразует возвратно-поступательное движение во вращательное. Его основной характеристикой является гибкий вал, который передает возвратно-поступательное движение от поршней к кривошипу «Z», таким образом, совершая вращательное движение, не используя запястья, шатуны или коленчатые валы.
Этот мотор может использоваться для воздушных насосов, генераторов, водяных насосов, воздуходувок горячего воздуха, аппаратов дистилляции воды, тепловых насосов, кондиционеров, модельных самолетов и т. д.
Одним из наиболее уникальных преимуществ двигателя является его способность генерировать энергию из тепла двигателей. По существу, отработанное тепло выхлопных газов от двигателя транспортного средства может быть преобразовано в энергию, используемую для некоторых систем охлаждения и насосов транспортного средства. Этот двигатель повысит уровень эффективности любого транспортного средства или системы машины, на которой он установлен.
7. Двигатель Стирлинга
Двигатель Стирлинга относится к типам силовых агрегатов внешнего сгорания. Основан на периодическом нагреве и охлаждении рабочего тела с извлечением энергии из возникающего при этом изменении давления. Принцип работы двигателя Стирлинга заключается в постоянном сжатии рабочего цилиндра, в результате чего происходит нагревание его внутренней части, а затем охлаждение. Из-за перепада давления из цилиндра извлекается энергия, образуемая при изменении давления. Обычно в качестве рабочего тела используется водород или гелий. Но чаще в таких моторах используется воздух.
Двигатели Стирлинга отлично подходят для преобразования тепла в электроэнергию. Например, многие специалисты считают, что эти моторы подходят для солнечных электрических установок.
То есть это идеальные силовые агрегаты для преобразования солнечной энергии в электричество.
8. Радиальный двигатель (звездообразный)
Звездообразный двигатель представляет собой поршневой двигатель внутреннего сгорания, в котором цилиндры расположены вокруг коленчатого вала. Один поршень соединен с коленвалом через главный шатун. Остальные поршни прикреплены через шатуны к кольцам главного ведущего шатуна.
Двигатель преимущественно создан для использования в самолетах. До появления реактивных двигателей в большинстве поршневых авиационных двигателей использовались подобные звездообразные конструкции силовых агрегатов. Эти моторы, как правило, устанавливались на самолеты небольшой дальности. Остальные самолетные моторы имели V-образную форму.
Некоторые современные легкие самолеты до сих пор оснащаются радиальными моторами.
Ряд компаний продолжает строить радиальные системы сегодня. Например, вот современный авиационный радиальный 9-цилиндровый двигатель Веденеев мощностью 360–450 л. с., который в настоящий момент используется на самолетах Яковлева и Сухого.
Типы расположения двигателей автомобилей | Интересные факты
Поперечное и продольное расположение двигателей: За и против
Поперечный тип установки автомобильных моторов доминирует в современном автомобильном конструировании, однако, по мнению некоторых специалистов, именно продольно расположенные двигатели обеспечивают максимальную производительность. Каково же соотношение этих двух видов расположения силовых агрегатов друг по отношению к другу?
Стоит отметить, что помимо технических характеристик и показателей эффективности работы, способ ориентации двигателя в подкапотном пространстве автомобиля оказывает немалое влияние и на дизайн машины. Разрабатывая автомобильный двигатель, инженеры должны ответить одновременно на несколько вопросов: как устанавливать мотор, если модель машины будет заднеприводной? Каким образом организовать свободное пространство для остальных узлов и агрегатов, размещающихся под капотом автомобиля? Какую нагрузку окажет масса мотора на кузов машины?
Смотрите также: История развития бензиновых двигателей внутреннего сгорания
Другим весьма существенным моментом будет вопрос агрегатирования с разрабатываемым двигателем уже существующих трансмиссий. Ведь от этого будет зависеть общее впечатление от способностей автомобиля.
Рассматривая переднеприводные автомобили с любой из возможных ориентаций двигателей (поперечной или продольной), можно сказать, что у каждого из них имеются определенные преимущества и недостатки, влияющие как на управление автомобилем, так и на его технические характеристики. Оценка совокупности всех особенностей и является основой для выбора разработчиками той или иной модели автомобиля.
Двигатели с поперечным типом расположения
Двигатели, обладающие поперечным типом расположения в подкапотном пространстве, устанавливают перпендикулярно относительно направления движения. Такие моторы обладают горизонтальным расположением в моторном отсеке. Поперечно устанавливаемые двигатели, как правило, применяют в конструкциях переднеприводных автомобилей с передним расположением силовых агрегатов.
