Характеристика масел: Классификация моторных масел — маркировка масел SAE, API, ACEA

Содержание

Классификация моторных масел — маркировка масел SAE, API, ACEA

В этой статье мы рассмотрим различные системы классификации моторных масел. За время существования двигателей внутреннего сгорания было разработано огромное количество масел, различающихся как по качеству, так и по сфере применения и особенностям использования. Всё это многообразие требовало какого-то упорядочивания, для чего разными автомобильными организациями и были созданы стандарты, позволяющие классифицировать масла в зависимости от их свойств и назначения. Используя эту информацию, можно с лёгкостью подобрать нужное масло для конкретного двигателя, исходя из рекомендаций производителя автомобиля.

Приведём основные системы классификации моторных масел:

  • во-первых, конечно же, SAE J300 – классификация вязкости моторных масел
  • API – классификация качества, или, вернее сказать, эксплуатационных характеристик масла
  • ACEA – европейская классификация, включающая информацию и о сфере применения масла, и о его качестве
  • ILSAC – японо-американская система оценки эксплуатационных характеристик масла
  • OEM-допуски – требования к маслам автопроизводителей
  • ГОСТ 17479.1-85 – рождённый ещё в СССР, однако действующий и по сей день российский стандарт моторных масел

Как видите, различных спецификаций немало, однако основными являются три из них: SAE, API и ACEA. Давайте разбираться, что же они собой представляют.

Классификация вязкости SAE

Данная классификация моторных масел (кстати, трансмиссионных тоже) во всех подробностях описана в статье о вязкости моторного масла. Здесь же скажу вкратце, что она регулирует (как уже, наверное, стало понятно:)) вязкость моторного масла в трёх основных своих состояниях: при запуске двигателя (холодное масло), при его штатной работе (разогретое масло) и при режиме больших оборотов и нагрузках сдвига, так называемый HTHS (перегретое масло). На канистрах эта классификация имеет вид написания xxW-yy (например, 10W-40), где первое число характеризует минимально необходимые условия для запуска двигателя в холодное время года, а второе означает вязкость при штатном режиме работы. Впоследствии во второе число заложили и требования к работе в «форсированном» режиме. Так сказать, два в одном. В некоторых случаях возможно использование этих чисел по отдельности, например, масло с вязкостью 20W и масло с вязкостью 30. Такие масла называют сезонными (условно, «летними» и «зимними»). Буква W означает как раз winter, «зима» по-английски. Как я уже сказал, для исчерпывающей информации по этой системе классификации читайте статью по ссылке, данной выше.

Классификация API

Эта система характеризует различия в эксплуатационных характеристиках моторных масел. Придумана она была организацией с названием American Petroleum Institute, что и отражено в аббревиатуре. В этой классификации содержится два раздела, в соответствии с типами моторных масел. Масла для бензиновых моторов маркируются буквой S (Service), а для дизелей буквой C (Commercial). Есть мнение, что буква S означает spark, то есть воспламенение от искры, а C – это compression – воспламенение от сжатия. Мне эта версия кажется более обоснованной, однако материалы на официальном сайте API недвусмысленно намекают на первый вариант. А жаль.

Далее идёт буква, означающая соответствующие эксплуатационные характеристики (например, SJ, SL, SM, или СD, CE, CF и так далее). Вторые буквы меняются в зависимости от принятия более жёстких требований к качеству масла, чем ближе к концу алфавита буква, тем масло лучше. Это вполне совпадает с хронологическим порядком разработки масел. Первые масла после появления этой классификации моторных масел были промаркированы как SA и CA. Они не содержали присадок, соответственно, имели крайне невысокие характеристики и подходили для автомобилей ориентировочно до 1930 года выпуска (как раз в 1931 году в масла начали добавлять присадки). Кстати, о присадках подробнее можно почитать в статье про состав моторного масла. Станет понятно, из чего складываются высокие показатели масла в работе.

По мере разработки новых стандартов, предыдущие признаются устаревшими. Например, на сегодняшний день (2015 год) актуальны градации для бензиновых двигателей:

  • SN – наиболее современная градация, представлена в октябре 2010 года. Предусматривает лучшую на сегодняшний день защиту от высокотемпературных отложений на поршнях, образование шлама, совместимость с материалами уплотнений. Обеспечивает экономию топлива и сбережение ресурса двигателя, совместимость с системами контроля вредных выбросов в выхлопе и защиту двигателей, работающих на этанолосодержащем топливе вплоть до E85 (марка такого топлива, где содержится 85% этанола и 15% бензина). Кстати говоря, если кто не в курсе, чем занимается масло в машине, рекомендую почитать статью о свойствах моторного масла.
  • SM – для автомобилей 2010 года выпуска и старше.
  • SL – для автомобилей 2004 года выпуска и старше.
  • SJ – для автомобилей 2001 года выпуска и старше.

Более современная ступень градации может использоваться вместо предыдущих.

Для дизельных двигателей:

  • CJ-4 – наиболее современная градация, также представлена в 2010 году.
  • CI-4 – для автомобилей 2002 года выпуска и старше. Удовлетворяет требованиям 2004 года к содержанию вредных веществ в выхлопных газах.
  • CH-4 – для автомобилей 1998 года выпуска и старше.

Все остальные градации являются устаревшими и могут быть без проблем заменены на актуальные в старых автомобилях.

В основном, выпускаемые моторные масла являются универсальными и спокойно могут использоваться как в бензиновых движках, так и в дизелях. В этом случае на этикетке масла указываются и бензиновые, и дизельные градации API через дробь (например, API SN/CF), причём на первом месте указывается градация основного предназначения масла – бензиновое или дизельное. Соответственно, если масло рассчитано только на один тип двигателя, то и спецификация пишется только на этот тип.

На маслах, сертифицированных API можно увидеть вот такие значки, на которых указывается класс (а можно и не увидеть, это необязательный атрибут).

Да, кого-то, наверное, интересует вопрос, а что же за цифра 4 стоит в обозначении СI-4 и других? А это означает, что масло годится для четырёхтактного дизеля. Соответственно, бывают масла и для двухтактных дизелей, правда, класс у них только один – CF-2 (ну, ещё у него был предшественник CD-II, но это уже тема отдельной «жевательной» статьи по классификации API, для «увлечённых», так сказать:)).

Классификация ACEA

Рассмотренные выше стандарты «родились и выросли» в Америке, что может показаться странным, ведь автомобили-то изобрели в Европе. Вот и европейцам в какой-то момент (а именно в 1972 году) пришло в голову создать организацию, регулирующую околоавтомобильную отрасль производства путём выпуска различных стандартов. Скрывалась эта организация за аббревиатурой CCMC (от французского Comité des Constructeurs du Marché Commun

– комитет производителей автомобилей общего рынка, что-то вроде того). Логика выпуска масляных стандартов была такая же, как у API, с каждым улучшением различных качеств моторных масел добавляли очередную цифру к буквам G (бензиновые двигатели), D (дизельные двигатели) и PD (дизеля легковушек). А старые постепенно признавались устаревшими. Все эти предания старины глубокой нас интересуют постольку, поскольку именно на основе этой организации в 1996 году родилась ассоциация европейских производителей автомобилей (опять же с французского Association des Constructeurs Européens d’Automobiles – ACEA). Вот классификация этой организации нас и интересует, поскольку любой маслопроизводитель, следящий за своей репутацией, будет проходить сертификацию своей продукции в ACEA и лепить на банки соответствующие обозначения, которые, кстати, выглядят, например, так: A3/B4, A1/B1, C3, E6 и так далее…

Итак, классификация моторных масел ACEA включает в себя четыре раздела, обозначаемые различными буквами:

  • A – масла для бензиновых двигателей
  • B – масла для дизелей легковых автомобилей и малого коммерческого транспорта
  • C – масла со сниженным содержанием золообразующих элементов
  • E – масла для тяжёлых коммерческих грузовиков

Буквой А в 1996 году заменили букву G из стандарта CCMC, а буквой B – классификацию PD (дизельные легковушки и маленькие грузовички, помните?). До 2004 года эти буквы (и масла, ими классифицируемые) существовали по отдельности, но с 25.10.2004 в их объединили в несколько сочетаний вида Ax/By, что подразумевает их универсальное применение. Я приведу актуальные обозначения 2012 года (есть спецификации 2014 года, но в настоящий момент они не вывешены на официальном сайте ACEA, соответственно, их как бы нет:)):

A1/B1 – всесезонные масла с увеличенным интервалом между заменами для бензиновых и дизельных двигателей, чья конструкция предусматривает использование маловязких масел с параметром HTHS равным 2.6 мПа*с для вязкости xW-20 и от 2.9 до 3.5 мПа*с для всех остальных вязкостей.

Возможность применения таких масел должна быть прямо указана в документации на машину/двигатель, в противном случае их применение чревато поломкой двигателя. Если кому-то непонятно, что за HTHS такой, рекомендую почитать статью о вязкости моторного масла. Там всё расписано довольно подробно.

A3/B3 – всесезонные масла для высоконагруженных бензиновых и дизельных двигателей и/или с возможностью увеличенного срока замены, там, где это предусмотрено производителем двигателя, и/или круглогодичного использования маловязкого масла, и/или жёстких условий эксплуатации в соответствии с рекомендациями автопроизводителя. Как видим, формулировка довольно расплывчатая (напомню, это перевод текста из официального документа). Если перевести вольно и коротко, то это обычное масло, которое льют в машины, не имеющие рекомендаций к применению остальных классов.

A3/B4 – практически то же самое, что и предыдущий пункт, плюс использование для дизелей с прямым впрыском. Соответственно, легко заменяет предыдущий пункт и более предпочтителен, чем он. Не все чётко понимают, с прямым впрыском у них дизель, или нет:).

A5/B5 – всесезонные масла с увеличенным интервалом между заменами для высоконагруженных бензиновых и дизельных двигателей, чья конструкция рассчитана на использование маловязких масел с параметром HTHS от 2.9 до 3.5 мПа*с. В чём-то перекликается с A1/B1 – там указана HTHS-вязкость для масел xW-20 (самые маловязкие на сегодняшний день), а здесь предусмотрена возможность использования в высоконагруженных двигателях. Так же, как и в A1/B1 возможность применения должна быть прямо указана в документации на автомобиль/двигатель, иначе … сами знаете:).

Вот картинка по поводу взаимозаменяемости этих классов.

В случае необходимости A1/B1 можно заменить на A5/B5 или на A3/B3/B4 (с увеличением расхода топлива). A5/B5 на что-то другое заменять категорически не рекомендуется.

Теперь то, чего не было до ACEA, а именно отдельный раздел «малозольных» масел, маркирующихся буквой C с цифрами 1, 2, 3 и 4. Малозольные масла имеют пониженное содержание сульфатной золы, фосфора и серы (так называемые масла LowSAPS, где SA – сульфатная зола, P – фосфор, а S – сера, ну а Low – их низкое содержание). Понадобились эти масла после того, как выяснилось, что несгоревшие частицы золы в выхлопных газах очень быстро выводят из строя катализаторы (TWC – Three Way Catalyst, трёхканальный катализатор) у бензиновых машин и сажевые фильтры (DPF – Diesel Particulate Filter) у дизелей. Так что тем, у кого в машинах имеются такие девайсы, использовать нужно именно малозольные масла (опять же смотрим в документацию на машину).

  • C1 – всесезонное масло для высоконагруженных бензиновых и дизельных двигателей, оснащённых катализатором или сажевым фильтром, требующих использования маловязких малозольных масел с параметром HTHS не меньше 2.9 мПа*с. Увеличивают срок службы DPF и TWC и обеспечивают экономию топлива. Содержание серы – 0,2%, сульфатной золы – 0,5%, фосфора – 0,05%. Эти масла имеют самый низкий уровень зольности, могут не подходить для использования в некоторых типах двигателей (то есть, в тех, где такое масло не прописано в документации).
  • C2 – ровно то же самое, что и C Разница только в количестве зольных элементов. Здесь больше серы (0,3%), фосфора (0,09%) и сульфатной золы (0,8%).
  • C3 – отличается от первых двух минимальной HTHS- вязкостью на уровне 3,5 мПа*с, серы и сульфатной золы столько же, сколько в C2, фосфора 0,07 – 0,09%.
  • C4 – HTHS-вязкость также 3,5 мПа*с, серы 0,2%, фосфора – 0,09%, сульфатной золы 0,5%.

Видно, что C2 и С3 отличаются бо́льшим содержанием зольных элементов, поэтому их можно назвать «среднезольными». C3 и C4, в свою очередь имеют бо́льшую HTHS-вязкость. Нигде не написано про увеличенный интервал замены, в отличие от A и B разделов, так что малозольные масла нужно менять чаще. Очевидно присадки, ответственные за увеличение срока использования масла, как раз и содержат зольные элементы. Убрали их и лишились одного из преимуществ.

Переходим к коммерческой технике, то есть двигателям, стоящим на больших магистральных грузовиках. Почему для них нужно особенное масло, можно почитать в статье о типах моторных масел. Итак:

E4 – всесезонное масло с отличным контролем чистоты поршней, износа, сажевого загрязнения и стабильными смазывающими свойствами. Рекомендовано для двигателей от Евро 1 до Евро 5 включительно, для работы в жёстких условиях, например, значительно увеличенных пробегах между заменами масла (согласно рекомендациям автопроизводителя). Подходит для дизелей без DPF, некоторых двигателей с системой EGR (повторное сжигание выхлопных газов) и некоторых – с системой SCR (снижение выбросов оксидов азота). В любом случае смотрим рекомендации производителя автомобиля.

E6 – отличается от предыдущего пункта тем, что соответствует стандарту Евро 6, подходит для двигателей с EGR, с сажевыми фильтрами (он же DPF) или без них и с системой SCR. Очень рекомендуется для машин с сажевыми фильтрами, поскольку разработано специально для использования с малосернистым топливом.

E7 – всесезонное масло с эффективным контролем чистоты поршней, полировки гильз цилиндра. Также имеет отличные противоизносные характеристики, нейтрализацию частиц сажи и вязкостную стабильность. Рекомендовано для двигателей с допусками от Евро 1 до Евро 5 включительно, для работы в жёстких условиях, например, увеличенных интервалах между заменами масла (согласно рекомендациям автопроизводителя). Подходит для моторов без DPFа, большинства моторов с EGR и большинства моторов с SCR NOx. Конкретнее, смотрим рекомендации…

E9 – всесезонное масло с эффективным контролем чистоты поршней и полировки гильз. Также имеет отличные противоизносные характеристики, очень хорошую нейтрализацию частиц сажи и вязкостную стабильность. Рекомендовано для двигателей Евро 1 – Евро 6, для работы в жёстких условиях, например, увеличенных интервалах замены масла. Подходит для машин с сажевыми фильтрами или без них, для большинства двигателей с EGR и SCR. Настоятельно рекомендуется для использования с сажевыми фильтрами, разработано специально для использования с малосернистым топливом.

Обобщая, Е4 и Е7 годятся для машин без DPF, между собой отличаются рекомендациями к использованию с EGR и SCR. В E7 предусмотрено более низкое минимальное TBN (щелочное число), и, соответственно, более низкие нормы чистоты поршней и полировки гильз, поскольку, как правило, более низкое щелочное число означает меньшее количество присадок в масле. На E4 можно дольше ездить до замены при прочих равных условиях (тоже следствие меньшего количества присадок в E7).