Началом эры моторов с поперечным типом расположения принято считать период конструирования первых моделей Mini. Конструкторы британского бренда одними из первых при помощи тяг обеспечили передачу момента от двигателя к колесам. Таким революционным решением была решена задача максимально эффективно использовать крошечное по меркам того времени подкапотное пространство автомобиля, наделив его довольно мощным мотором.
При помощи поперечной компоновки мотора инженерам Мини удалось втиснуть двигатель с относительно большим рабочим объемом в моторный отсек компактной городской машины. Впрочем, на полноценных суперкарах поперечная компоновка двигателя использовалась довольно редко. Одной из немногих моделей класса суперкаров с двигателем, установленным поперечно, является Lamborgini Miura.
Одной из главных особенностей «поперечных» моторов называют разную длину валов привода, передающих моторную тягу от двигателя к колесам. Дело в том, что конструкторам пришлось устанавливать коробку передач с одной стороны от двигателя, расположенного по центру моторного отсека, в связи с чем валы приводы, установленные через ШРУСы (шарниры равных угловых скоростей) должны быть разной длины, что сказывается на равномерности износа этих элементов. В отличие от поперечно устанавливаемых силовых агрегатов, при продольном расположении двигателя валы привода имеют одинаковую длину, ведь здесь двигатель и коробка передач устанавливаются «друг за другом» по одной осевой линии.
Поперечная компоновка силового агрегата быстро стала нормой при конструировании компактных городских автомобилей массовых брендов. Обычно поперечно устанавливаемые двигатели имеют относительно небольшой рабочий объем и не более четырех цилиндров. Впрочем, некоторые автопроизводители используют поперечную компоновку для шести- и даже восьмицилиндровых моторов. В этом случае, как правило, применяется V-образное их расположение.
Главная причина широкого распространения поперечного расположения двигателей – максимальная эффективность использования моторного отсека при небольшом шасси и общих габаритах автомобиля. Установив двигатель в подкапотном пространстве поперечно, разработчик получает значительно больше свободного пространства для компоновки и оформления салона при одинаковых внешних габаритах с автомобилем, где мотор устанавливают вдоль. Особенно ценно такое качество машины в условиях городской эксплуатации с минимальным количеством свободного пространства для парковки.
Сюда же стоит добавить переднеприводный тип трансмиссии, исключающий организацию центрального тоннеля в салоне автомобиля для карданного вала. Плоский пол и максимально просторный салон – одни из ключевых элементов комфорта и эргономики современных компактных автомобилей для города.
Установленный спереди поперечно двигатель оказывает определенное влияние и на характеристики динамики движения машины. На автомобилях с подобной компоновкой основная часть массы всего автомобиля приходится на переднюю колесную ось и переднюю подвеску. Таким образом инженеры решают одну из главных задач, заключающуюся в обеспечении тяги на ведущие колеса с минимальными потерями.
Кроме того, такие автомобили более прогнозируемы и послушны в управлении на скользком покрытии. А отсутствие дополнительных компонентов трансмиссии не только позволяет уменьшить общую массу автомобиля, но и снижает себестоимость производства модели в целом.
К сожалению, у образцов моделей с поперечным расположением силового агрегата есть вполне конкретные недостатки. Так, для моторов такого типа противопоказано увеличение показателя крутящего момента. Это обусловлено все той же разницей размеров тяг. Углы падения для двух разновеликих валов будут различными, а чем длиннее вал, тем будет меньше его показатель жесткости на кручение. В свою очередь, это провоцирует падение эффективности передачи тяги от двигателя к колесам и вызывая необходимость подруливания.
В борьбе с такой особенностью разработчикам пришлось прибегнуть к определенных инженерным уловкам. Так, например, одним из способов уравновешивания показателя «крутильной жесткости» является изготовление одного из валов полым, а другого – сплошным. Подобное решение призвано сбалансировать передачу крутящего момента разновеликим валами. Первыми, кто воплотил такую инженерную задумку в реальность, стали инженеры концерна Ford при разработке одной из первых поколений хэтбека Fiesta.
Помимо указанного инженерного недостатка, поперечное расположение автомобильного двигателя имеет и более банальные минусы. Такие моторы жестко ограничены с точки зрения возможности перемещения их в моторном отсеке, поскольку занимают максимально возможное пространство с обеих сторон от внутренних поверхностей передних крыльев машины. Да и возможность увеличения мощности поперечно ориентированного мотора совсем невелика. Именно поэтому некоторые производители спорткаров, выбравших подобный тип расположения мотора у своего автомобиля, предпочитают среднемоторный вариант установки силового агрегата.
Двигатели с продольным типом расположения
Продольная компоновка силовых агрегатов в настоящее время, как правило, используется для заднеприводных автомобилей. Смонтированные точно по осевой линии машины, «продольные» моторы обеспечивают прямой путь вырабатываемой тяги от коленчатого вала к коробке передач.
Турбонаддув: принцип действия, достоинства, недостатки
Еще одним плюсом «продольных» моторов является меньший в сравнении с поперечно ориентированными аналогами уровень вибраций, вызываемых работой мотора. Однако несмотря на, казалось бы, максимально эффектную передачу мощности мотора, с инженерной точки зрения с продольно ориентированными моторами тоже не все так просто. В первую очередь, трудности возникают именно с реализацией эффективности тяги. Ведь энергия вращения от «продольного» мотора должна поменять направление на 90 градусов, а для этого приходится применять дифференциальный колесный привод. Для двигателя продольной компоновки требуется заметно больше места в моторном отсеке, ввиду чего нередко страдает эргономика и удобство салона машины.
На современных автомобилях продольное расположение мотора используется обычно при конструировании спорткаров с приводом на заднюю ось (как правило, для таких машин используется заднемоторная или среднемоторная компоновка), нередко продольно установленный двигатель можно встретить и под капотом большого полноприводного внедорожника. Это объясняется более широкими возможностями, которые предоставляет продольно ориентированный двигатель для реализации полноприводного функционала при помощи вязкостной муфты и дифференциала Торсен.
Технологии для новичков: В чем разница между полным приводом, задним приводом и передним приводом
Подводя итог, необходимо сказать, что безусловного противопоставления двух представленных типов расположения двигателя быть не может. Ведь помимо типа установки агрегата в моторном отсеке на эффективность автомобиля в целом влияют такие факторы, как тип привода, передне- задне- или среднемоторное расположение двигателя. Очевидно, что наличие карданного вала в совокупности с тем или иным типом привода обеспечивает совершенно разное «поведение» автомобиля на дороге.
Другой немаловажный фактор для оценки эффективности типа расположения мотора – габариты автомобиля. Так, для компактных городских машин поперечная установка мотора будет наиболее оптимальной.
Автор: Сергей Василенков
Типы электродвигателей. Какие бывают электродвигатели
Современный мир сложно представить без электродвигателей. Экологичные, эффективные, компактные моторы устанавливают в автомобильный и железнодорожный транспорт, станки, бытовое и промышленное оборудование, инструмент. При выборе модели электродвигателя учитывают конструктивные особенности, от которых зависят мощностные характеристики электропривода, уровень производимого шума, эксплуатационные характеристики.
Что такое электродвигатель
По сути, это машина, преобразующая электрическую энергию в механическую. Происходит вращение электрического контура в магнитном поле под силой магнитной индукции. Из определения понятно, что в каждом из двигателей имеется:
- неподвижный элемент, называемый статором, он создаёт электромагнитное поле;
- подвижная конструкция (ротор) – это рамка или катушка, на которую действует вращательный момент магнитного поля.
Движение ротора относительно статора бывает:
- линейным, вернее, возвратно-поступательным, в этом случае ротор и статор располагаются в одной плоскости;
- вращательным, механическое усилие можно измерить числом оборотов в минуту.
Имея одинаковый принцип преобразования энергии, электродвигатели различаются строением роторной и статорной части, способу создания электромагнитного поля.
Какие бывают электродвигатели
Все электроприводы классифицируют на две основные группы по типу электропитания: работающие от постоянного и переменного тока:
- Двигатели постоянного тока устанавливаются на транспорт, буровые установки, грузовые подъёмники, пассажирские лифты, электроинструмент, станки, экскаваторы, другую спецтехнику, где необходимо регулировать скорость вращения приводного вала в большом диапазоне. Моторы отличаются высоким КПД, большой мощностью, нагружаемостью, обычно оснащаются электроникой для управления.
- Двигатели переменного тока считаются универсальными, по конструкции проще, чем электродвигатели постоянного тока, надёжны, неприхотливы. В бытовой и промышленной технике, где постоянная нагрузка, устанавливают практичные приводы переменного тока.
Наибольшей популярностью пользуются приводы, подключаемые к стандартной электросети.