E6 и E9 подходят для DPF (сажевых фильтров), как следствие, удовлетворяют стандарту Евро 6. Между собой отличаются возможностью увеличения интервала замены. E6 «значительно увеличивает», E9 просто «увеличивает». Также у E9 более низкие нормы по чистоте поршней и полировке гильз, зато меньше износ вкладышей, колец и подшипников.

Классификация ILSAC

Американцы вместе с японцами разработали на базе API систему стандартов для пассажирских автомобилей (то есть аналог категории S в классификации API), которая называется ILSAC (как обычно, по имени выпускающей организации — (International Lubricant Specification Advisory Committee, Международный Консультативный Комитет по техническим требованиям к смазочным материалам). В них настолько много общего, что они даже имеют один значок соответствия масла текущему (то есть не устаревшему) стандарту ILSAC/API, так называемый Starburst.

В буквенно-цифровом обозначении классы ILSAC выглядят таким образом: GF-1, GF-2 и так далее. На данный момент (2015 год) наиболее современным и единственным не устаревшим является GF-5, соответствующий SN по классификации API. Как и в API наиболее современная ступень градации включает в себя требования по всем предыдущим, соответственно, может быть использована вместо них.

Допуски производителей автомобилей (OEM)

Помимо общих стандартов, призванных унифицировать требования к маслам для улучшения взаимозаменяемости и упрощения выбора, существуют требования автопроизводителей (Original Equipment Manufacturers). Логично предположить, что общие стандарты выросли именно на основе этих требований, иначе в них не было бы смысла. Поэтому в абсолютном большинстве случаев масло, имеющее соответствующую классификацию ACEA, подходит и по OEM-требованиям. Так что во многом получение отдельного одобрения производителя – это своего рода маркетинговый ход, причём очень эффективный, поскольку несмотря на все теоретические выкладки об идентичности масел я первый порекомендую заливать масло с допуском OEM, если это указано в качестве обязательного условия в технической документации:). Здесь, кстати, уместно будет сказать, что автопроизводители как правило не производят масла сами, а заказывают их изготовление у масляных премиум-брэндов, поэтому банка с маслом, например, Ford или GM (или любым другим OEM-названием), скорее всего, содержит в себе Castrol или что-то ещё из первой пятёрки.

Наиболее распространены допуски производителей Mercedes (имеет вид, например, MB 229.1), Volkswagen (VW 503.00), BMW (BMW Longlife-01), General Motors (GM-LL-A-025) и Ford (Ford WSS M2C913C). Допуски в скобках – не единственные, они даны просто для примера. Кроме этого свои требования есть у Renault и Fiat, у многих (если не у всех), производителей коммерческой техники (например, Man, Volvo и другие), даже у брэндов, производящих трактора и специальную технику (JCB, CAT, John Deere и другие). С технической точки зрения допуски разных производителей часто копируют себя, имея одинаковые или близкие требования с разными обозначениями, хотя это не исключает и каких-то эксклюзивных требований в некоторых случаях. Описывать все допуски – дело неблагодарное, поскольку объём текста получится запредельный. Возможно позже я выложу информацию отдельно по каждому производителю, а пока вот соотношение основных допусков ведущих производителей по смыслу применения масла

ГОСТ

Никак не получится пройти мимо нашей родной советско-российской системы классификации масел. Несмотря на то, что действующая система обозначений была введена в далёком 1987 (ГОСТ 17479.1-85) году, действует она до сих пор, и масла отечественных производителей с маркировкой согласно этому ГОСТу довольно бодро уходят с прилавков автомагазинов.

Примечателен ГОСТ тем, что в рамках одного обозначения описана и вязкость (аналог SAE), и качество (аналог API). Маркировка масла имеет такой вид: М-5з/12-Г, где «М» означает моторное масло, 5з – зимняя вязкость (буква «з», как и W в классификации SAE обозначает «зиму»), 12 – рабочая («летняя») вязкость, Г – показатель уровня эксплуатационных свойств масла. Наиболее востребованы сезонные (то есть не оговаривающие вязкость при отрицательных температурах) масла M-10Г2(к), и М-10Д(м), поскольку они в своё время были разработаны для КамАЗов (буква «к» в названии), и МАЗов (буква «м»), и похоже, до сих пор вполне устраивают пользователей соответствующего грузового автопарка.

Приводить значения вязкости я не буду, лучше укажу примерное соответствие ГОСТовской маркировки и SAE:

Такое же соответствие по эксплуатационным свойствам ГОСТ и API:

Видно, что кроме букв АБВГДЕ в обозначении присутствуют цифры 1 и 2. Из соответствия значений ясно, что цифра 1 указывает на применение в бензиновых моторах, 2 – в дизелях, а буква без цифр подразумевает универсальное применение моторного масла. Например, то же М10Г2(к) предназначено только для дизелей, а М10Д(м) – универсальное, несмотря на то, что льют его в основном, в турбированные дизельные движки.

Под занавес скажу, что это не единственные существующие классификации моторных масел, например, есть японские стандарты JASO для двух- и четырёхтактных мотоциклов, есть классификация NMMA, регулирующая качество масел для водномоторной техники, много чего ещё есть. Однако все системы, имеющие широкое употребление в нашей стране, я здесь более-менее описал.

Технические характеристики моторных масел 🚗 Свойства масел для двигателей

Содержание:

Важность качественного моторного масла сложно переоценить: правильно подобранная смазочная жидкость необходима, чтобы машина исправно работала, а узлы не изнашивались раньше срока. Чтобы подобрать состав, который будет подходить под конкретные климатические условия, важно разбираться в характеристиках моторных масел. Грамотно выбранные параметры вязкости, зольности, плотности помогут определиться с составом, но главное, конечно, не связываться с недобросовестными производителями и покупать смазочную жидкость только у проверенных компаний.

Функции моторного масла

Основное назначение состава – смазывать двигающиеся детали, чтобы не допускать их трения друг о друга и преждевременного износа. Также масло отводит от механизмов тепло, не дает им перегреваться, а содержащиеся в составе присадки защищают от загрязнений и обладают моющими свойствами. Во многом особенности зависят от состава присадок: разные масла рассчитаны под разные условия, и это еще одна причина, по которой смазочную жидкость нужно подбирать с умом. В расчет берутся три параметра: характеристики самой машины, климатические условия, в которых ее владелец использует авто, и необходимый состав (минеральное, синтетическое или полусинтетическое и т. д.).

Требования к качественному маслу

Могут различаться в зависимости от региона и машины. Но основные требования остаются неизменными:

  • нейтральность по отношению к металлу. Иными словами, состав не должен провоцировать коррозию и ускорять разрушение деталей;
  • моющие и стабилизирующие свойства, которые в основном достигаются за счет присадок;
  • способность функционировать в нужном температурном диапазоне;
  • отсутствие пены при работе;
  • возможность охлаждать греющиеся детали, то есть хорошие термоокислительные и термические способности;
  • совместимость с материалами, из которых делают уплотнительные элементы. Важно, чтобы состав не был чересчур агрессивен к полимерам;
  • способность нейтрализовать кислоты и продлевать тем самым срок работоспособности двигателя;
  • низкая летучесть, небольшой расход;
  • возможность запускать мотор, в том числе из холодного состояния.

На что влияют технические характеристики

В зависимости от того, какими характеристиками и свойствами обладает смесь, можно судить, комфортно ли будет использовать ее в определенных условиях, скажем, зимой или, наоборот, в жаркое время года. Некоторые варианты больше подходят для одних особенностей конструкции, некоторые – для других. Вдобавок стоит смотреть на качество: и синтетическое, и минеральное масла могут хорошо работать, если выпущены грамотными производителями. В случае же, если состав разрабатывался некачественно, итоговых свойств может быть недостаточно для нормальной работы машины. Технические характеристики масла определяют:

  • когда им лучше пользоваться – летом, зимой или круглый год;
  • для каких двигателей оно подходит – бензиновых или дизельных.

Некоторые классы предназначены для тяжелонагруженных моторов или имеют повышенную совместимость с каталитическими нейтрализаторами.

Что входит в технические характеристики масла

Существует несколько классификаций, определяющих параметры смазочной жидкости. Они касаются особенностей применения, вязкости и типа двигателей, для которых предназначено масло. Однако классификация – отдельный вопрос. Если речь идет именно о характеристиках как о свойствах, выраженных количественно, то к ним обычно относят семь параметров:

  • динамическую и кинетическую вязкость;
  • температуру застывания;
  • температуру вспышки;
  • плотность;
  • зольность;
  • щелочное число.

Они описывают физические и химические свойства конкретного масла: именно на их основе смазочную жидкость относят к тому или иному классу по одной из классификаций.

Вязкость: кинетическая и динамическая

Это показатель, который говорит, насколько хороши смазывающие свойства масла. Более вязкая жидкость лучше смазывает, но хуже подходит для низких температур, потому что быстрее застывает. Более жидкие составы обычно используются на холоде или в условиях, когда масла с высокой вязкостью нельзя применять. Эта характеристика разделяется на две:

  • динамическая вязкость описывает поведение масла при холодном моторе, то есть демонстрирует, как оно будет вести себя зимой. Этот показатель даже не всегда указывают в таблицах характеристик, так как он напрямую связан с классом зимней вязкости. Указания класса обычно достаточно;
  • кинетическая же вязкость описывает работу масла во время, когда двигатель включен. Рассчитывается, как правило, для температуры в 100 градусов, и чем больше цифра, тем лучше.

Классификация SAE

Этот международный стандарт делит моторные масла на группы в зависимости от их вязкости и температурных пределов, для которых они предназначены. Согласно этой классификации смазочные жидкости бывают трех основных типов:

  • летние. Класс обозначается одним числом, чем оно выше, тем гуще масло;
  • зимние. Их легко узнать: обозначение – число, после которого указана буква W. Она означает winter – зима. Чем меньше числовое значение, тем более жидким является масло и, соответственно, тем при более низких температурах его можно использовать;
  • всесезонные. Обозначаются сдвоенным значением: первое – зимнее, с буквой W, второе – летнее. По соотношению чисел можно определить температурный диапазон, при котором смазочная жидкость будет нормально функционировать.

Индекс вязкости

Это численное значение, которое не говорит о вязкости как таковой: оно обозначает, как сильно она меняется с перепадами температуры. Этот параметр во многом определяет качество масла: в идеале оно должно как можно меньше менять свои свойства, когда меняется температурный режим. В реальности такое недостижимо, но современные синтетические масла достигают значения индекса в 150–180 единиц. Чем выше этот показатель, тем лучше: высокие значения говорят о том, что жидкость не слишком активно изменяется при смене температурного режима и сохраняет свои свойства.

Температура застывания и вспышки

Существуют температурные пределы, при которых масло полностью перестает функционировать. Нижний называется температурой застывания, ее достижение означает, что масло потеряло текучесть и застыло. Де-факто функционировать оно может перестать раньше: еще до застывания текучесть станет настолько низкой, что смазочная жидкость перестанет прокачиваться через фильтр. Обычно это происходит за 5–7 градусов Цельсия до достижения температуры застывания. Грамотные производители учитывают такую возможность при определении класса масла: даже при температурных значениях, близких к минимуму, смесь еще будет прокачиваться. Верхний же предел называется температурой вспышки. Это температурное значение, при котором масла испарится настолько много, что, если рядом окажется источник огня, пары загорятся. Обычно оно выше 200 градусов и недостижимо, если с машиной все в порядке, но показатель позволяет понять скорость испарения масла даже в нормальных условиях. Чем ниже температура вспышки, тем активнее испаряется жидкость.

Плотность

Каждое масло содержит определенное количество летучих фракций. Их объем и определяет плотность – параметр, влияющий на качество работы смазочной жидкости.

  • Высокоплотные составы обычно гуще, они снижают механическую нагрузку на узлы, но при слишком высоком значении плотности могут плохо проникать в труднодоступные места цилиндров.
  • Масла со слишком низкой плотностью не так хорошо справляются со своей работой, как с оптимальной.

Обычно чем выше температура вспышки, тем выше и плотность, но бывают и исключения – высококачественные синтетические масляные основы. Они могут обладать оптимальными значениями обоих параметров одновременно.

Зольность и щелочное число

Технические характеристики моторного масла описывают не только физический, но и химический его состав, к таким можно отнести показатель сульфатной зольности и щелочное число.

  • Зольность иногда считают показателем количества присадок в смазочной жидкости, но в действительности этот параметр не всегда коррелирует с ними. Он показывает, сколько золы остается после испарения масляной основы или ее сгорания. Зола часто содержит в себе сульфаты, которые могут быть вредны для каталитических нейтрализаторов, но в целом показатель зольности критичнее для топлива, чем для масла.
  • Щелочное число показывает, какому количеству гидроксида калия эквивалентны присадки в масле, направленные на нейтрализацию кислот. По сути, показатель демонстрирует, как долго смазочная жидкость сможет избегать окисления.

На что обратить внимание при выборе масла

Помимо основных параметров – для бензина или для дизеля предназначен состав, какой пакет присадок в нем используется – нужно обращать внимание на технические характеристики и сопоставлять их с реальными условиями.

Жителям холодных регионов высокая вязкость не принесет пользы, а жарких, наоборот, сослужит хорошую службу. Если Вы хотите, чтобы масло работало дольше, обращайте внимание на показатели зольности и щелочное число. И, конечно, пользуйтесь продуктами проверенных производителей: «Синтек» предлагает качественную и разнообразную продукцию. В нашем ассортименте минеральные, синтетические, полусинтетические масла с разными характеристиками, подходящими под различные условия использования.

Предложение SINTEC

  • SINTEC PLATINUM SAE 5W-40 API SN/CF

    Синтетическое масло с высокими эксплуатационными характеристиками, подходящее для всех сезонов и содержащее пакет многофункциональных качественных присадок зарубежных производителей.

  • SINTEC LUX SAE 5W-40 API SL/CF

    Универсальный продукт, подходящий и для бензиновых, и для дизельных двигателей. Подходит в том числе грузовикам, машинам отечественного и зарубежного производства.

  • SINTEC EURO SAE 15W-40 API SJ/CF

    Пример качественного минерального масла с характеристиками, подходящими для использования в российских условиях, и пониженным расходом.

классификация, технические характеристики масел для авто, производство

Содержание статьи:

Использование качественных смазочных материалов позволяет обеспечить надежную эксплуатацию современных двигателей и продлить срок их службы. Компания «Обнинскоргсинтез» осуществляет производство моторных масел под маркой SINTEC.

Предлагаемые смазочные материалы отвечают требованиям отраслевых стандартов API, ACEA и OEM. В каталоге Вы можете выбрать масла для любых типов моторов: бензиновых, дизельных, работающих на газовом топливе.

Основные эксплуатационные параметры моторных масел

Снижение трения и уменьшение износа

За счет создания жидкостного или гидродинамического режима трения моторное масло обеспечивает сохранение заданного инженерами КПД двигателя, предотвращая трение конструктивных элементов. Смазочные материалы влияют на мощностные характеристики силового агрегата, расход топлива, рабочий ресурс. Основными смазываемыми деталями и узлами поршневого двигателя являются:

  • коренные и шатунные подшипники;
  • подшипники и шестерни распределительного вала;
  • поршневые пальцы, штоки и толкатели клапанов;
  • плунжерные пары насоса высокого давления;
  • стенки цилиндров и поршни, многое другое.

Отвод тепла

Основное количества тепла, которое выделяется в процессе сгорания топлива, поглощается системой охлаждения и рассеивается в самом теле двигателя. Однако система смазки также участвует в защите мотора от перегрева. Она поглощает около 5 % тепла, выделяемого при работе нефорсированных двигателей, и свыше 10 % у форсированных агрегатов.

Поддержание чистоты

Чистота двигателя — важное условие долговечной работы. Количество образующихся на его узлах и деталях отложений зависит от многих факторов, в числе которых качество моторного масла. Определяющей характеристикой в данном случае является склонность смазочного материала к окислению. Чем более высокотехнологичные базовые масла и компоненты присадок используются в составе продукта, тем выше его стойкость к деструкции под воздействием температуры.

Еще одной важной составляющей поддержания чистоты двигателя является диспергирующая способность масла. Именно эта характеристика обуславливает способность транспортировать конгломерировавшиеся окисленные молекулы смазочного материала, а также сажу, диспергированную воду, шлам и прочие загрязнения к фильтру, не допуская их выпадения в осадки.

Защита от коррозии

В процессе эксплуатации двигателя образуется множество агрессивных химических сред. Продуктами сгорания топлива являются отработавшие газы, в состав которых входят окислы азота и серы. Они вступают в окислительные реакции в газовой фазе, а также, растворяясь в воде, образуют кислоты, которые взаимодействуют с поверхностями уже в жидкой фазе. Эти агрессивные вещества могут привести к разрушению металлов и сплавов, из которых изготовлены узлы и детали двигателя. Благодаря содержащимся в составе моторного масла ингибиторам коррозии удается не допускать образования ее очагов.

Основные физико-химические параметры моторных масел

Вязкость

Этот показатель определяет меру внутреннего трения. Именно благодаря данной технической характеристике жидкость сопротивляется течению под воздействием внешних сил. Выделяют кинематическую и динамическую (абсолютную) вязкость. Величина первой измеряется в стоксах или квадратных сантиметрах в секунду.

Динамическая вязкость, в свою очередь, представляет собой отношение силы сдвига жидкости к скорости сдвига. Измеряется в пуазах (сантипуазах) или ньютонах в секунду, деленных на квадратный сантиметр. Величина динамической вязкости у смазочных материалов крайне мала.

Индекс вязкости

Этот параметр был введен для определения степени изменения вязкости при колебаниях температуры. Индекс вычисляется при использовании значения кинематической вязкости при 40 и 100 °C.

Моторное масло с высоким индексом вязкости слабо подвержено изменениям при колебаниях температуры. Соответственно, такой продукт способен обеспечить надежность вязкостных свойств в очень широком температурном диапазоне. И наоборот, характеристики масла с низким индексом вязкости сильно зависят от изменения внешних условий. Поэтому у такого смазочного материала температурный диапазон эксплуатации является достаточно узким.

Температура застывания

Данный параметр характеризует момент резкого увеличения вязкости смазочного материала до почти полной потери текучести. Этот показатель определяется лабораторным методом: за температуру застывания принимают ту, при которой помещенный в стандартную пробирку смазочный материал при охлаждении застывает настолько, что при наклоне емкости на 45 градусов уровень жидкости остается совершенно неподвижным в течение 1 минуты. Однако важно понимать, что температура застывания лишь косвенно характеризует эксплуатационные низкотемпературные свойства моторного масла.

Температура вспышки

Этот параметр характеризует состав масла, в частности наличие в нем легколетучих фракций и их долю. В эксплуатационном отношении это является косвенным отражением потенциального расхода смазочного материала на угар, а также через систему вентиляции картера двигателя. Еще температура вспышки важна для оценки риска самопроизвольного возгорания при хранении и транспортировке, а для некоторых типов масел — и взрыва при достижении предельных температур эксплуатации.

Общее щелочное число

Общее щелочное число (Total Base Number, TNB) является важной технической характеристикой современного высокотехнологичного моторного масла. Оно выражается в количестве гидроокиси калия на грамм продукта (мгКОН/г). В эксплуатационном отношении величина щелочного числа характеризует стойкость масла к окислительным процессам под воздействием высоких температур и давления в присутствии химически агрессивных сред, а также устойчивость к образованию отложений и величину межсервисного интервала.

Общее кислотное число

По мере нейтрализации химически агрессивных компонентов кислотного характера значение щелочного числа масла снижается. Параллельно с этим можно наблюдать рост кислотного числа (Total Acid Number, TAN). Значение этого показателя характеризует наличие в смазочном материале продуктов окисления, провоцирующих увеличение коррозии и интенсивности изнашивания пар трения двигателя. TAN выражается как количество гидроксида калия в грамме, необходимое для нейтрализации всех кислых компонентов (мгКОН/г).

Сульфатная зольность

Сульфатная зола — это вещество, полученное сжиганием смазочного материала, подверженное воздействию серной кислоты для перехода оксидов металлов с сульфаты, прокаленное в дальнейшем при очень высокой температуре. Сульфатная зольность измеряется в массовых процентах. При эксплуатации зольные отложения оказывают негативное воздействие на работу двигателя и различных систем очистки выхлопных газов.

Моторные масла SINTEC

Для легкового транспорта

  • SINTEC Platinum SN/CF. Такие синтетические моторные масла могут использоваться в качестве смазочного материала в дизельных и бензиновых двигателях легковых авто. Продукция полностью совместима с системами нейтрализации отработавших газов (TWC). Благодаря технологии производства Mid SAPS моторные масла отличаются пониженным содержанием сульфатной золы, фосфора и серы.
  • SINTEC Люкс. Полусинтетические смазочные материалы предназначены для применения в системах смазки современных бензиновых двигателей и дизельных моторов с турбонаддувом и катализатором. Подходят для силовых агрегатов легкового и коммерческого транспорта. Моторные масла изготавливаются с использованием высокотехнологичного пакета присадок.
  • SINTEC Супер. Данная продуктовая линейка включает полусинтетические (SINTEC Супер 5W-40 и 10W-40) и минеральное (SINTEC Супер 15W-40) моторные масла, изготовленные на основе высококачественных базовых масел с применением сбалансированного пакета присадок. Смазочные материалы предназначены для дизельных и бензиновых силовых агрегатов, устанавливаемых на легковом и грузовом транспорте российского и зарубежного производства. Оригинальные моторные масла отличаются увеличенным эксплуатационным ресурсом, улучшенными антикоррозийными свойствами и низким расходом на угар.
  • SINTEC Молибден. Это всесезонный смазочный материал высшей категории качества. Полусинтетическое масло подходит для двигателей современных легковых автомобилей и грузовиков, выпускаемых в РФ и за рубежом. Продукция отличается прекрасными смазывающими, противозадирными и антифрикционными свойствами. Масло обеспечивает мгновенную смазку мотора при низких температурах и холодном пуске, защищая двигатель от износа в экстремальных условиях эксплуатации.
  • SINTEC EURO. Такие минеральные моторные масла подходят для всесезонного использования и предназначены для смазки дизельных и бензиновых двигателей отечественных и зарубежных автомобилей. Данный смазочный материал обеспечивает стабильное давление масла даже при жестких режимах работы силового агрегата.
  • SINTEC Стандарт. Всесезонное минеральное масло, изготовленное с добавлением сбалансированного пакета присадок. Смазочный материал предназначен для бензиновых силовых агрегатов без турбонаддува и дизельных двигателей с умеренным наддувом, устанавливаемых в легковых авто, малотоннажном коммерческом транспорте и микроавтобусах.
  • SINTEC Экстра. Минеральное масло предназначено для бензиновых и дизельных моторов с умеренным наддувом. Смазочный материал производится на основе качественных базовых масел в комбинации со сбалансированным пакетом присадок.
  • SINTEC Super Gazolin. Продуктовая линейка включает минеральное (SINTEC Super Gazolin 15W-40) и полусинтетическое (SINTEC Super Gazolin 10W-40) моторные масла, которые предназначены специально для двигателей, работающих на пропан-бутановой смеси или сжатом метане. Продукция на основе высокоочищенных базовых масел с добавлением пакета присадок обеспечивает защиту мотора во всех режимах эксплуатации.
  • SINTEC Extra Gazolin. Смазочный материал для двигателей, работающих на пропан-бутановой смеси или сжатом метане, предназначен для использования в летний период в странах с жарким или умеренным климатом. Минеральное моторное масло содержит сбалансированную композицию присадок и помогает обеспечить надежную защиту силового агрегата.

Для коммерческого транспорта

  • SINTEC Truck. Данная продуктовая линейка включает минеральное (SINTEC Truck SAE 15W-40) и всесезонное полусинтетическое (SINTEC Truck SAE 10W-40) масла с добавлением многофункционального пакета присадок. Смазочные материалы подходят для скоростных и мощных дизельных двигателей, устанавливаемых на грузовых автомобилях. Оригинальные моторные масла SINTEC Truck отличаются низким расходом на угар и увеличенным сроком службы.
  • SINTEC Diesel. Такие смазочные материалы выпускаются на основе высококачественных базовых масел с добавлением сбалансированной композиции присадок. Моторные масла отличаются стойкостью к химической коррозии и увеличенным эксплуатационным ресурсом. Подходят для использования в системах смазки высоконагруженных дизельных двигателей в грузовиках с большим пробегом.
  • SINTEC Turbo Diesel. Универсальное полусинтетическое моторное масло подходит для всесезонного применения. Смазочный материал с добавлением многофункционального пакета присадок предназначен для двигателей с турбонаддувом, отличающихся высокой удельной мощностью. Масло обладает высокими противозадирными свойствами и препятствует образованию нагара.
  • SINTEC Турбо Дизель Линейка включает всесезонные минеральные моторные масла SAE 15W-40 и 20W-50. Они предназначены для скоростных силовых агрегатов грузовиков (с турбонаддувом или без такового), подходят в том числе и для двигателей, работающих в тяжелых условиях эксплуатации. Смазочные материалы производятся на основе базовых масел высокой степени очистки и присадок последнего поколения.
  • SINTEC SAE 40, 50, 60. Такие моторные масла предназначены для использования в летний период. Благодаря многофункциональному пакету присадок предлагаемые смазочные материалы надежно защищают от износа детали двигателей, функционирующих в тяжелых условиях. Масла предотвращают появление нагара на деталях и повышают стойкость моторов к коррозии.
  • SINTEC Дизель М8Г2к и М10Г2к. Минеральные масла для использования в зимний (М8Г2к SAE 20W) и летний (М10Г2к SAE 30) периоды подходят для форсированных дизельных моторов грузовиков с умеренным наддувом или без него. Продукция также может применяться для смазки дизель-генераторов и стационарных дизельных двигателей.
  • SINTEC Турбо Дизель М8Дм и М10Дм. Такие минеральные масла предназначены для высокофорсированных дизельных силовых агрегатов с умеренным наддувом или турбонаддувом (М10Дм — для летнего периода, М8Дм — для зимнего времени). Смазочные материалы с добавлением пакета импортных и отечественных присадок подходят для моторов грузовой техники, городских и междугородных автобусов, тракторов и т. п.
  • SINTEC Автол. Всесезонное минеральное моторное масло предназначено для использования в системах смазки среднефорсированных карбюраторных бензиновых и безнаддувных дизельных двигателей. Продукция подходит для моторов грузовиков ЗИЛ и ГАЗ, автомобилей УАЗ.

Для двухтактных двигателей

  • Sintec Garden 2T. Полусинтетическое моторное масло для систем смазки 2-тактных двигателей садовой и сельскохозяйственной техники. Подходит для силовых агрегатов с воздушным охлаждением, в том числе работающих в тяжелых условиях.
  • Sintec Moto 2. Данный смазочный материал разработан специально для 2-тактных двигателей мотоциклов, скутеров, мотороллеров и снегоходов. Полусинтетическое масло подходит для моторов с карбюратором или прямым впрыском, предназначено для использования с неэтилированным бензином.

Технические характеристики моторных масел: свойства, вязкость

Характеристики моторных масел регламентируют стандарты международного уровня.

Вязкость моторного масла

Характеристика определяет способность жидкого материала сопротивляться течению за счет внутреннего трения. Значение рассчитывают при разных условиях, поэтому различают два ее типа:

  • кинематическая вязкость показывает способность материала сопротивляться течению под действием силы тяжести. Измеряется в стоксах (Ст) или в квадратных миллиметрах в секунду (мм2/с). Чаще всего характеристику определяют для температур 40 и 100 °С;
  • динамическая вязкость определяет отношение силы к скорости сдвига. Характеристика показывает способность моторного масла к течению при разных температурах, измеряется в сантипуазах (Сп) или в (Н·с/см2).

Индекс вязкости

Вязкость смазочных материалов меняется обратно пропорционально температуре. При нагревании масла показатель снижается, а при охлаждении – увеличивается. В продуктах разных марок изменение характеристики происходит с различной скоростью. Для измерения динамики существует специальное понятие – индекс вязкости. Чем выше его значение, тем меньше вязкостные свойства материала зависят от температуры. Продукты с большим индексом обеспечивают надежную защиту двигателя в разных климатических условиях. Масла с низким значением показателя эксплуатируются в узком диапазоне температур, так как при нагревании материалы утрачивают смазывающую способность, а при охлаждении быстро густеют.

Температура застывания

Показатель определяют в момент увеличения вязкости масла вплоть до потери текучести. В лабораторных условиях температурой застывания считают нижний предел, при котором жидкость в пробирке под наклоном 45 градусов не стекает в течение 1 минуты и остается неподвижной. Низкотемпературные характеристики масла напрямую зависят от состава, от качества компонентов. В продуктах переработки нефти вязкость возрастает при кристаллизации парафинов нормального строения. Поэтому основа проходит тщательную очистку или химическую модификацию для разветвления структуры компонентов и снижения температуры застывания. Синтетические масла имеют более однородный и прогнозируемый состав, что снижает порог кристаллизации и обеспечивает материалу стабильные свойства на морозе.

Температура вспышки

Величина этой характеристики зависит от вида и количества легколетучих фракций в составе масла. Температура вспышки косвенно указывает на потери масла на угар, испарение через вентиляционную систему картера. Параметр также позволяет оценить риск самопроизвольного воспламенения или взрыва материала при экстремальном нагревании.

Щелочное число (Total Base Number, TBN)

Общая щелочность моторного масла зависит от характеристик диспергирующих и моющих присадок, от антиокислительных свойств материала. Параметр указывает на стойкость продукта к окислению при высоких температурах и давлении в присутствии химически активных сред. От щелочного числа также зависит скорость образования отложений, величина межсервисного интервала. Характеристика определяется в (мг КОН/г). Значения щелочного числа варьируются в широком диапазоне. Выбор зависит от типа топлива, а точнее, от содержания серы, которая является главным окисляющим агентом. Например, в двигателях, работающих на мазуте, требуется высокая степень защиты, поэтому выбирают масло с показателем щелочности до 40 мг КОН/г. Моторы легковых авто работают с материалами 7–15 мг КОН/г.

Зольность

Сульфатная зола образуется при сгорании смазочного материала. Базовые масла очищаются и являются практически беззольными, но присадки вносят в состав нежелательные примеси, такие как магний, кальций, фосфор, цинк и другие. В процессе сгорания веществ на поверхности деталей двигателя образуются отложения, которые способствуют преждевременному воспламенению топливной смеси, то есть повышают детонацию. Зола также загрязняет каталитические нейтрализаторы выхлопных газов, сажевые фильтры. Соответственно, чем ниже показатель, тем меньше отложений на деталях.