Двигатели постоянного тока
Классифицируются по типу коллекторно-щеточного узла и характеру возбуждения.
- В коллекторных переключение полярности обмоток осуществляется специальным механизмом с контактными щётками, которые быстро изнашиваются, перегреваются, обгорают. К тому же при использовании щёточных контактов возникают искры и электропомехи.
- В бесколлекторных происходит самосинхронизация частотности крутящего момента, электродвигатели более экономичные, в них нет щёточных контактов.
- При независимом возбуждении контакты обмотки подключаются к аккумулятору или выпрямителю. Скорость вращения рамки регулируется реостатом, вмонтированным в обмотки возбуждения. Двигатели рассчитаны на небольшую нагрузку, при резком снижении сопротивления выходят из строя.
- Параллельное подключение ротора и обмотки, возбуждающей электромагнитное поле, практикуется в приводах с жёсткими режимами эксплуатации за счёт разницы силы тока в обмотке и якоре. Двигатель подключают к вентиляторам, продолжительно работающим станкам.
- Двигатели с последовательным возбуждением рекомендуются для электротранспорта. Электродвигатель запускается только под нагрузкой, не работает на холостых оборотах.
- Смешанное возбуждение подразумевает монтаж двух обмоток на каждом из полюсов. Отличительный признак такого двигателя – реверсивное движение при смене полярности. Для регулировки в электросхему включают резисторы.
- Серводвигатели действуют по принципу использования отрицательной обратной связи, способны выдавать высокие обороты. Разработаны для поточных линий, высокопроизводительных станков.
- Линейные двигатели с возвратно-поступательным движением ротора устанавливаются в прессах, молотах, механизмах подачи. Помогают избежать установки передаточных устройств, червячных передач.
Коллекторно-щёточные узлы в современных моделях модифицированы, для контактов используют износостойкие композиты.
Двигатели переменного тока
Широкий модельный ряд включает моторы, работающие от однофазной и трёхфазной электрической сети.
Основные виды:
- Синхронные отличаются одинаковой частотой вращения магнитного момента и рамки, поэтому работают с постоянной скоростью. Приводы подключают к нагнетателям, компрессорному оборудованию, насосам.
- В асинхронных разная частота вращения создаётся за счёт фазного и короткозамкнутого подключения возбуждающих обмоток и ротора. За счёт частотной разницы можно регулировать скорость вращения приводного вала.
- Шаговые двигатели преобразуют электроимпульсы дискретно, с определённым шагом. Моторы при незначительных размерах характеризуются высокой продуктивностью. Устанавливаются в процессорные вентиляторы, другую офисную технику.
Зная особенности электродвигателей, можно выбрать надёжную бытовую технику или электроинструмент.
Типы асинхронных двигателей. Асинхронный двигатель – что это такое
Индукционные или асинхронные машины занимают большую часть производства двигателей в современном мире. Они являются ключевыми преобразователями электрической энергии используются при производстве современных промышленных и бытовых приборов.
Асинхронный двигатель – что это такое
Это электродвигатель переменного тока, который работает за счёт вращения магнитного поля статора; у такого аппарата частота вращения поля не равна частоте вращения ротора. Разницу между этими двумя скоростями часто называют скольжением. Сам мотор состоит из сердечника, обмоток (от 1 до 3), статора и ротора, именно он производит преобразование электроэнергии в механическую.
Сегодня подобные машины очень популярны у производителей, так как они надёжные, прочные, хорошо охлаждаются и могут использоваться как в мощных промышленных конструкциях, так и в небольших бытовых инструментах. При простоте конструкции асинхронных агрегатов они проявляют хорошую устойчивость к скачкам напряжения в сети. Дальнейшее обслуживание индукционных машин очень простое, они достаточно надёжны в эксплуатации. Относительным недостатком асинхронных двигателей можно считать квадратичную реакцию на изменения напряжения сети и короткий пусковой момент.
Какие типы асинхронных двигателей бывают
Различают однофазные, двухфазные и трёхфазные электродвигатели.
Однофазные электродвигатели — самые распространённые в категории. Имеют одну рабочую обмотку, могут функционировать от стандартной сети. Такие агрегаты используют однофазный ток, который запускает вращение вала и ротора электродвигателя. Пазы ротора залиты алюминием, внутри расположен цилиндрический магнитопровод.
Скромные маломощные однофазные машины не могут автоматически начать вращаться, к примеру, от нажатия одной кнопки.