Стандарты и спецификации

SAE J300

Классификация вязкостно-температурных свойств смазывающих материалов SAE J300 разработана американским обществом автомобильных инженеров Society of Automotive Engineers. Система делит масла на два типа: летние и зимние (маркировка W – winter). Для материалов, предназначенных для эксплуатации при низких температурах, дополнительно регламентируют предел прокачиваемости (тест MRV – Mini Rotary Viscometer) и проворачиваемости (CCS – Cold Cranking Simulator) коленвала. Для летних сортов определяют прочность на сдвиг при экстремальном нагревании (тест HTHS – High Temperature High Shear Rate). Класс вязкости по SAE J300 указывает на диапазон температур эксплуатации конкретной марки моторного масла. Обозначение всесезонных сортов сочетает два показателя: зимний и летний. Например, 5W-40.

Классы вязкости зимних моторных масел SAE J300

 

Низкотемпературная вязкость

Высокотемпературная вязкость

Класс

вязкости

SAE

CCS, МПа-с. Max, при темп.,°С

MRV, МПа-с, Max, при темп.,°С

Кинематическая вязкость, мм2/с при 100 °С

HTHS, МПа-с. Min при 150 °С и 10Л6 с-1,

 

 

 

Min

Max

0W

3250 при -30

30000 при -35

3,8

5W

3500 при -25

30000 при -30

3,8

10W

3500 при -20

30000 при -25

4,1

15W

3500 при -15

30000 при -20

5,6

20W

4500 при -10

30000 при -15

5,6

25W

6000 при -5

30000 при -10

9,3

Классы вязкости летних моторных масел SAE J300

Класс вязкости SAE

Высокотемпературная вязкость

Кинематическая вязкость, мм2/с при 100 °С

HTHS, МПа-с. Min при 150 °С и 10Л6 с-1,

Min

Max

8

4,0

6,1

1,7

12

5,0

7,1

2,0

16

6,1

8,2

2,3

20

6,9

9,3

2,6

30

9,3

12,5

2,9

40

12,5

16,3

2,9*

40

12,5

16,3

3,7**

50

16,3

21,9

3,7

60

21,9

26,1

3,7

* Для классов 10W40, 5W40, 10W40.

** Для классов 15W40, 20W40, 25W40, 40.

API

Классификация разработана специалистами American Petroleum Institute (API) совместно с American Society for Testing and Materials (ASTM) и Society of Automobile Engineers (SAE). Система опирается на эксплуатационные характеристики моторных масел и устанавливает стандарты для бензиновых, дизельных, двухтактных моторов и трансмиссий. По API смазочные материалы делятся на три категории:

  • S – Service (spark ignition). Категория включает масла для бензиновых двигателей легковых автомобилей;
  • C – Commercial (compression ignition). В нее включена продукция для дизельных двигателей;
  • EC – Energy Conserving. Категория описывает энергосберегающие масла.

Классификация материалов внутри категорий начинается с буквы А (SA, SB, SC…) и далее в алфавитном порядке. Каждая последующая марка может использоваться в двигателях, для которых рекомендованы предыдущие. Категории с SA до SG являются устаревшими. Знак SH маркируют только в качестве дополнения к C. Начиная с SJ все категории действующие, а SN считается высшей на сегодняшний день. Марки масел с API CA до API CG-4 признаны устаревшими. Остальные категории действующие, высшей является API CK-4.

ILSAC

Классификация международного комитета по стандартизации и апробации моторных масел ILSAC (INTERNATIONAL LUBRICANTS STANDARDISATION AND APPROVAL COMMITTEE) – это результат совместного труда американской ассоциации American Automobile Manufacturers Association (AAMA) и японских специалистов Japan Automobile Manufacturers Association (JAMA). Стандарт устанавливает требования к смазочным материалам для бензиновых двигателей легковых автомобилей. Знак ILSAC получают масла с высокими показателями экономии топлива, энергосбережения, фильтруемости в условиях низких температур. Для продуктов характерна низкая испаряемость, стойкость к вспениванию и сдвигу, минимальное содержание фосфора. Категории моторных масел по ILSAC:

GF-1. Устаревшая спецификация с минимально допустимыми требованиями к качеству материалов для японских и американских автомобилей. Категория охватывает масла классов SAE: 0W-30, -40, -50, -60, 10W-30, -40, -50, -60 и 5W-30, -40, -50, -60. Спецификация соответствует EC-II и API SH;

GF-2. Соответствует EC-II и API SJ. Категория включает все марки масел GF-1 и дополнительно 0W-20, 5W-20. Строгие ограничения по содержанию фосфора, улучшенные низкотемпературные свойства, стойкость к пенообразованию и образованию отложений;

GF-3. Соответствует EC-II и API SL. Улучшены противоизносные и противоокислительные свойства, снижена испаряемость, увеличены показатели экономии топлива, стабильности вязкостных свойств. Спецификация устанавливает строгие требования к долгосрочным последствиям влияния моторных масел на системы нейтрализации выхлопных газов;

GF-4. Соответствует API SM. Масла проходят испытания на топливную экономичность. Категория включает классы вязкости SAE: 0W-20, 5W-20, 5W-30, 10W-30. Улучшены моющие и противоизносные свойства, снижен риск образования отложений. Содержание фосфора – не более 0,08 %;

GF-5. Соответствуют API SM с жесткими требованиями к совместимости к системам катализаторов, к топливной экономичности, к испаряемости, к стойкости к образованию отложений. Спецификация устанавливает параметры совместимости с эластомерами, защиту систем турбонаддува, возможность применения биотоплива.

Знание основных характеристик необходимо для грамотного выбора моторного масла.

Классификация моторных масел — Масла двигателя

В мире существует огромное количество различных спецификаций, стандартов моторных масел.  Ввиду этого, пользователям довольно проблематично разобраться во всех этих цифрах, индексах, ГОСТах. Особенно резко проблема встает для работников магазинов, станций технического обслуживания. Ведь знание всех возможных правил, регламентов — это неотъемлемая часть работы. Именно для облегчения жизни людям, сталкивающихся с данным вопросом постоянно, написана статья, в которой собраны и расшифрованы самые популярные мировые спецификации моторных масел. Что представляет собой современная классификация моторных масел?

API

Что такое классификация моторных масел по API? В начале 1970 года американский институт нефти совместно с другими всемирно известными комиссиями, классифицировали моторные масла по виду характеристик, типу обслуживания. Причиной этому стала резко возросшая популярность автомобилей и увеличение типов конструкций двигателей. Так как каждый силовой агрегат требовал определённого смазочного материала ввиду личностных характеристик, совместными усилиями организации решили разбить лубриканты по категориям.

На сегодняшний день существует большое количество различных допусков, позволяющих применять смазки в определённых агрегатах. Для простоты восприятия, каждый тип жидкости имеет собственное обозначение.

Классификация масел для бензиновых установок

Далее представлены стандарты API в хронологической последовательности с момента появления.

SA

Самый первый тип, который был утвержден организацией в 1969 году. В основе лежит пакет нормативных документов, которые разрешают эксплуатацию лубриканта в силовых установках, работающих при невысоких нагрузках, режимах малой мощности. Двигатели, попадающие под категорию отличаются низкой требовательностью к обслуживанию, в качестве рабочих жидкостей могут применяться смазки, не содержащие защитных присадок.

SB

Следующая полка описывает типы жидкостей для маломощных, бензиновых силовых установок, которые обеспечивают посредственную защиту от коррозии, износа, окисления внутренних узлов. Стандарт характеризует изделия 20-30 годов прошлого века.

В современном мире могут быть использованы при специальной рекомендации изготовителя.

SC

Третий тип предназначался под бензиновые конструкции производства младше 1964 г. На практике применение происходило в легковых, грузовых, а также некоторых типах промышленных авто с 1964 по 1967 годы выпуска включительно.

От предыдущих версий отличается снижением количества отложений при значительных перепадах температур.

SD

Отличается повышенными требованиями к защите силовых установок от высокотемпературного, механического воздействия. Увеличены требования относительно состава жидкостей, действующих присадок, а также более строгое соблюдение регламентов замены. Масла использовались в легковых, некоторых моделях грузовых машин с 1968 года выпуска и позднее.

SE

Далее на очереди регламент 1972 года. Устаревшие стандарт обязал изготовителей более тщательно подбирать компоненты для продукции. Действие ограничений, требований распространялось на автомобили 1972 – 79 г/в. Лубриканты категории могут быть использованы как заменители более старых разновидностей.

SF

Стандарт 1980 г. Согласно новым требованиям смазки должны обладать усиленной устойчивостью к окислителям, термическому износу. Согласно критериям, организована лучшая защита силовой установки от износа, благодаря внедрению передовых добавочных элементов. Дополнительным плюсом нововведения появилась надёжная защита от появления нагара, ржавчины, коррозии. Моторное масло категории SF могло быть использовано в качестве заменителей более старых разновидностей.

SG

Относительно современная классификация (стандарт) моторных масел, первая в списке из действующих сегодня. Внедрен в 1989 г, служит для автомобилей отечественного, а также иностранного производства. Жидкости, попадающие под воздействие ограничений, отличаются более тщательным подбором базовых элементов, дополнительных присадок. В состав включены современные типы присадок, обеспечивающих улучшенную защиту мотора от износа. Могут применяться как заменители некоторых дизельных масел.

SH

Следующий тип, актуальный в наши дни, благодаря активному использованию автомобилей 1994 г. Классификация появилась с 1992 г, отличается более жесткими требованиями к лубрикантам.

В основе документа лежат требования к производителям, касательно улучшения характеристик защиты силовых установок от нагара, различных окислителей. Также ужесточена система оценки уменьшения износа самой жидкости. Масло разрешено для применения в легковых, микроавтобусах, не тяжёлых грузовых машин, а также малых автобусов. Жидкости, попадающие под классификацию, проходили либо проходят тесты соответственно требованиям ассоциации изготовителей химической продукции. Дополнительно все лубриканты, прошедшие отбор могут быть использованы в качестве заменителей более ранних стандартов.

SJ

Далее на очереди последний стандарт 20 века. Определение 1996 года разрешает использование лубрикантов в бензиновых силовых установках легковых, гоночных, а также грузовых автомобилей. Минимальные требования соответствует прошлому стандарту, однако имеется ряд дополнений, повышающих требования к защите от нагара, а также эксплуатационным характеристикам в условиях критически низких температур.

SL

Современная разновидность разработка которой совпала с миллениумом. Развитие зелёных технологий поспособствовало применению новой разновидности смазок, которая обеспечивала соответствие современным требованиям экологических стандартов. Жидкости, подпадающие под разряд, должны подходить к многоклапанным турбированным моторам, работающим на бедных смесях горючего. Также в пакет документов входят критерии по снижению энерго затраты, то есть экономии топлива. Лубриканты могут быть использованы для машин, в которых производитель рекомендует использовать SG или более ранний стандарт.

SM

Новая разработка, утверждённая в 2004 году, которая жестко ограничивает состав, характеристики жидкостей, применяемых для обслуживания много клапанных силовых установок атмосферного, турбированного типа. Регламент подразумевает совмещение характеристик высокой защиты деталей от окисления, преждевременного выхода из строя и низкотемпературной устойчивости.

SN

Самый современный из ныне существующих стандартов, создан 1 октября 2010 г. Регламентный пакет документов вошли требования по ограничению количества фосфора, что подразумевает возможность работы с новейшими системами каталитических нейтрализаторов. Дополнительно ограничивается применение компонентов, снижающих энергоэффективность. Стандарт применим для всех типов бензиновых автомобилей, машин, работающих на сжиженном газу.

Классификации для дизельных силовых агрегатов

CA

Первый стандарт появившийся для улучшения характеристик дизельных смазок.

Категория была широко распространена в 1940 – 50 годах прошлого века. Для современных условий, лубриканты подпадающие под классификацию, не могут быть использованы. Основное предназначение — дизельные силовые агрегаты, работающие в легком либо умеренном режиме. Лубриканты подпадающие под классификацию должны соответствовать стандартам по защите внутренних узлов от нагара, коррозии. Дополнительно должны содействовать продлению срока службы подшипниковых механизмов систем турбонаддува.

CB

Утверждённый в 1949 году, пакет документов подразумевал эксплуатацию жидкостей в двигателях, работающих на топливе с увеличенным содержанием серной составляющей, оборудованных турбонаддувом и без него. Допускается использование для дизелей, эксплуатируемых при средних нагрузках.

CC

Сертификат API CC актуален c 1961 г, для двигателей, обладающих увеличенной компрессией. Такой маркировкой помечали продукты, предназначенные для эксплуатации на агрегатах, работающих при умеренных, активных режимах нагрузок. Благодаря более качественному составу жидкости, подпадающие под категорию, могли использоваться в бензиновых двигателях, работающих при высоких нагрузках. Стандарт гарантировал повышенную степень защиты подшипников от образования высокотемпературных отложений, а также низкотемпературного окисления бензиновых аппаратов.

CD

Устаревший регламент, классифицирующий лубриканты, использовавшиеся в дизельных моторах увеличенной мощности в сельскохозяйственной, строительной технике. Обрел силу с 1955 года. Применялся для жидкостей атмосферных, турбированных силовых агрегатов с повышенной компрессией рабочих цилиндров, где присутствует острая необходимость в эффективной защите от коррозии, образования отложений. Имеется полная совместимость с видами топлива, содержащими повышенное количество серной составляющей.

CD-2

Следующая эволюционная ступень прошлого стандарта. Класс появился на свет в 1985 году и регламентирует моторные жидкости, применяемые в двухтактных силовых агрегатах высокой и сверхвысокой мощности. Масла, подпадающие под категорию применялись в сельскохозяйственной, грузовой технике. Благодаря нововведению, повышены основные требования к эффективности защиты от преждевременного износа, образования вредных отложений.

CE

Новая ступень развития введена в 1983 году, распространяется на автомобили более поздних выпусков. Пакет документов включал в себя допуски к эксплуатации на сверхмощных, высокооборотистых моторах с турбонагнетателем и без него, а также конструкциях, работающих при критических нагрузках. Стандарт заменяет все ранее введенные.

CF (2-4)

Стандарты комиссии введены с 1990 по 1994 годы, характеризуются повышенной защитой высокооборотистых, турбированных моторов, работающих на топливе с содержанием серы более 0,5%. Разрешается эксплуатация на форсированных конструкциях. Прокачка жидкости может осуществляться при помощи компрессора, турбонагнетателя. Разрешается использование в машинах, где применим стандарт CD.

CF 4

Регламент 1990 года, определяет характеристики моторного масла для использования в четырехтактных, высокооборотистых дизельных установках, эксплуатируемых на тягачах, автобусах. Разновидность жидкостей идеально подходит для техники работающей в дальнобойном режиме.

Дополнительно регламентируется содержанием высокоэффективных присадок, гарантирующих уменьшение процента угарности, защиту от образования отложений цилиндропоршневой группы. В особенных случаях может применяться дополнительный индекс, гарантирующий совместимость с бензиновыми двигателями.

CF 2

Далее на очереди родственная ветвь, характеризующая жидкости, применяемые в двухтактных дизельных установках, рассчитанных на тяжёлый режим эксплуатации.

Стандарт вступил в силу в 1994 году, обеспечивает содержание присадок, снижающих образование отложений.

CG 4

Действующий стандарт, представленный публике в 1995 году. Жидкости, подпадающие под юрисдикцию документа, предназначаются для четырехтактных силовых установок, работающих на дизельном топливе, устанавливаемых в автобусах, грузовиках, мощных тягачах, предназначенных для использования на шоссе. Классифицируют изделия, которые совместимы с различными видами дизельного топлива. Изначальным критерием для создания было утверждение США современных требований к экологичности, экономичности GSM.

Стандарт не получил распространения в странах Азии ввиду высокой зависимости ресурса лубриканта от качества используемого топлива.

CH 4

Введён в эксплуатацию с 1998 года. Применим для машин, выпущенных после появления регламента. Повышенная требовательность к качеству топлива, позволяет применение с горючими, в составе которых более 0,5% серы. Также имеется пакет нормативных актов, регулирующих содержание противоизносных, противоокислительных, моющих присадок. Жидкости могут быть использованы в качестве заменителя, устаревших стандартов.

CI 4

Один из последних стандартов, введённых в конце 2002 года, характеризует класс жидкостей, применяемых для новых модификаций дизельных силовых агрегатов с установленным типом впрыска любого образца. Также в характеристики жидкостей внесены изменения касательно качества моющих вдобавок. Дополнительно имеется несколько ограничений по проценту угара масла. Ужесточает нормы холодной прокачиваемости, за счёт более текучих составов.

CI 4+

Обновлённая версия прошлого акта, ограничивает количество выделяемой сажи, понижает процент испаряемости.

CG 4

Самый современный пакет, действующий с 2006 года. Обновление разрабатывалась для двигателей, работающих при повышенных нагрузках. CG 4 строго лимитирует процентное содержание золы, серы, фосфора. Подходит для всех силовых установок, выпускаемых по сегодняшний день.

EC

Самый новый образец типа моторных масел, который обладает полным рядом характеристик, соответствующих флагманским требованиям мировой общественности к энергосбережению.

Классификации общества автомобильных инженеров Америки (SAE)

Что такое классификация моторных масел по SAE? Организация со второй половины XX века занимается разработкой и усовершенствованием стандартов распределения моторных масел по вязкости. На сегодняшний день полный список насчитывает более 10 отдельных типов масел, которые отличаются по вязкости и температурным характеристикам.

Таблица характеристик выглядит таким образом.

Температурный режим °ССпецификация SAE
Жидкости круглогодичного применения
-40/+400w20; 0w30
-35/+405w20; 5w30
-30/+40 и выше10w30; 10w40
-25/+40 и выше15w40
-20/+40 и выше20w50
Жидкости ограниченного применения
-30/+2010w
-20/+3020w
0/+4030
+5/+4040
+10/+4050

Примечательно, что вышеуказанные пределы и рекомендации имеют силу только в случаях отсутствия на силовых установках оборудования, облегчающего процесс запуска. Также температурные режимы рекомендуемые ассоциацией должны рассматриваться исключительно как общие рекомендации. Непосредственное назначение каждого типа жидкости для конкретного автомобиля выполняется самим производителем.

ACEA

Что такое классификация моторных масел по ACEA? Европейская ассоциация производителей транспортных средств в 2008 году интегрировала обновлённую систему классификации лубрикантов, которая значительно отличается от устаревших.

Система разделения жидкостей по типам, а также непосредственно категории претерпели значительные метаморфозы ввиду чего, обновлённый список характеристик и обозначений стал выглядеть более понятно для потребителя. На введение новых требований в значительной мере повлияло появление класса Euro 4.

A5/ B5

Категория жидкостей приспособлена для работы с длительным интервалом замены. Разрешается эксплуатация в дизелях, бензиновых топливных установках, работающих в умеренном режиме.

C1

Характеризует смазки, устойчивые к механической деструкции, совместимые с установками каталитических нейтрализаторов. Отдельно стоит упомянуть, что жидкости данной категории имеют самое маленькое содержание серы, фосфора, общей сульфатной зольности. Запрещается эксплуатация в определенных ситуациях, ограниченных изготовителем.

C2

Допускается использование жидкости, подпадающих под разряд, в форсированных дизельных, бензиновых агрегатах, оборудованных сажевыми фильтрами, трехсоставными нейтрализаторами. Отличаются увеличением срока эксплуатации сажевых фильтров, снижают расход топлива.

C3

Тоже что и C2. Накладывает дополнительное ограничение по установкам сажевых фильтров.

C4

Категория предназначена для агрегатов, функционирующих на любом топливе, с предустановленными конструкциями очистки выхлопных газов, которые требуют сниженного содержания серных, зольных составляющих.

Е4

Отличается от предыдущих стандартов полным соответствием классу Евро-5, увеличенным интервалом замены. Используются для силовых установок с аппаратами рециркуляции выхлопа.

Е6

Требование применимо к высокооборотистым дизелям, которые работают в сверхтяжелых условиях. Имеется полная поддержка класса Евро-5. Соответствует самым передовым разработкам в сфере экологии.

Е7

Тоже что и Е6, дополнительно повышены показатели износоустойчивости, более высокая совместимость с системами турбонагнетателей, снижено количество сажевых отложений.

Е9

Превосходная устойчивость к механической деструкции, максимально эффективная защита мотора от преждевременного износа, появления отложений. Рекомендуется использовать на высоконагруженных, оборотистых дизельных установках. Полное соответствие классу Euro 5. Единственный недостаток — повышенные требования к содержанию серы в топливе.

ILSAC

Что такое классификация моторных масел по ILSAC? Международный комитет по апробации, стандартизации масел. Основан благодаря сотрудничеству американских, японских автопроизводителей, основная цель которых ужесточить требования к производимым лубрикантам.

Данная разновидность стандарта является своего рода подклассом сертификата API.

Однако имеется ряд определённых отличий.

  • повышенные требования к стойкости сдвига;
  • обязательное условие экономии горючего;
  • улучшение фильтрации при минусовых температурах;
  • сниженный процент пенообразования;
  • значи

виды, вязкость, свойства, характеристики смазочного материала

Смазочный продукт и20 относится к категории индустриальных масел, представляющие собой нефтяные вещества, полученные в результате дистилляции, с различными степенями вязкости. Получают его в результате глубокой нефтяной переработки.

В производственной сфере процесс изготовления может производиться несколькими способами:

  • фракционная обработка мазута с дистилляцией;
  • выработка гудронов с деасфальтизацией;
  • методом остаточной выработки с подбором степени вязкости.

Все смазывающие составы регламентируются по ГОСТ 2079988. Согласно принятому стандарту, они разделяются на следующие виды:

  1. Трансмиссионные масла, применяемые для узловых систем авто;
  2. Индустриальные масла и20б, и20а;
  3. Моторные смазки для двигателя транспортного средства;
  4. Реактивные добавки, применяемые для смазывания турбореактивных систем.

Для стационарной производственной техники, расположенной в отапливаемых зонах помещения, используют масла с низким уровнем вязкости и небольшим количеством присадок. Они используются для смазывания текстильных, швейных машин и узловых механизмов измерительных приборов.

Что касается масел с высокой степенью вязкостью, то их чаще всего используют для открытых систем для смазывания подшипников, компрессоров и зажимов станков. Применение индустриальной жидкости с набором присадок способствует нормализации давления, уменьшению рывков, улучшению работы гидравлической системы. Кроме того, смазки, защищают металлические поверхности от коррозийного воздействия.

Добавки с низким уровнем качества используют для закалки металла, для пропитки и защиты от коррозии. Очень часто производственные операции, связанные с машиностроением (полировкой, зачисткой, шлифовкой) выполняются в смазочных ваннах. В качестве смазывающего вещества используют жидкости и20. Применяются они и для консервации металла. Водно-масляные консистенции на базе продукта и20 актуальны для охлаждения. Низкосортные масла используют для смазывания опалубки железобетонных конструкций.

Индустриальные масла выпускаются в объемных емкостях – это могут быть канистры на 1 л или бочки на 200 л. Для транспортировки используют железнодорожные цистерны. Стоимость ИМ зависит от изготовителя и уровня исполнения, а также наличия добавок.

Особенности индустриальных масел

Они полностью соответствуют классификации ISO и ГОСТ. Их принято выделять как отдельную категорию смазочных продуктов. Индустриальные добавки применяются для авиационных, гидравлических, автомобильных масел. Главным их преимуществом является приспособленность к эксплуатации в тепловых зонах. То есть жидкости активно применяются для стационарных установок. Химический состав отличается от масел, используемых для автомобильных нужд.

Если речь идет о базовом продукте для создания масляных веществ под группой и20, то здесь стоит выделить нефть с низким или средним уровнем содержании серы. На предварительном этапе для создания жидкости выполняются работы по глубокой переработке нефти.

Специалисты выделяют несколько технологий по изготовлению смазочных продуктов и20:

  • Дистилляция – переработка мазута вакуумным путем;
  • Обработка гудронов с высоким содержанием деасфальтизатов;
  • Технология компаундирования – масляное соединение, полученное в результате первых двух способов при соблюдении показателей вязкости и плотности.

Свойства и характеристики индустриальных масел идентичны нефтяным, полученным в результате дистилляции с различным уровнем вязкости. В отраслевом производстве необходимо применять легкие и дешевые смазочные составы, без добавления синтетических компонентов и присадок. Поскольку для оборудований, применяемых в закрытых помещениях, невозможно использовать сезонные масла. Поэтому рекомендуется смазывать оборудование ИМ и20а – оно хорошо выдерживает температурные нагрузки.

Маркировка и специфика классификации

В народе и20а прозвали «веретенкой». Если раньше смазочные продукты без добавления присадок в основном применяли для работы малонагруженных и быстроходных подшипников веретен, то на данный момент тенденция изменилась. Использование устаревшего названия привело к тому, что люди начали неверно обозначать масляные продукты. В некоторых ситуациях характеристики и свойства жидкости значительно отличаются от «веретенного масла». Поэтому необходимо различать «веретенку» и аналоги.

Смазочные вещества принято разделять на несколько групп, согласно:

  1. Области применения;
  2. Эксплуатационным характеристикам и назначениям.

Специфику и общие характеристики масла предопределяют стандартизированные нормы ISO. Международной организацией было предложено несколько вариантов оформления стандартов масляных продуктов с требованиями ГОСТ. Таким образом была разработана маркировка, состоящая из знаков и чисел, разделенных дефисом.

Прописная буква «и» расположена в качестве первого знака, объединяющего марки по составу, характеристикам и назначению. К примеру, число 30 обозначает степень вязкости. Индекс 30 указывает на принадлежность масла к вязкости по ГОСТ.

Масляные вещества с определенными свойствами используются согласно коэффициенту вязкости. Высокая степень вязкости позволяет создавать масло для механизмов и систем с низкими показателями скорости. Соответственно, прописная буква «а» указывает на принадлежность смазочного продукта к нефтяным маслам без добавления присадок. В основном они применяются для смазывания механизмов с целью их защиты от окисления и коррозии.

Области применения индустриального масла

ИМ и20 используется для уменьшения трения, а также замедления процесса изнашивания в следующих механизмах:

  • металлопрокатные станы;
  • станки для резки металла;
  • насосы;
  • вентиляторы;
  • текстильные устройства;
  • производственное оборудование.

Масло и20а оптимально применяется для устройств со средними показателями давления между трущимися деталями и для механизмов, в которых движущиеся детали активно соприкасаются друг с другом. В этом случае также могут потребоваться увеличенные заправки масляной жидкости по причине высокого расхода.

ИМ обладают свойством отведения тепла от трущихся элементов системы и предохраняют их от коррозийного воздействия. Прочищают металлические изделия от отложений и загрязнений и не допускают формирования пены.

ИМ быстро «стареет». С течением времени оно начинает окисляться и загрязняться продуктами отходов, а также терять свойство эластичности. Поэтому специалисты рекомендуют выполнять очистку и фильтрацию индустриальной жидкости или же менять ее на новую.

Свойства индустриального масла

Масляные продукты с высокой степенью вязкости используются для открытых систем и узлов. Технические характеристики и обозначение полностью соответствуют государственным стандартам ГОСТ и международной классификации ISO. Здесь четко указаны характеристики, свойства и маркировки:

Вязкость

Этот показатель влияет на качество смазывания. Степень вязкости не должна изменяться в момент увеличения температурных показателей при максимальных режимах эксплуатации. Стабилизация вязкости выполняется при 40°C. ИМ и20а должно иметь показатели вязкости 29-35 мм2/с.

Плотность

Не должна превышать более 890 кг/м3 при температуре 20°C. Эти показатели плотности связаны с производительной мощностью, развиваемой гидравлическими механизмами.

Температура застывания

Определяется для условий статичного хранения, перевозки, а также процесса заливки. Смазка и20а застывает при температуре -15°C. Тем не менее этот показатель может быть увеличен, если использовать присадки.

Цвет

Для вычисления применяется колориметр ЦНТ, который способен определять пригодность масла и его степень очистки. Смазка и20а должна иметь не более 2 единиц по ЦНТ. Если показатели увеличены, и жидкость начала изменять свой окрас, значит она начала окисляться.

Зольность

Демонстрирует пропорцию между твердыми частицами вещества к его общей массе после сжигания. Жидкость и20а должна иметь показатели зольности не более 0,005%, что указывает на ее чистоту.

Показатели кислотности

Указывают на уровень и степень очистки. В целях повышенной безопасности хранения необходимо проводить измерения кислотности, поскольку серные вещества и окислы изнашивают узлы и металлические детали. Показатель кислотности для масла и20а составляет 0,03 мг/1 г жидкости.

Стабильные характеристики против окисления

ИМ окисляется под действием кислорода. Низкий уровень стабильности этого показателя приводит к дестабилизации. Для повышения стабилизатора кислотности применяют добавки и присадки. Масло и20а должно иметь стабильность около 0,3 мг/1 г вещества.

Характеристики нефтяной жидкости — PetroWiki

Нефтяные резервуары классифицируются в зависимости от типа жидкости. Есть три широких класса масел. В порядке увеличения молекулярной массы это летучие масла, мазуты и тяжелые масла. Коллекторы с тяжелой нефтью не представляют особого интереса во время истощения давления, потому что они обычно дают лишь незначительное количество нефти из-за низкого содержания растворенного газа и высокой вязкости флюидов. Отличительной характеристикой летучих масел и мазутов является содержание их равновесных газов в маслобаках.Равновесные газы, высвобождаемые из летучих масел, содержат значительные запасы жидкостей или конденсируемых жидкостей, тогда как газы мазутных нефтей содержат незначительное количество жидкостей из резервуаров. Хотя это различие приводит лишь к немного разным стратегиям восстановления, оно приводит к очень разным методам анализа и требованиям математического моделирования.

Характеристики летучих и мазутных жидкостей

Спектр нефтяных жидкостей является градационным. Не существует строгого определения летучих и мазутных масел; есть только общие рекомендации и характеристики.Несмотря на отсутствие точности и иногда возникающую путаницу, классификация весьма полезна и популярна.

Молекулярная масса — полезный критерий. Черные масла обычно имеют молекулярную массу от 70 до 150, но могут достигать 190-210. Напротив, летучие масла имеют меньшую молекулярную массу, чем черные масла, и обычно составляют от 43 до 70. Масла с молекулярной массой более 210 обычно классифицируются как тяжелые нефти. Жидкости с молекулярной массой менее 43 обычно являются газами, которые включают газовый конденсат, влажные газы и сухие газы.Молекулярная масса 43 означает нижний предел молекулярной массы летучих масел.

Черные и летучие масла иногда подразделяются на разные типы жидкостей. Например, летучие масла включают жидкости, близкие к критическим, и масла с высокой усадкой. Жидкости, близкие к критическим, представляют собой легкие летучие масла и могут включать некоторые очень богатые конденсаты. Масла с высокой степенью усадки представляют собой высокомолекулярную часть летучих масел и могут включать некоторые легкие черные масла.

Летучие и мазутные масла характеризуются рядом различных свойств. В таблице 1 приведены их характеристики. Эта таблица включает свойства всего диапазона нефтяных жидкостей, включая газы.