У однофазного двигателя магнитное поле пульсирует, а движение начинается после получения вращения. Именно для старта на статоре существует ещё одна обмотка. Этот тип машин используются при производстве простых маломощных вентиляторов и насосов. Распространённые виды однофазных машин: двигатели со смещённым полюсом, с пусковым конденсатором, с разъединёнными обмотками.
Двухфазный асинхронный двигатель работает на переменном токе. Две перпендикулярные рабочие обмотки, есть фазосдвигающий конденсатор. В результате запуска электродвигателя выделяется вращающееся магнитное поле, упрощающее пуск, гарантирующее стабильные высокие обороты электродвигателя. Двухфазные аппараты — основы производства ряда станков и некоторой бытовой техники.
Трёхфазный двигатель работает на трёх параллельных рабочих обмотках, смещённых относительно друг друга на 120 градусов. Обороты такого двигателя также поддерживаются в стабильном состоянии за счёт сдвинутого в пространстве магнитного поля. Трёхфазная машина прекрасно справляется с перегрузками. Однако, у подобных агрегатов очень сложная система регулировки скорости вращения вала.
Эти мощные конструкции используются преимущественно при производстве промышленного оборудования. Так, на их основе работают циркулярные пилы, лифты домов, лебёдки, сверлильные станки, молотилки, веялки, краны, барабаны комбайнов и многое другое. Среди трёхфазных видов выделяют также подвиды: с фазным ротором и с короткозамкнутым ротором.
В современном производстве индукционных электродвигателей есть тенденция к изготовлению машин узконаправленного назначения, что позволит наиболее продуктивно использовать электроэнергию.
Различные типы двигателей и их применение
При покупке двигателя часто спрашивают, какая технология лучше, переменного или постоянного тока, но на самом деле это зависит от области применения и стоимости.
Двигатели переменного тока
Двигатели переменного токаобладают высокой гибкостью по многим функциям, включая управление скоростью (VSD — приводы с регулируемой скоростью), и имеют гораздо большую установленную базу по сравнению с двигателями постоянного тока, некоторые из ключевых преимуществ:
- Низкое энергопотребление при запуске
- Контролируемое ускорение
- Регулируемая рабочая скорость
- Управляемый пусковой ток
- Регулируемый предел крутящего момента
- Снижение нарушений в ЛЭП
Текущая тенденция для VSD заключается в добавлении дополнительных функций и функций программируемого логического управления (ПЛК), которые являются преимуществами для опытных пользователей, но требуют более высоких технических знаний при обслуживании.
Щелкните здесь, чтобы увидеть пример двигателя переменного тока от RS
Типы двигателей переменного тока включают:
Синхронный
В этом типе двигателя вращение ротора синхронизировано с частотой питающего тока, а скорость остается постоянной при переменных нагрузках, поэтому он идеально подходит для привода оборудования с постоянной скоростью и используется в высокоточных устройствах позиционирования, таких как роботы. , КИПиА
Щелкните здесь, чтобы увидеть пример синхронного двигателя из RS
Индукция (асинхронная)
Этот тип двигателя использует электромагнитную индукцию из магнитного поля обмотки статора для создания электрического тока в роторе и, следовательно, крутящего момента.Это наиболее распространенный тип двигателей переменного тока, который важен в промышленности из-за их нагрузочной способности. Однофазные асинхронные двигатели используются в основном для небольших нагрузок, например, в бытовой технике, тогда как трехфазные асинхронные двигатели чаще используются в промышленных приложениях, включая например, компрессоры, насосы, конвейерные системы и подъемные механизмы.
Нажмите здесь, чтобы увидеть пример асинхронного двигателя RS
Двигатели постоянного тока
Двигатели постоянного токабыли первым широко используемым типом двигателей, и начальные затраты на системы (двигатели и привод), как правило, ниже, чем на системы переменного тока для маломощных блоков, но с более высокой мощностью общие затраты на техническое обслуживание возрастают, и их необходимо учитывать. рассмотрение.Скорость двигателей постоянного тока можно регулировать, изменяя напряжение питания, и они доступны в широком диапазоне напряжений, однако наиболее популярными являются типы 12 и 24 В, с некоторыми из преимуществ:
- Простая установка
- Регулировка скорости в широком диапазоне
- Быстрый запуск, остановка, реверсирование и ускорение
- Высокий пусковой крутящий момент
- Линейная кривая скорость-крутящий момент
Двигатели постоянного тока широко используются и могут применяться от небольших инструментов и бытовой техники до электромобилей, лифтов и подъемников
Щелкните здесь, чтобы увидеть пример двигателей постоянного тока от RS
Два общих типа:
Матовый
Это более традиционный тип двигателя, который обычно используется в чувствительных к стоимости приложениях, где система управления относительно проста, например, в потребительских приложениях и более простом промышленном оборудовании, эти типы двигателей можно разбить на:
- Series Wound — здесь обмотка возбуждения соединена последовательно с обмоткой ротора, а регулирование скорости осуществляется путем изменения напряжения питания, однако этот тип обеспечивает плохое управление скоростью, и по мере увеличения крутящего момента двигателя скорость падает. .Применяется в автомобилях, подъемниках, подъемниках и кранах, поскольку имеет высокий пусковой крутящий момент.