Определяющим свойством, которое отличает черные и летучие масла, является содержание летучих масел в их равновесных газах. Содержание летучей нефти в газе представляет собой его конденсируемую жидкую часть. Конденсируемый относится к части, которая конденсируется или «выпадает» во время снижения давления и, в конечном итоге, образует жидкость в резервуаре.Конденсация может происходить внутри коллектора, когда газ проходит через арендованные сепараторы. С физической точки зрения в этой фракции преобладают промежуточные углеводородные компоненты, обычно от C 2 до C 7 . Летучая нефть также называется арендным конденсатом или дистиллятом. Газовые конденсаты и влажные газы также содержат летучую нефть. Летучая нефть традиционно включается в состав запасов и добычи сырой нефти. Его не следует путать с сжиженным природным газом, и он явно отличается от него.Сжиженный природный газ получают на газоперерабатывающем заводе и называют растительными продуктами.

Содержание летучей нефти в газах количественно выражается с точки зрения их отношения летучая нефть / газ, обычно выражается в единицах STB / MMscf или складских резервуарах м 3 на стандартный метр 3 сепараторного газа. Отношение летучей нефти / газа в равновесных газах мазута обычно составляет менее 1-10 STB / MMscf (приблизительно от 0,04 до 0,4 галлона / Mscf). Содержание летучей нефти в этих газах настолько низкое, что его обычно не принимают во внимание.Напротив, содержание летучих масел в газах из летучих масел намного больше. Их соотношение летучая нефть / газ обычно составляет от 10 до 300 STB / MMscf или от 0,4 до 8 галлонов / Mscf.

Некоторые эталонные свойства могут быть соотнесены с начальной молекулярной массой пластового флюида. На рис. 1 показан график начального коэффициента объема пласта (FVF) и начального отношения растворенного газа к нефти (GOR) как функции молекулярной массы пластового флюида для 36 пластовых флюидов. По оси абсцисс на рис.1 имеет молекулярную массу от 15 до 180. Этот диапазон молекулярных масс охватывает весь спектр нефтяных жидкостей, от сухих газов до тяжелых нефтей.

  • Рис. 1 — (a) Начальный коэффициент объема пласта (FVF) и (b) начальный растворенный газовый фактор как функция от начальной молекулярной массы флюида.

Летучие масла имеют исходную FVF масла в диапазоне от 1,5 до 3,0. Для черных нефтей начальная FVF масла находится в диапазоне 1.1 к 1,5. Летучие масла имеют начальный газовый фактор в диапазоне от 900 до 3500 scf / STB. Черные масла показывают начальный газовый фактор в диапазоне от 200 до 900 стандартных кубических футов на стандартную баррель. Эти отношения определяют молекулярную массу как надежный коррелирующий параметр. McCain [1] успешно применил содержание гептана плюс в качестве коррелирующего параметра.

Обратная величина FVF по нефти дает меру исходной нефти в пласте (OOIP) на единицу объема порового пространства коллектора. Поскольку FVF масла больше для летучих масел, чем для мазута, последние дают больше OOIP на единицу объема.Коллекторы с черной нефтью содержат от 850 до 1130 STB / акр-фут (объем), в то время как коллекторы с летучей нефтью содержат меньше, обычно от 400 до 850 STB / акр-фут.

Хотя коллекторы с летучей нефтью содержат меньше нефти на единицу объема, они обычно дают немного более высокие нефтеотдачи, чем коллекторы с черной нефтью из-за более высокого содержания растворенного газа и более низкой вязкости нефти. В конечном итоге коллекторы летучей нефти могут давать большие запасы нефти, чем коллекторы черной нефти. Легкие мазуты и тяжелые летучие масла являются одними из наиболее экономически привлекательных пластовых флюидов.

Не проводилось систематических исследований для определения относительного процента залежей мазута и летучей нефти; однако исследование 500 крупнейших в мире коллекторов показывает, что в группе преобладают коллекторы черной нефти. [2] Одна из причин, по которой нефтяных коллекторов больше, чем летучих, состоит в том, что последние обычно расположены на большей глубине, чем первые. По мере того как разведка продолжает углубляться, можно ожидать открытия новых коллекторов летучей нефти.

Свойства масляной жидкости

Черные и летучие масла, а также другие нефтяные жидкости обычно характеризуются стандартными параметрами давления / объема / температуры (PVT):

Эти свойства флюида, в дополнение к некоторым другим, являются предпосылками для широкого спектра инженерных расчетов, включая оценку исходной нефти на месте (OOIP) и исходного газа в пласте (OGIP), а также расчетов материального баланса.

Таблица 2 таблицы и Рис.2 представляет стандартные параметры PVT как функцию давления для мазута из коллектора западного Техаса, расположенного на глубине 6700 футов, с начальным давлением 3100 фунтов на квадратный дюйм и температурой 131 ° F. Перечислены только свойства PVT ниже 2000 фунтов на квадратный дюйм. Жидкость показывала точку кипения при давлении около 1688 фунтов на квадратный дюйм и имела молекулярную массу 81. Таблица 3 суммирует ее композиционный анализ. Жидкость имеет начальную FVF масла 1,467 RB / STB и растворенный газовый фактор 838 scf / STB.Равновесный газ содержит незначительное количество испаряющейся нефти. На рис. 3 показаны зависимости вязкости нефти и газа от давления.

  • Рис. 2 — Стандартные PVT-свойства как функция давления для мазута западного Техаса.

  • Рис. 3 — Вязкость нефти и газа как функция давления для мазута западного Техаса.

Таблица 4 таблицы и Рис.4 отображает стандартные параметры PVT для летучей нефти из северо-центрального резервуара Луизианы, расположенного на глубине примерно 10 000 футов, с начальным давлением 5070 фунтов на квадратный дюйм и температурой 246 ° F. [3] [4] Жидкость показывала точку кипения при приблизительно 4677 фунтов на квадратный дюйм и имела молекулярную массу 47. Таблица 5 суммирует исходный состав флюида. Жидкость имеет начальную FVF масла 2,704 RB / STB и растворенный газовый фактор 2,909 scf / STB. Газ до образования пузырьков имел отношение улетучивающейся нефти / газа приблизительно 120 STB / MMscf.Отношение улетучивающаяся нефть / газ уменьшается с увеличением давления до тех пор, пока не будет достигнуто давление 998 фунтов на квадратный дюйм. При давлениях от 998 до 598 фунтов на квадратный дюйм соотношение улетучивающаяся нефть / газ немного увеличивается.

  • Рис. 4 — Стандартные PVT-свойства как функция давления для летучего масла Луизианы.

Стандартные PVT-параметры летучих и мазутных масел определены экспериментально с использованием различных лабораторных процедур.Черные масла оцениваются с помощью эксперимента дифференциального испарения (DV); [5] [6] Напротив, летучие масла оцениваются с постоянным истощением объема (CVD). [7] [8] Иногда, однако, для летучих масел используется специальный эксперимент DV [9] вместо эксперимента CVD. Специализированный эксперимент DV включает этап измерения содержания летучей нефти в равновесных газах.

Стандартные параметры PVT для мазута обычно указываются в коммерческих отчетах PVT.Маккейн приводит несколько примеров отчетов PVT. [10] Сообщаемые параметры PVT, однако, могут или не могут быть скорректированы с учетом эффектов поверхностных разделителей. Поверхностные сепараторы максимизируют выход жидкости из резервуаров при прохождении через них жидкости. Масло FVF и растворенный газовый фактор с установленными свойствами обычно ниже, чем нескорректированные свойства. Если в отчете PVT указаны настроенные параметры, дальнейшая корректировка не требуется. Если указаны только необработанные параметры, то необходима корректировка.> Различные эмпирические методы используются для корректировки стандартных параметров PVT с учетом эффектов разделителей. [11] [12] [5] Обычно коррекция очень важна. Например, нескорректированная точка кипения нефти FVF и растворенный газовый фактор для примера мазута в Таблице 1 составляют 1,584 RB / бочки основного резервуара (STB) и 1 007 scf / STB, соответственно. При настройке сепараторов на 100 фунтов на квадратный дюйм соответствующие FVF масла и растворенный газовый фактор составляют 1,467 RB / STB и 838.5 scf / STB, что отражает увеличение извлечения жидкости из резервуара. Неспособность скорректировать стандартные параметры PVT для сепараторов может привести к существенным ошибкам в последующих инженерных расчетах коллектора, включая объемные вычисления OOIP и OGIP. Летучие масла даже более чувствительны к воздействию сепараторов, чем черные масла. Однако летучие масла подвергаются совершенно другой лабораторной процедуре измерения.

Стандартные параметры PVT для летучих масел редко приводятся в коммерческих PVT отчетах.Они должны быть рассчитаны на основе измерений CVD. Три метода расчета стандартных параметров PVT в порядке возрастания сложности:

Алгоритм Уолша-Таулера использует данные восстановления непосредственно из измерения CVD и вычисляет соответствующие свойства. Этот метод подходит для расчета электронных таблиц, он быстрый и простой. В отличие от этого, метод Уитсона-Торпа использует данные о равновесном составе газа и вычисляет свойства с помощью значений K для низкого давления Стэндинга [16] и корреляции плотности резервуара-жидкости, такой как EOS Алани-Кеннеди. [17] Этот метод требует итерационных вычислений вспышки K-значения. Хотя этот метод требует больших вычислительных ресурсов, чем алгоритм Уолша-Таулера, он более универсален, поскольку позволяет использовать произвольные условия разделителя. Метод EOS требует больших вычислительных ресурсов, чем другие методы. Этот метод настраивает кубический EOS на поведение сопутствующей фазы, а затем использует EOS для численного моделирования CVD и оценки параметров PVT. В этом методе регулярно используется коммерческое ПО.Несмотря на различия, методы дают практически идентичные результаты.

Список литературы

  1. ↑ McCain Jr., W.D. 1994. Тяжелые компоненты контролируют поведение пластовой жидкости. J Pet Technol 46 (9): 746-750. SPE-28214-PA. http://dx.doi.org/10.2118/28214-PA. +
  2. ↑ Carmalt, S.W. и Сент-Джон Б. 1984. Гигантские месторождения нефти и газа. В будущее нефтяных провинций мира, под ред. M.T. Halbouty. American Assn. геологов-нефтяников.
  3. ↑ Корделл, Дж. К. и Эберт, К.К. 1965. Сравнение прогнозируемых и фактических характеристик пласта, добывающего летучую сырую нефть. J Pet Technol 17 (11): 1291-1293. SPE-1209-PA. http://dx.doi.org/10.2118/1209-PA
  4. ↑ Джейкоби, Р.Х. и Берри, В.Дж. Jr. 1957. Метод прогнозирования истощения пласта, добывающего летучую сырую нефть. Пер., AIME 210: 27.
  5. 5,0 5,1 Эмикс, Дж. У., Басс, Д. М., и Уайтинг, Р. Л. 1960. Разработка нефтяных пластов — Физические свойства.Нью-Йорк: McGraw-Hill Book Co. Inc.
  6. ↑ Додсон, К.Р., Гудвилл, Д., и Майер, Э. 1953. Применение лабораторных данных PVT к проблемам разработки месторождений. Пер., AIME 198: 287.
  7. 7,0 7,1 Whitson, C.H. и Торп, С. 1983. Оценка данных об истощении постоянного объема. J Pet Technol 35 (3): 610-620. SPE-10067-PA. http://dx.doi.org/10.2118/10067-PA
  8. ↑ Ахмед, Т. 1989. Поведение углеводородной фазы. Хьюстон, Техас: Gulf Publishing Co.
  9. ↑ Reudelhuber, F.O. и Хайндс, Р.Ф. 1957. Метод баланса материалов для прогнозирования извлечения летучей нефти из приводных резервуаров истощения. Пер., AIME 210, 19.
  10. ↑ McCain, W.D. 1990. Свойства нефтяных жидкостей. Талса, Оклахома: PennWell Publishing Co.
  11. ↑ Моисей, П.Л. 1986. Технические приложения фазового поведения сырой нефти и конденсатных систем (включая сопутствующие документы 16046, 16177, 16390, 16440, 19214 и 19893). J Pet Technol 38 (7): 715-723.SPE-15835-PA. http://dx.doi.org/10.2118/15835-PA
  12. ↑ Поэттманн, Ф.Х. и Томпсон, Р.С.: «Обсуждение инженерных приложений фазового поведения сырой нефти и конденсатных систем», JPT (ноябрь 1986 г.) 1263.
  13. ↑ Уолш М.П. и Тоулер, Б.Ф. 1995. Метод вычисляет PVT-свойства газовых конденсатов. Oil & Gas J. (31 июля): 83.
  14. ↑ Coats, K.H. и Смарт, Г. 1986. Применение основанной на регрессии программы EOS PVT к лабораторным данным. SPE Res Eng 1 (3): 277-299.SPE-11197-PA. http://dx.doi.org/10.2118/11197-PA
  15. ↑ Кук, Р. Э., Якоби, Р. Х., и Рамеш, А. Б. 1974. Имитатор пласта бета-типа для аппроксимации композиционных эффектов во время закачки газа. Журнал Общества инженеров-нефтяников 14 (5): 471-481. SPE-4272-PA. http://dx.doi.org/10.2118/4272-PA
  16. ↑ Standing, M.B. 1979. Набор уравнений для расчета соотношений равновесия системы сырая нефть / природный газ при давлениях ниже 1000 фунтов на квадратный дюйм. J Pet Technol 31 (9): 1193-1195. SPE-7903-PA.http://dx.doi.org/10.2118/7903-PA.
  17. ↑ Алани, Г.Х. и Кеннеди, Х. 1960. Объемы жидких углеводородов при высоких температурах и давлениях. Пер., AIME 219, 288.

Интересные статьи в OnePetro

Используйте этот раздел, чтобы перечислить статьи в OnePetro, которые читатель, желающий узнать больше, обязательно должен прочитать

Внешние ссылки

Используйте этот раздел, чтобы предоставить ссылки на соответствующие материалы на других веб-сайтах, кроме PetroWiki и OnePetro.

См. Также

Характеристика сырой нефти

Материальный баланс в нефтяных пластах

PEH: Масло_ резервуар, первичный_привод_ механизмы

типов масла | ответ.recovery.noaa.gov

Мы думаем о масле как о едином веществе, но на самом деле существует много разных видов масла. Типы масел отличаются друг от друга по вязкости, летучести и токсичности. Вязкость означает сопротивление масла течению. Летучесть означает, насколько быстро масло испаряется в воздухе. Токсичность означает, насколько токсично или ядовито масло для людей или других организмов.

При разливе различные виды масла могут по-разному влиять на окружающую среду.Они также различаются тем, насколько сложно их убирать.

Лица, занимающиеся ликвидацией разливов (и Свод федеральных правил), группируют нефть в пять основных групп , которые вы можете увидеть ниже, вместе с общим обзором того, как каждая группа может повлиять на береговую линию. Специалисты по планированию нефтяных разливов и лица, отвечающие за реагирование на них, нуждающиеся в дополнительной технической информации о характеристиках различных масел, могут найти на странице Oil Fact Sheets.

Группа 1: нестойкие легкие масла (бензин, конденсат)

  • Легколетучий (должен испариться в течение 1-2 дней).
  • Не оставлять следов после испарения.
  • Высокие концентрации токсичных (растворимых) соединений.
  • Локальные серьезные воздействия на толщу воды и приливные ресурсы.
  • Очистка может быть опасной из-за высокой воспламеняемости и токсичности воздуха.

Группа 2: стойкие легкие масла (дизельное топливо, мазут № 2, легкая нефть)

  • Умеренно летучий; оставит остатки (до одной трети разлитого) через несколько дней.
  • Умеренные концентрации токсичных (растворимых) соединений.
  • Будет «разливать нефть» приливные ресурсы с долгосрочным потенциалом загрязнения.
  • Очистка может быть очень эффективной.

Группа 3: Средние масла (Большинство сырой нефти, IFO 180)

  • Около одной трети испарится в течение 24 часов.
  • Нефтяное загрязнение приливных зон может быть серьезным и долгосрочным.
  • Воздействие нефти на водоплавающих птиц и пушных млекопитающих может быть очень серьезным.
  • Очистка наиболее эффективна, если проводится быстро.

Группа 4: Тяжелая нефть (Тяжелая сырая нефть, мазут № 6, бункер C)

  • Незначительное испарение или растворение или их отсутствие.
  • Вероятно сильное загрязнение приливных территорий.
  • Тяжелые воздействия на водоплавающих птиц и пушных млекопитающих (покрытие и проглатывание).
  • Возможно длительное загрязнение отложений.
  • Погода очень медленно.
  • Очистка береговой линии трудна при любых условиях.

Группа 5: Минеральные масла (шламовые масла, остаточные масла)

  • Тонет в воде.
  • При разливе на берег нефть ведет себя так же, как нефть группы 4.
  • При разливе в воде нефть обычно тонет достаточно быстро, чтобы не произошло загрязнения береговой линии.
  • При погружении в воду не испаряется и не растворяется.
  • Тяжелые воздействия на животных, обитающих в донных отложениях, таких как мидии.
  • Возможно длительное загрязнение отложений.
  • Можно удалить со дна водоема выемкой грунта.

Характеристики растительных масел — Ботанический онлайн

В этом разделе вы найдете информацию о файлах cookie, которые могут быть созданы с помощью этого веб-сервиса. Botanical-online, как и большинство других веб-сайтов в Интернете, использует свои собственные и сторонние файлы cookie для улучшения взаимодействия с пользователем и обеспечения доступного и адаптированного просмотра. Ниже вы найдете подробную информацию о файлах cookie, типах файлов cookie, используемых на этом веб-сайте, о том, как отключить их в своем браузере и как заблокировать их во время просмотра, таким образом, соблюдение нормативных требований в отношении файлов cookie (Закон 34/2002, г. 11 июля об услугах информационного общества и электронной коммерции (LSSI), который переносит Директиву 2009/136 / CE, также называемую «Директивой о файлах cookie», в испанское законодательство).

Что такое файлы cookie?

Файлы cookie — это текстовые файлы, которые браузеры или устройства создают при посещении веб-сайтов в Интернете. Они используются для хранения информации о посещении и соответствуют следующим требованиям:

  • Для обеспечения правильной работы веб-сайта.
  • Для установки уровней защиты пользователей от кибератак.
  • Для сохранения предпочтений просмотра.
  • Чтобы узнать опыт просмотра пользователем
  • Для сбора анонимной статистической информации для повышения качества.
  • Предлагать персонализированный рекламный контент

Файлы cookie связаны только с анонимным пользователем. Компьютер или устройство не содержат ссылок, раскрывающих личные данные. В любое время можно получить доступ к настройкам браузера, чтобы изменить и / или заблокировать установку отправленных файлов cookie, не препятствуя доступу к контенту. Однако сообщается, что это может повлиять на качество работы служб.

Какую информацию хранит файл cookie?

Файлы cookie обычно не хранят конфиденциальную информацию о человеке, такую ​​как кредитные карты, банковские реквизиты, фотографии, личную информацию и т. Д.Данные, которые они хранят, носят технический характер.

Какие типы файлов cookie существуют?

Существует 2 типа файлов cookie в зависимости от их управления:

  • Собственные файлы cookie: те, которые отправляются в браузер или устройство и управляются исключительно нами для наилучшего функционирования веб-сайта.
  • Сторонние файлы cookie: те, которые отправляются в браузер или на устройство и управляются третьими сторонами. Они созданы не в нашем домене. У нас нет доступа к сохраненным данным (например, нажатием кнопок социальных сетей или просмотром видео, размещенных на другом веб-сайте), которые устанавливаются другим доменом нашего веб-сайта.Мы не можем получить доступ к данным, хранящимся в файлах cookie других веб-сайтов, когда вы просматриваете вышеупомянутые веб-сайты.

Какие файлы cookie используются на этом веб-сайте?

При просмотре Botanical-online будут созданы собственные и сторонние файлы cookie. Они используются для хранения и управления информацией о конфигурации навигации, веб-аналитики и персонализации рекламы. Сохраненные данные являются техническими и ни в коем случае не личной информацией для идентификации навигатора.

Ниже приведена таблица с идентификацией наиболее подходящих файлов cookie, используемых на этом веб-сайте, и их назначения:

Собственные файлы cookie

Имя файла cookie Назначение
aviso_idioma Принятие раздела уведомление (язык в соответствии с браузером посетителя).Технические файлы cookie.
tocplus_hidetoc Отображение или сбор содержания. Технические файлы cookie
adGzcDpEokBbCn
XztAIvbJNxM
sdLtvFO
Создает случайные буквенно-цифровые данные для защиты веб-сайта путем обнаружения и предотвращения вредоносных действий. Технические файлы cookie.

Сторонние файлы cookie

Имя файла cookie Назначение
_gid
_ga
_gat_gtag 90 Аналитическая функция для трафика сайта или аналитическая функция * gat_gtag 90Идентификаторы сохраняются для подсчета количества посещений, дат доступа, географического положения, а также других статистических функций. Аналитический cookie.
__gads Относится к рекламе, отображаемой на сайте. Рекламный файл cookie
IDE
DSID
СОГЛАСИЕ
NID
Создано службами Google (например, reCaptcha, Youtube, поиск. Технические файлы cookie.
Youtube Файлы cookie для интеграции видеосервиса YouTube на веб-сайт.Социальный файл cookie.

Как изменить настройки файлов cookie?

Вы можете ограничить, заблокировать или удалить файлы cookie Botanical-online или любой другой веб-сайт, используя свой интернет-браузер. У каждого браузера своя конфигурация. Вы можете увидеть, как действовать дальше, в разделе «Справка». Затем мы показываем список для работы с основными текущими браузерами:

Как изменить настройки файлов cookie на этом сайте?

Напоминаем, что вы можете в любое время просмотреть предпочтения относительно принятия или отказа от файлов cookie на этом сайте, щелкнув «Дополнительная информация» в сообщении о принятии или щелкнув «Политика использования файлов cookie», постоянно присутствующая на всех страницах. сайта.

Урожайность растительного масла, характеристики: Journey to Forever

Урожайность растительного масла
Масло из водорослей
Другие масличные культуры
Характеристики масел и сложных эфиров
Йодные значения
— Высокие йодные значения
— Говоря о погоде
— Резюме
Гидрогенизированное масло, шортенинг, маргарин
Стандарт качества рапсового масла топливо
Цетановые числа
Национальные стандарты для биодизеля
— стандарты и домашнее пивоварение
— стандартные испытания
Топливные свойства жиров и масел
Топливные свойства сложных эфиров
Жиры и масла — ресурсы

Урожайность растительного масла

По возрастанию По алфавиту
Урожай литров масла / га галлонов США / акр Урожай литров масла / га галлонов США / акр
кукуруза (кукуруза) 172 18 авокадо 2638 282
орех кешью 176 19 бразильский орех 2392 255
овес 217 23 календула 305 33
люпин 232 25 камелина 583 62
кенаф 273 29 орех кешью 176 19
календула 305 33 клещевина 1413 151
хлопок 325 35 год какао (какао) 1026 110
конопля 363 39 кокос 2689 287
соя 446 48 кофе 459 49
кофе 459 49 кориандр 536 57
льняное (льняное) 478 51 кукуруза (кукуруза) 172 18
лесной орех 482 51 хлопок 325 35 год
молочай 524 56 молочай 524 56
тыквенное семя 534 57 лесной орех 482 51
кориандр 536 57 конопля 363 39
горчичное зерно 572 61 ятрофа 1892 г. 202
камелина 583 62 жожоба 1818 г. 194
кунжут 696 74 кенаф 273 29
сафлор 779 83 льняное семя (лен) 478 51
рис 828 88 люпин 232 25
тунговое масло 940 100 орех макадамия 2246 240
подсолнечник 952 102 горчичное зерно 572 61
какао (какао) 1026 110 овес 217 23
арахис 1059 113 пальмовое масло 5950 635
мак опийный 1163 124 оливковый 1212 129
рапс 1190 127 мак опийный 1163 124
оливковый 1212 129 арахис 1059 113
клещевина 1413 151 орех пекан 1791 191
орех пекан 1791 191 тыквенное семя 534 57
жожоба 1818 г. 194 рапс 1190 127
ятрофа 1892 г. 202 рис 828 88
орех макадамия 2246 240 сафлор 779 83
бразильский орех 2392 255 кунжут 696 74
авокадо 2638 282 соя 446 48
кокос 2689 287 подсолнечник 952 102
пальмовое масло 5950 635 тунговое масло 940 100

Бесплатное отопление! Роджер Сандерс обновил свою популярную улучшенную версию обогревателя отработанного масла Mother Earth News, добавив много новой информации и новых опций.

Этот нагреватель отработанного масла решает все проблемы, которые затрудняли использование оригинальной версии MEN.

Дизайн Роджера прост и надежен — его легко собрать и использовать, он тихий, не требует электричества, его легко зажигать, легко чистить и легко контролировать, он имеет широкий диапазон нагрева и работает на отработанном растительном масле (WVO), а также на отработанном моторном масле. Это может сэкономить тысячи долларов на счетах за отопление.

Второе издание доступно в виде электронной книги в формате pdf, цена 22 доллара США.50. Полная инструкция своими руками — скачать ЗДЕСЬ .

Примечание : Это консервативные оценки — урожайность сильно различается. Эти данные собраны из множества источников. Если источники различаются, приводятся средние значения. Цифры урожайности наиболее полезны в качестве сравнительных оценок: высокоурожайная культура может быть не «лучше» (более подходящей), чем менее урожайная, это зависит от конкретной ситуации. — Кейт Аддисон, Handmade Projects, 2001.

Высокая урожайность — не единственный фактор в сельском хозяйстве, возможно, даже не самый важный фактор.Смотрите: Сколько топлива мы можем вырастить? Сколько земли потребуется?

Типовой отжим масла от 100 кг. масличных семян

Семена клещевины 50 кг
Копра 62 кг
Семена хлопка 13 кг
Ядро арахиса 42 кг
Горчица 35 кг
Ядро пальмы 36 кг
Плоды пальмы 20 кг
Рапс 37 кг
Кунжут 50 кг
Соевые бобы 14 кг
Подсолнечник 32 кг

Масло из водорослей

Урожайность водорослей не включена в таблицы урожайности, потому что, несмотря на всю шумиху вокруг урожайности 20 000 галлонов масла с акра и даже 100 000 галлонов с акра и так далее, биодизель из водорослей все еще остается чем-то будущего, а не настоящего.

По состоянию на конец 2011 года биодизель из водорослей не существует, за исключением нескольких лабораторных образцов. Есть некоторые обнадеживающие признаки, но технические препятствия остаются, пилотные проекты еще не осуществимы для производственных целей, а заявления о высокой урожайности никогда не были продемонстрированы и остаются теоретическими.

Без сомнения, это изменится, но это было «не за горами» уже много лет. Когда он действительно появится, он, скорее всего, будет в форме высокотехнологичных промышленных решений, а не для приусадебных участков, ферм или деревень.

Нам грустно относиться к этому негативно, но есть много путаницы в отношении биодизеля из водорослей.

Конечно, мы поощряем дальнейшие исследования. Мы поддержали множество ранних небольших попыток производства биодизеля из водорослей, но ни одна из них не увенчалась успехом из-за множества проблем.

Дискуссионная онлайн-группа Oil_from_algae последние семь лет работает исключительно над биодизелем из водорослей и сейчас насчитывает более 2000 членов, но у них пока нет готового решения: «Мы еще недостаточно знаем, чтобы написать вам инструкция, пожалуйста, помогите нам учиться », — пишет руководитель группы.Сила их оружия, мы надеемся, что скоро они добьются успеха.
http://tech.groups.yahoo.com/group/oil_from_algae/

Тем не менее, многие люди считают, что производство биодизеля из водорослей — это уже существующий для них вариант, проверенная и готовая к использованию технология.

Нам часто задают вопрос, почему на нашем веб-сайте нет полных инструкций и планов по производству биодизеля из водорослей. Ответ заключается в том, что мы предоставляем информацию, которую вы можете использовать, и нет никакой информации, которую вы могли бы использовать для производства биодизеля из водорослей, она еще не существует.

Масло или биодизель из водорослей — нереализуемый вариант, нет проверенных методов, это не готовая технология.

Но это не то впечатление, которое вы получите от огромной шумихи вокруг водорослевого биодизеля.

Доктор Джон Бенеманн , ученый, который буквально написал книгу о биодизеле из водорослей, назвал некоторые из заявлений, сделанных в отношении этой технологии, «причудливыми» и «совершенно абсурдными». Критикуя развитие биодизельного топлива из водорослей в мае 2007 г., доктор Бенеманн написал:

    «Биотопливо из микроводорослей в целом, и производство биодизельного топлива из водорослей в частности, все еще является долгосрочной целью исследований и разработок (вероятно, около 10 лет), для которой потребуется, по крайней мере, столько же финансирования, сколько и ASP, если не больше, и успех в том, что касается любых НИОКР, довольно неопределенно.«

См. Водорослевое биодизель: факт или вымысел? , Джон Бенеманн, The Oil Drum , 17 мая 2007 г .:
http://www.theoildrum.com/node/2541

ASP была программой Министерства энергетики США по водным видам, которая действовала в течение 18 лет и стоимостью 100 миллионов долларов.

Доктор Бенеманн был главным исследователем и основным автором отчета о закрытии ASP, книги, которая вызвала интерес к биодизелю из водорослей: «Взгляд назад на U.S. Программа Министерства энергетики по водным видам: Биодизель из водорослей «, Джон Бенеманн, Джон Шихан, Терри Дунай, Пол Ресслер, июль 1998 г., Национальная лаборатория возобновляемых источников энергии, Министерство энергетики США, 328 стр., 3.5Mb pdf:
http : //www.nrel.gov/docs/legosti/fy98/24190.pdf

Брюссельская сеть по биотопливу и биоэнергетике Biopact опубликовала подробный критический анализ разработок водорослевого биотоплива в январе 2007 года, «An in -глубокий взгляд на биотопливо из водорослей ««, чтобы «успокоить необоснованный и необоснованный энтузиазм, связанный с водорослями».

В отчете Biopact говорится:

    «К сожалению, после десятилетий разработки ни один из этих проектов никогда не демонстрировал технологию в больших масштабах, не говоря уже о длительных периодах времени. Вот почему пришло время взглянуть на возможные причины того, почему водоросли о биотопливе говорят, но, похоже, это не реализуется. …

    «Утверждения о том, что водоросли производят« огромные »количества пригодной для использования биомассы, никогда не были продемонстрированы или подтверждены. Производство водорослей в фотобиореакторах никогда не покидало лабораторных или пилотных этапов, и для биотоплива, получаемого из таких систем, не существует энергетического баланса и анализа баланса парниковых газов.«

См. Углубленный взгляд на биотопливо из водорослей , Biopact, январь 2007 г .:
http://news.mongabay.com/bioenergy/2007/01/in-depth-look-at-biofuels-from-algae .html

Д-р Крассен Димитров из Австралийского института биоинженерии и нанотехнологий (AIBN, Университет Квинсленда), который провел углубленный анализ концепции превращения водорослей в биотопливо, пришел к выводу, что биодизель из водорослей использование широко разрекламированного подхода к промышленному фотобиореактору и работа с максимальной эффективностью экономически нецелесообразно при ценах на топливо ниже 800 долларов США за баррель.