- Шунтирующая обмотка — Этот тип имеет один источник напряжения, а обмотка возбуждения подключена параллельно обмотке ротора и может обеспечивать повышенный крутящий момент без снижения скорости из-за увеличения тока двигателя. Он имеет средний уровень пускового момента при постоянной скорости, поэтому подходит для таких областей применения, как токарные станки, пылесосы, конвейеры и шлифовальные машины.
- Составная обмотка — это совокупность последовательностей и шунтов, где полярность шунтирующей обмотки такова, что она добавляется к последовательным полям.Этот тип имеет высокий пусковой крутящий момент и плавно работает при незначительном изменении нагрузки и используется для привода компрессоров, центробежных насосов с регулируемым напором, роторных прессов, дисковых пил, ножниц, элеваторов и конвейеров непрерывного действия
- Постоянный магнит — Как следует из названия, вместо электромагнита используется постоянный магнит, который используется в приложениях, где требуется точное управление и низкий крутящий момент, например, в робототехнике, сервосистемах.
Бесщеточный
Бесщеточные двигатели устраняют некоторые проблемы, связанные с более распространенными щеточными двигателями (короткий срок службы для интенсивно используемых приложений), и механически намного проще по конструкции (не имеют щеток).Контроллер мотора использует датчики Холла для определения положения роторов, и с их помощью контроллер может точно управлять мотором через ток в катушках ротора) для регулирования скорости. Преимущества этой технологии — долгий срок службы, небольшие затраты на обслуживание и высокая эффективность (85-90%), а недостатками — более высокие начальные затраты и более сложные контроллеры. Эти типы двигателей обычно используются для регулирования скорости и положения с такими приложениями, как вентиляторы, насосы и компрессоры, где требуются надежность и прочность.
Примером бесщеточной конструкции являются шаговые двигатели, которые в основном используются для управления положением без обратной связи, от принтеров до промышленных приложений, таких как высокоскоростное оборудование для захвата и размещения.
Асинхронный двигатель — основные, однофазные и трехфазные асинхронные двигатели
Что такое асинхронный двигатель?
Двигатель только с обмотками армортиссера называется асинхронным. Асинхронный двигатель в большинстве случаев является самой скромной электрической машиной с точки зрения конструкции.Асинхронный двигатель работает по принципу индукции, когда электромагнитное поле индуцируется в роторе, когда вращающееся магнитное поле статора разрезает неподвижный ротор. Индукционные машины на сегодняшний день являются наиболее распространенным типом двигателей, используемых в промышленных, коммерческих или жилых помещениях. Это трехфазный двигатель переменного тока. Его характерные особенности:
- Простая и прочная конструкция
- Низкая стоимость и минимальное обслуживание
- Высокая надежность и достаточно высокий профессионализм
- Не требует дополнительного пускового двигателя и необходимости синхронизировать
Каковы основные части индукционного Мотор?
Асинхронный двигатель в основном состоит из двух частей: статора и ротора.
Статор:
Статор состоит из различных штамповок с пазами для размещения трехфазных обмоток. Он намотан на определенное количество полюсов. Обмотки разделены геометрически на 120 градусов. В асинхронных двигателях используются два типа роторов: ротор с короткозамкнутым ротором и ротор с обмоткой. Для работы машины не требуется постоянного тока возбуждения. Напряжение ротора индуцируется в обмотках ротора, а не физически связано проводами.
Асинхронный двигательРотор:
Ротор — это вращающаяся часть электромагнитной цепи.Самый распространенный тип ротора — это ротор с короткозамкнутым ротором. Ротор состоит из многослойного цилиндрического сердечника с размещенными в осевом направлении параллельными пазами для переноса проводников. Каждый слот имеет стержень из меди, алюминия или сплава. Ротор трехфазных асинхронных двигателей также часто используется в качестве якоря. Целью этого названия является форма якоря роторов, используемых в довольно ранних электрических устройствах. В электрооборудовании обмотка якоря индуцируется магнитным полем, хотя в трехфазных асинхронных двигателях эту роль играет ротор.
Асинхронный двигатель имеет такой же физический статор, что и синхронная машина с альтернативным ротором. Асинхронный двигатель может работать как мотор, так и генератор. С другой стороны, они в основном используются как асинхронные двигатели.
Два типа асинхронных двигателей
Однофазный асинхронный двигатель: Однофазный асинхронный двигатель не запускается автоматически. Когда двигатель подключен к однофазному источнику питания, основная обмотка проходит переменный ток.Логично, что наименее дорогостоящий механизм сортировки с минимальным обслуживанием должен использоваться наиболее регулярно. Они бывают разных типов в зависимости от способа запуска, поскольку они не запускаются автоматически. Это двигатели с расщепленной фазой, с экранированными полюсами и конденсаторные двигатели. И снова конденсаторные двигатели — это конденсаторные пусковые, конденсаторные и постоянные конденсаторные двигатели. Двигатель с постоянным конденсатором показан ниже.
В этих типах двигателей пусковая обмотка может иметь последовательный конденсатор и / или центробежный переключатель.При подаче напряжения питания ток в основной обмотке отстает от напряжения питания из-за полного сопротивления основной обмотки. А ток в пусковой обмотке опережает / отстает от напряжения питания в зависимости от импеданса пускового механизма. Угол между двумя обмотками составляет достаточную разность фаз, чтобы обеспечить вращающееся магнитное поле для создания пускового момента. Момент, когда двигатель достигает от 70% до 80% синхронной скорости, центробежный переключатель на валу двигателя размыкается и отключает пусковую обмотку.Применения однофазных асинхронных двигателей
Они используются в приложениях с низким энергопотреблением и широко используются как в бытовых, так и в промышленных приложениях. И некоторые из них упомянуты ниже
- Насосы
- Компрессоры
- Маленькие вентиляторы
- Миксеры
- Игрушки
- Высокоскоростные пылесосы
- Электробритвы
- Сверлильные станки
Трехфазный индукционный двигатель: Эти двигатели являются самозапускающимися и не используют конденсатор, пусковую обмотку, центробежный выключатель или другое пусковое устройство.Трехфазные асинхронные двигатели переменного тока широко используются в промышленных и коммерческих целях. Они бывают двух типов: двигатели с короткозамкнутым ротором и с контактным кольцом. Двигатели с короткозамкнутым ротором широко используются из-за их прочной конструкции и простой конструкции. Двигателям с контактным кольцом требуются внешние резисторы для обеспечения высокого пускового момента. Асинхронные двигатели
используются в промышленности и бытовых приборах, потому что они имеют прочную конструкцию, не требующую особого обслуживания, что они сравнительно дешевы и требуют питания только на статоре.
Применение трехфазного асинхронного двигателя
- Лифты
- Краны
- Подъемники
- Вытяжные вентиляторы большой мощности
- Приводные токарные станки
- Дробилки
- Маслоэкстракционные мельницы
- Текстиль и др.
Преимущества асинхронного двигателя
Конструкция двигателя и способ подачи электроэнергии дают асинхронному двигателю несколько преимуществ, показанных на рисунке ниже. И давайте посмотрим на них вкратце.
Преимущества асинхронного двигателяНизкая стоимость: Асинхронные машины очень дешевы по сравнению с синхронными двигателями и двигателями постоянного тока. Это связано с скромной конструкцией асинхронного двигателя. Следовательно, эти двигатели в подавляющем большинстве предпочтительны для приложений с фиксированной скоростью в промышленных приложениях, а также для коммерческих и бытовых приложений, где можно легко подключить питание от сети переменного тока.
Низкие затраты на техническое обслуживание: Асинхронные двигатели — это двигатели, не требующие обслуживания, в отличие от двигателей постоянного тока и синхронных двигателей.Конструкция асинхронного двигателя очень проста и, следовательно, проста в обслуживании, что приводит к низкой стоимости обслуживания.
Простота эксплуатации: Работа асинхронного двигателя очень проста, потому что нет электрического соединителя с ротором, который обеспечивает питание и ток, индуцируемый движением трансформатора на роторе из-за низкого сопротивления вращающихся катушек . Асинхронные двигатели — это двигатели с самозапуском. Это может привести к уменьшению усилий, необходимых для обслуживания.
Изменение скорости: Изменение скорости асинхронного двигателя почти постоянно. Скорость обычно изменяется всего на несколько процентов от холостого хода до номинальной нагрузки.
Высокий пусковой момент: Пусковой момент асинхронного двигателя очень высок, что делает двигатель полезным для операций, где нагрузка прикладывается до запуска двигателя. В отличие от синхронных двигателей, трехфазные асинхронные двигатели будут иметь самозапускаемый момент. Однако однофазные асинхронные двигатели не имеют самозапуска крутящего момента и вращаются с помощью некоторых вспомогательных устройств.
Долговечность: Еще одним важным преимуществом асинхронного двигателя является его долговечность. Это делает ее идеальной машиной для многих применений. В результате двигатель работает в течение многих лет без затрат и обслуживания.
Все эти преимущества позволяют использовать асинхронный двигатель во многих приложениях, таких как промышленность, бытовая техника и во многих приложениях.
Проекты на основе асинхронных двигателей
Кредит на фото
Типы электродвигателей для электрических велосипедов
- Начните здесь!
- Свяжитесь с нами
- Подписаться!
- Правила размещения гостей
- Дом
- Покупки
- Лучшие подарки для велоспорта
- Велокомпьютеры
- Сравнение велокомпьютеров Garmin Edge
- Garmin Edge 1000, 820 и 520
- 7 различий между Edge 1000 и 820
- 8 различий между Garmin Edge 820 и 520
- Garmin Edge Bike Computer Обзоры
- Garmin Edge 1000 Обзор
- Garmin Edge 820 Обзор
- Garmin Edge 520 Обзор
- Garmin Edge 25 Обзор
- Обзор туристического навигатора Garmin Edge
- 7 лучших велокомпьютеров
- Лучшие ДЕШЕВЫЕ велокомпьютеры до 50 долларов
- 7 лучших дешевых велокомпьютеров до 70 долларов
- Сравнение велокомпьютеров Garmin Edge
- Моя новая книга! Как купить лучший электрический велосипед
- Лучшее велосипедное снаряжение
- 7 лучших футболок для велоспорта
- Куртки для велоспорта
- 7 лучших водонепроницаемых велосипедных курток
- 7 лучших женских велокурток
- 7 лучших ветрозащитных курток для велоспорта
- 7 самых дешевых велосипедных курток
- 7 лучших водонепроницаемых велосипедных брюк
- 7 лучших велосипедных балаклав
- Магазин велосипедного снаряжения
- Электровелосипеды, книги и запчасти
- Лучшие фитнес-трекеры для велосипедистов
- Рекомендуемое велосипедное снаряжение AJC
- О
- Наша экскурсия по Парижу на электрических велосипедах
- Приглашение на гостевые плакаты
- Techie Stuff
- How Tos для электрических велосипедов
- Как носить с собой бутылку с водой на электрическом велосипеде
- Как определить диапазон электрических велосипедов
- Как установить комплект BionX Electric Assistance Kit
- Как выбрать аккумулятор для электрического велосипеда
- Как работают электрические велосипеды?
- Как выбрать двигатель подходящего размера для электрического велосипеда
- Как правильно выбрать аккумулятор для вашего Ebike
- Старший-тяжеловес построил свой собственный электровелосипед!
- Что такое велосипед Pedelec? Мотор ступицы
- против мотора кривошипа — что лучше для электрического велосипеда?
- Bosch запускает ABS для Pedelecs
- Технология, на основе которой электрические велосипеды
- Типы электровелосипедов
- Типы электродвигателей для электровелосипедов
- How Tos для электрических велосипедов
- отзывов
- Электрические велосипедные туры
- Наша экскурсия по Парижу на электрических велосипедах
- Езда на электровелосипедах Bosch вокруг Цюрихского озера
- Новые электрические велосипеды
- Электровелосипед ампер
- Электровелосипед Spark Отвал
- FLX
- Обзор гибридного электрического велосипеда Cube Elly Ride 400
- Кафе от Vintage Electric Bikes
- Продекотек Страйд 400
Наборы - BionX
- Комплект электрического велосипеда BionX
- Вспомогательные электрические комплекты BionX P 350 DV и BionX P 350 RL
- Haibike Xduro Trekking Pro
- Педаль Easy
- Sunahme Electric B
- Электрические велосипедные туры