«Шумиха вокруг некоторых стартапов в области альтернативной энергетики иногда игнорирует законы физики и другие фундаментальные принципы», — говорит он.

См. Ученый скептически относится к потенциалу превращения водорослей в биотопливо , Biopact, 18 июля 2007 г .:
http://news.mongabay.com/bioenergy/2007/07/scientist-skeptical-of-algae-to.html

Надежда вечна, но не задерживайте дыхание.

Масличные прочие

NewCrop SearchEngine в Центре новых культур и растительных продуктов в Университете Пердью — поиск «масла».Результаты: «Были найдены следующие страницы, содержащие слово ‘oil’ — просмотры 1-20 из 200». Результаты имеют гиперссылки на подробные информационные бюллетени.
http://www.hort.purdue.edu/newcrop/SearchEngine.html

Растения для будущего — Поиск в базе данных — см. «Поиск по использованию — выберите любое из следующих вариантов использования. Или не выберите ни одного и используйте заводские критерии ниже «. Выберите «Другое использование» — масло. Результаты: «Другое использование: масло (460)». Результаты имеют гиперссылки на подробные информационные бюллетени.
http://www.ibiblio.org/pfaf/D_search.html

Характеристики масел и сложных эфиров

Характеристики масел и сложных эфиров
Тип масла Диапазон плавления, град. C Йод
номер
Цетан
номер
Масло / жир Метил
Сложный эфир
Этил
Сложный эфир
Масло рапсовое, ч.эрук.

5

0

-2

97-105

55

Рапсовое масло, i. эрук.

-5

-10

-12

110 к 115

58

Подсолнечное масло

-18

-12

-14

125 по 135

52

Оливковое масло

-12

-6

-8

77 по 94

60

Соевое масло

-12

-10

-12

125 к 140

53

Масло семян хлопчатника

0

-5

-8

От 100 до 115

55

Кукурузное масло

-5

-10

-12

115 по 124

53

Кокосовое масло

С 20 по 24

-9

-6

8-10

70

Пальмоядровое масло

С 20 по 26

-8

-8

С 12 по 18

70

Пальмовое масло

От 30 до 38

14

10

44–58

65

Пальмовый олеин

С 20 по 25

5

3

85 до 95

65

Стеарин пальмовый

От 35 до 40

21

18

От 20 до 45

85

Сало

От 35 до 40

16

12

От 50 до 60

75

Сало

32 по 36

14

10

От 60 до 70

65


Liberty Vegetable Oil Company перечисляет состав жирных кислот своих масел, а также другие детали, такие как йодное число, удельный вес, температура вспышки и т. Д. — масло сладкого миндаля, масло пекан, масло английского грецкого ореха, масло фундука, макадамии. Ореховое масло, соевое масло, олеиновое подсолнечное масло, масло канолы, арахисовое масло, подсолнечное масло, кукурузное масло, сафлоровое масло, соевое масло (без ГМО), масла с высоким содержанием олеиновой кислоты, включая канола и сафлор.http://www.libertyvegetableoil.com/products.html

Йодное число


По химическому составу растительные и животные масла и жиры представляют собой триглицериды, глицерин, связанный с тремя жирными кислотами. Животный жир, такой как жир или сало, является насыщенным, что означает, что в жирнокислотной части все атомы углерода связаны с двумя атомами водорода, и двойных связей нет. Это позволяет цепочкам жирных кислот быть более прямыми и гибкими, поэтому они затвердевают при более высоких температурах (вот почему сало — твердое вещество).

По мере того, как вы увеличиваете количество двойных связей в жирной кислоте, вы уменьшаете эту способность масел приобретать конформацию, которая делает их твердыми, поэтому они остаются жидкими. Чтобы изобразить это, представьте, что вы выстраиваете связку строк в линию. Теперь завяжите узлы в разных местах на завязках и посмотрите, насколько они не плотно прилегают друг к другу.

Чтобы проверить растительное масло, чтобы увидеть, сколько в нем двойных связей (насколько оно ненасыщено), в масло вводится йод. Йод будет присоединяться через двойную связь, образуя одинарную связь, где атом йода теперь присоединен к каждому атому углерода в этой двойной связи.Более высокие йодные числа относятся не к количеству йода в масле, а к количеству йода, необходимому для «насыщения» масла или разрыва всех двойных связей. Масла по большей части содержат только следовые количества йода.

Как это соотносится с биодизелем? Когда цепи жирных кислот отрываются от глицерина и затем повторно этерифицируются до метильных или этильных групп, эти жирные кислоты все еще имеют свои двойные связи. Это означает, что чем больше двойных связей, тем ниже температура помутнения, поскольку они сопротивляются затвердеванию при более низких температурах.Так, например, если вы используете сало или жир, биодизель будет затвердевать при более высокой температуре, потому что жир, из которого он был образован, также затвердел при более высокой температуре.

(Изображение и текст Джеффа Велтера)

Высокие значения йода

См. Также Окисление и полимеризация

Приведенная ниже информация относится к прямому топливу на растительном масле, но также полезна, чтобы показать, какие масла подходят для производства биодизельного топлива, а какие могут не подходить.

    Многие растительные масла и некоторые животные масла являются «высыхающими» или «полувысыхающими», и именно это делает многие масла, такие как льняное, тунговое и некоторые рыбий жир, подходящими в качестве основы для красок и других покрытий. Но именно это свойство еще больше ограничивает их использование в качестве топлива.

    Высыхание происходит в результате того, что двойные связи (а иногда и тройные связи) в молекулах ненасыщенных масел разрываются кислородом воздуха и превращаются в пероксиды. Затем в этом месте может произойти сшивка, и масло необратимо полимеризуется в твердое вещество, подобное пластику.

    При высоких температурах, обычно встречающихся в двигателях внутреннего сгорания, процесс ускоряется, и двигатель может быстро забиться полимеризованным маслом. При использовании некоторых масел отказ двигателя может произойти всего за 20 часов.

    Традиционная мера степени связи, доступная для этого процесса, дается «йодным числом» (IV) и может быть определена путем добавления йода в жир или масло. Количество йода в граммах, абсорбированное на 100 мл масла, определяется внутривенно.Чем выше ХВ, тем более ненасыщенным (тем больше количество двойных связей) масло и тем выше вероятность полимеризации масла.

    В то время как некоторые масла имеют низкий коэффициент вязкости и подходят для использования в качестве топлива без какой-либо дальнейшей обработки, кроме экстракции и фильтрации, большинство растительных и животных масел имеют IV, что может вызвать проблемы при использовании в качестве чистого топлива. Вообще говоря, если чистое масло будет использоваться для долгосрочного использования в немодифицированных дизельных двигателях, требуется ХВ менее примерно 25, и это ограничивает типы масла, которое может использоваться в качестве топлива.В таблице ниже перечислены различные масла и некоторые их свойства.

    ХВ можно легко уменьшить путем гидрогенизации масла (реакции масла с водородом), когда водород разрывает двойную связь и превращает жир или масло в более насыщенное масло, что снижает склонность масла к полимеризации. Однако этот процесс также увеличивает температуру плавления масла и превращает масло в маргарин.

    Как видно из приведенной ниже таблицы, только кокосовое масло имеет достаточно низкий показатель IV, чтобы его можно было использовать без каких-либо потенциальных проблем в немодифицированном дизельном двигателе.Однако при температуре плавления 25 ° C использование кокосового масла в более прохладных местах, очевидно, приведет к проблемам. При значениях IV 25-50 влияние на срок службы двигателя также, как правило, не изменяется, если поддерживается немного более активный график технического обслуживания, такой как более частая замена смазочного масла и коксоудаление выхлопной системы. Триглицериды в диапазоне IV 50-100 могут привести к сокращению срока службы двигателя и, в частности, к сокращению срока службы топливного насоса и форсунок. Однако они должны быть сбалансированы с учетом значительного снижения затрат на топливо (при использовании дешевого излишка масла), и можно обнаружить, что даже при повышенных затратах на техническое обслуживание это экономически целесообразно.

Масла, их температуры плавления и йодные значения
Нефть Прибл.
точка плавления
° C
Йодное число
Кокосовое масло 25 10
Пальмоядровое масло 24 37
жир баранины 42 40
Говяжий жир 50
Пальмовое масло 35 год 54
Оливковое масло -6 81 год
Касторовое масло -18 85
Арахисовое масло 3 93
Рапсовое масло -10 98
Масло семян хлопчатника -1 105
Подсолнечное масло -17 125
Соевое масло -16 130
Тунговое масло -2.5 168
Льняное масло -24 178
Масло сардины 185

— Из « Отходы растительного масла в качестве дизельного топлива » Филиппа Кале, отдела экологических наук, Университет Мердока, Перт, Австралия, и А.Р. (Тони) Кларк, Ассоциация возобновляемых источников топлива Западной Австралии, Inc.
http://www.shortcircuit.com.au/warfa/paper/paper.htm

Примечание : дополнительные значения йода здесь .

Говоря о погоде

Как правило, чем выше йодное число масла, тем ниже температура, при которой оно затвердевает. Для этого используются разные термины — температура плавления (MP), температура помутнения (CP), точка закупоривания холодного фильтра (CFPP) и температура застывания (PP). На практике все они означают примерно одно и то же.Это имеет значение как для систем SVO, использующих чистое растительное масло в качестве топлива, так и для биодизельного топлива, но в большей степени для систем SVO.

По мере остывания растительных масел образуются кристаллы воска, и масло становится мутным. Кристаллы могут образовывать пленку на фильтрах, блокируя поток топлива. Температура, при которой это происходит, широко варьируется в зависимости от типа масла, от значительно ниже точки замерзания до точки намного выше точки замерзания.

Оно даже различается для одного и того же типа масла: новое пищевое рапсовое или рапсовое масло обычно «вымораживают», чтобы оно не замутнялось в холодильнике и не отпугивало людей.Он будет хорошо работать до -10ºC, но как только он выйдет из фритюрницы, частично гидрогенизированный, разложившийся и, вероятно, содержащий немного жира из жареной в нем пищи, он останется только жидким и не забивает фильтры до точки замерзания или чуть выше.

Если вы хотите использовать систему SVO в холодном климате, вам нужна система, настроенная для работы с коэффициентом CFPP, и вам нужно масло с низким CFPP. Кокосовое масло, пальмовое масло, жир и сало не подходят, гораздо лучше — семена рапса или канолы, кукурузы или хлопка.(Арахисовое масло является исключением — см. Какое масло лучше?)

Но если вы живете в жарком климате, точки помутнения вас не побеспокоят, и наоборот: кокосовое и пальмовое масло, жир и сало имеют более высокие значения. цетановое число, чем у других, и более низкие значения йода.

Для биодизеля применяется то же самое, но в меньшей степени — с большинством масел и жиров преобразование его в биодизельное топливо имеет тенденцию к снижению CFPP. Биодизельное топливо, полученное с использованием этанола, обычно имеет более низкое CFPP, чем биодизельное топливо, полученное с использованием метанола.Присадки и подогреватели топливопровода могут решить проблему, как и добавление определенного количества бензина, дизельного топлива или керосина (обычно рекомендуется до 30%).

См .: Биодизель зимой

Резюме

Растительные и животные жиры и масла представляют собой триглицериды, состоящие из трех цепей жирных кислот , связанных с молекулой глицерина.

Жирные кислоты могут быть насыщенными или ненасыщенными . Ненасыщенные жирные кислоты имеют двойные связи углерод-углерод .В насыщенных жирных кислотах все атомы углерода связаны с двумя атомами водорода, и двойных связей нет.

Степень насыщения указывается с помощью йодного числа масла (IV). Масла с низким IV более насыщены меньшим количеством двойных связей (сало, жир, пальмовое масло, кокосовое масло). Масла с высоким содержанием IV более ненасыщены и имеют большее количество двойных связей (льняное масло, тунговое масло, некоторые рыбий жир и другие «олифы»).

Масла с низким значением IV имеют более высокое цетановое число и являются более эффективным топливом, чем масла с высоким индексом вязкости, но они также имеют более высокие точки плавления и обычно твердые при комнатной температуре.Биодизельное топливо, изготовленное из масел с низким индексом вязкости, также имеет более высокую температуру плавления и может использоваться только в качестве летнего топлива.

Масла с высоким индексом вязкости имеют более низкие температуры плавления и лучше подходят для производства биодизеля в холодную погоду, но при использовании масел с высоким уровнем вязкости повышается риск окисления биодизеля и полимеризации (высыхания) в твердое, нерастворимое твердое вещество, подобное пластику . Биодизельное топливо, изготовленное из масел с высоким содержанием IV, следует хранить осторожно и быстро использовать.

«Полувысыхающие» масла, такие как соевое и подсолнечное, также склонны к окислению и полимеризации, хотя и не так быстро, как высыхающие масла.

См. Также Окисление и полимеризация
Хранение биодизеля

Масло гидрированное, шортенинг, маргарин

(См. Выше, Йодные значения )


Биодизель, свежеприготовленный из растительного жира (Тодд Свиринген)
Гидрогенизированные масла и шортенинг можно использовать для производства биодизеля. Маргарин более проблематичен, и его следует избегать, если вы не эксперт.

При гидрировании масел атомы водорода добавляются к двойным связям углерод-углерод в ненасыщенных жирных кислотах, которые затем становятся насыщенными. Это приводит к более высоким температурам плавления. Полностью гидрогенизированное масло твердое при комнатной температуре, частично гидрогенизированные масла варьируются от жидкого до кремообразного или твердого.

Гидрирование также снижает йодное число (IV) масла. «Типичная ИВ для негидрогенизированного соевого масла составляет 125–140, для пищевых салатов и кулинарных масел, изготовленных из частично гидрогенизированного соевого масла, — 105–120, для полутвердых бытовых шортенингов, изготовленных из частично гидрогенизированного соевого масла, — 90–95.»(Институт шортенинга и пищевых масел.)

Таким образом, биодизельное топливо, полученное из гидрогенизированного масла, с меньшей вероятностью будет окисляться и полимеризоваться, но будет иметь более высокую температуру плавления, чем если бы оно было изготовлено из негидрогенизированного масла того же типа. Это увеличивает риск фильтры засоряются в холодную погоду или даже просто в прохладную погоду, и их лучше всего использовать в качестве летнего топлива.

При переработке гидрогенизированное масло обрабатывайте так же, как и обычное масло. как только вы нагреете его для обработки, оно плавится и ведет себя как любое другое масло.

Шортенинг — жир, используемый для запекания и жарения. Шортенинг производится из многих видов растительных масел, а также из сала и сала. Масло обычно частично гидрогенизируется, и для достижения желаемого эффекта смешиваются разные масла.

Для производства биодизеля обрабатывайте шортенинг так же, как гидрогенизированное масло.

Маргарин и спреды представляют собой смесь жиров и масел с водой, молочными продуктами, пищевыми белками, витаминами, солью, ароматизаторами и красителями. Маргарин обычно состоит только из 80% масла или жира или меньше.Извлечь триглицериды из других жидкостей и белков для производства биодизеля непросто.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *