Химический состав антифриза: Химический состав антифриза g11, g12, g13

Содержание

Химический состав антифриза g11, g12, g13

Антифриз — низкозамерзающая жидкость для охлаждения, очистки и смазки конструкционных элементов двигателя, тепловых установок, работающих при отрицательных температурах. Охлаждающие концентраты обладают низким коэффициентом расширения и снижают точку замерзания воды. Как итог: в момент кристаллизации лёд в трубопроводных каналах практически не расширяется и сохраняется целостность конструкции. Рассмотрим подробный химический состав антифриза.

Компонентный состав

Основу охлаждающих жидкостей (ОЖ) составляет дистиллированная вода в смеси с одно- и многоатомными спиртами в различных пропорциях. Также в концентрах вводят ингибиторы коррозии, а также флуоресцентные добавки (красители). В качестве спиртовой основы используется этиленгликоль, пропиленгликоль или глицерин (до 20%).

  • Водный дистиллят

Используется очищенная, умягчённая вода. В противном случае на радиаторной решётке и стенках трубопровода образуется накипь в виде карбонатных и фосфатных осадков.

Двухатомный насыщенный спирт без цвета и запаха. Токсичная маслянистая жидкость с температурой замерзания -12 °С. Обладает смазывающими свойствами. Для получения готового антифриза используют смесь из 75% этиленгликоля и 25% воды. Содержание присадок игнорируется (менее 1%).

Он же пропиленгликоль — ближайший гомолог этандиола с тремя атомами углерода в цепи. Нетоксичная жидкость со слабым сладковато-горьким вкусом. Товарный антифриз может содержать 25%, 50% или 75% пропиленгликоля. В силу дороговизны, используется реже по сравнению с этандиолом.

Виды присадок

Этиленгликолевый антифриз для авто в процессе длительной эксплуатации окисляется и образует гликолевую, реже муравьиную кислоту. Таким образом, создаётся неблагоприятная для металла кислотная среда. Чтобы исключить окислительные процессы в охлаждающую жидкость вводят антикоррозионные присадки.

  • Неорганические ингибиторы коррозии

Или «традиционные» — смеси на основе силикатов, нитратных, нитритных или фосфатных солей. Подобные присадки выполняют роль щелочного буфера и образуют на поверхности металла инертную плёнку, которая препятствует воздействию спирта и его продуктов окисления. Антифризы с неорганическими ингибиторами маркируются обозначением «G11» и имеют зелёную либо синюю окраску. Неорганические ингибиторы включены в состав тосола — охлаждающей жидкости отечественного производства. Срок службы органичен 2-мя годами.

  • Органические ингибиторы

В силу ограниченного ресурса неорганических ингибиторов были разработаны более экологичные и химически стойкие аналоги — карбоксилаты. Соли карбоновых кислот экранируют не всю рабочую поверхность, а исключительно очаг коррозии, покрывая область тонкой плёнкой. Обозначаются как «G12». Срок службы — до 5-и лет. Имеют красную или розовую окраску.

В отдельных случаях «органику» смешивают с «неорганикой» с получением гибридных антифризов. Жидкость представляет смесь карбоксилатов и неорганических солей. Длительность использование составляет не более 3-х лет. Цвет — зелёный.

Состав концентрата в подобном случае включает минеральные реагенты и органические антикоррозионные присадки. Первые образуют наноплёнку по всей поверхности металла, вторые — защищают повреждённые участки. Срок использования достигает 20 лет.

Заключение

Охлаждающая жидкость снижает температуру замерзания воды и уменьшает коэффициент расширения. Химический состав антифриза представляет смесь дистиллированной воды со спиртами, а также включает ингибиторы коррозии и красители.

Состав и свойста антифризов

Функции охлаждающей жидкости в ДВС.

Давным-давно (кажется, в прошлую пятницу©) я заинтересовался, каков же состав антифриза и какими свойствами обладает. Для того, чтобы упорядочить полученные в процессе получения ответа представления, и написана эта статья. Пользуйтесь. Если кого-то интересуют отличия тосола и антифриза, добро пожаловать на страницу, посвящённую разновидностям и классификации антифризов. А здесь будут рассмотрены вопросы, общие для всех видов автомобильных охлаждающих жидкостей.

Итак, для начала вспомним, а зачем вообще мы заливаем антифриз в автомобиль? Конечно же для того, чтобы отвести тепло от стенок камеры сгорания. Эта основная функция и выглядывает из-под термина «охлаждающая жидкость» (по-английски «coolant»). При этом выравнивается температурный режим деталей двигателя. Плохо, если в одной точке деталь имеет температуру 200 градусов, а в другой всего 50. Об этом говорит тот факт, что при поломке системы охлаждения часто «ведёт» головку блока цилиндров, именно из-за большой разности температур в разных частях детали и, соответственно, разного теплового расширения.

Ну и второстепенная, но тоже очень полезная функция, подогрев некоторых узлов автомобиля. Например, салона или дроссельного узла.

Схема системы охлаждения автомобиля

Раньше в качестве охлаждающей жидкости использовалась вода (про воздушное охлаждение говорить здесь не будем:)), которая имела несколько недостатков. Во-первых, вода замерзает при 0°C, а поскольку при замерзании она расширяется, то велика вероятность разрыва каналов циркуляции охлаждающей жидкости. Что и наблюдалось повсеместно лет 50 назад во время первых заморозков у машин, стоящих на улице с не слитой из системы водой.

Второй недостаток воды – кипение при 100°С. Конечно, в те стародавние времена моторы не были сильно форсированными, и в нормальных условиях мотор не нагревался до таких температур, но в жаркий день где-нибудь на подъёмах в гору машины «закипали» довольно часто.

И третий недостаток – высокая коррозионная активность воды. То есть мотор внутри попросту ржавел. При этом ухудшалась теплопроводность стенок деталей (у ржавчины примерно в 50 раз хуже, чем у металла), что со временем приводило к их перегреву. К тому же из-за частиц ржавчины могут засориться каналы системы охлаждения, или выйти из строя насос или термостат.

Состав антифриза и свойства его базовых компонентов.

Вышеуказанные недостатки воды заставили искать ей замену. Сейчас автомобильные антифризы состоят из двух базовых элементов – воды и этиленгликоля. В некоторых случаях (не в автомобилях) вместо этиленгликоля может использоваться пропиленгликоль, или соли.

Этиленгликоль — двухатомный спирт, в чистом виде имеющий температуру замерзания около -13°С и температуру кипения 197°С. Удивительное свойство водного раствора этиленгликоля заключается в более низкой температуре замерзания, чем каждого вещества в чистом виде. Так, смесь в пропорции 1 к 1 будет иметь температуру замерзания -38°С.

У ЭГ (или МЭГ – устоявшееся в среде производителей сокращение от слова моноэтиленгликоль, он же этиленгликоль) также есть недостатки. Во-первых, он токсичен, полстакана внутрь будут смертельны человека. Во-вторых, он более вязкий. Об этом свойстве мы поговорим ниже.

Однако, несмотря на недостатки водный раствор МЭГ решает две проблемы применения воды из трёх: температура замерзания при приемлемой вязкости гораздо ниже нуля, причём, в отличие от воды, замерзая, раствор практически не расширяется, что даёт гарантию сохранения в целости системы охлаждения автомобиля. Температура кипения того же раствора 1:1 выше ста градусов (около 106°С), а если учесть, что система герметична и в ней повышенное давление, то эта температура будет ещё выше. В общем, для обычного ДВС хватает с запасом.

Пропиленгликоль тоже штука хорошая, однако более вязкая, нежели МЭГ и на порядок более дорогая. Его основным достоинством является нетоксичность (отравиться им настолько непросто, что его используют в том числе и как пищевую добавку под номером E1520). Поскольку у автолюбителей нет привычки пить охлаждающую жидкость, то и в автомобильной системе охлаждения он не используется. К тому же высокая вязкость ухудшает теплоотведение (жидкость медленнее протекает по системе) и дополнительно нагружает насос, снижая его ресурс.

Говоря о вязкости нельзя не упомянуть ещё об одном компоненте, из которого иногда делают дешёвые отечественные тосолы (кстати, ТОСОЛ – это ставшее нарицательным название марки советского антифриза, изобретённого в 1969 году). Это

глицерин. Вещество тоже не токсичное, по вязкости сравнимое с пропиленгликолем, однако существенно дешевле даже этиленгликоля. Отсюда и смысл его использования в производстве охлаждающих жидкостей для производителей. Как правило, глицериновый тосол имеет бо́льшую плотность (примерно 1.12-1.17г/см3 в отличие от МЭГовского 1.07-1.08 г/см3). Разброс значения плотности получается из-за того, что нередко производители смешивают этиленгликоль и глицерин в различных пропорциях балансируя между параметром плотности, температуры замерзания и себестоимости. О вреде высокой вязкости написано выше, хотя на этот параметр, как правило, никто внимания не обращает (в основном, просто не зная о нём). С себестоимостью всё понятно, чем дешевле, тем лучше, плотность желательно держать поближе к этиленгликолевой потому что потребитель может проверить тосол ареометром.
При более высокой плотности он покажет фантастические цифры температуры замерзания в минус 54°С и ниже, что, естественно, не соответствует действительности. Саму же температуру замерзания проверить в бытовых условиях сложно. Нужен либо доступ к промышленным холодильникам, либо место жительства в Сибири с морозами ниже -40.

Ещё один негативный момент с глицерином в том, что он высокого качества достаточно дорог, поэтому в тосолах используется дешёвый и некачественный продукт, в котором обязательно выпадет осадок в процессе работы. Нерастворимые частицы осадка могут забить или сузить каналы системы охлаждения и привести как минимум к ухудшению теплоотведения, а как максимум (в случае с забитыми каналами) – к перегреву и поломке двигателя.

Состав пакета присадок и свойства антифриза, зависящие от них.

Остаётся проблема коррозии, которая МЭГом не только не решается, а и ещё больше усугубляется, поскольку МЭГ более активен в этом отношении, чем вода.

Для её решения в раствор добавляют присадки-ингибиторы коррозии, которые практически сводят на нет эту активность. Существуют несколько различных технологий производства антифризов, которые отличаются именно добавляемыми антикоррозионными присадками (базовые элементы, вода и моноэтиленгликоль, в составе антифризов почти у всех одинаковые). Подробнее об этом написано в этой статье.

Кроме этого в антифризы добавляют антикавитационные, антипенные и цветовые добавки. Первые минимизируют образование кавитационного износа (кавитация – это образование и схлопывание пузырьков с паром, в процессе которого образуется ударная волна, постепенно разрушающая твёрдые поверхности вплоть до сквозных дыр в гильзах), они особенно нужны в дизельных двигателях с гильзами цилиндров мокрого типа, а вот с антипенными присадками нас ждёт сюрприз: оказывается, их наличие или отсутствие в антифризе никак не сказывается на работе охлаждайки в двигателе по той простой причине, что при повышенном до 2-3 атмосфер давлении в замкнутой системе охлаждения (читай, в любом обычном автомобиле), пена не образовывается в принципе.

А присадку эту добавляют для нужд производителя антифриза или завода-производителя автомобилей. При различных технологических манипуляциях антифриз и может запениться, усложняя работу конвейера.

Ну а цветовые добавки используются для «опознания» жидкости определённого вида (например, в некоторых странах цвета конкретных разновидностей тосола прописаны в законах), чтобы не залить случайно не то, что положено.

Однако в России таких нормативов нет, поэтому на практике у нас любой антифриз может быть любого цвета (обычно гибридный антифриз красят «под карбоксилатный» в красный цвет, опять же из экономических соображений).

Смешивать охлаждающие жидкости разных типов совсем не рекомендуется (нельзя, короче), потому что в этом случае присадки различных групп нейтрализуют друг друга, и вы получаете в моторе простой водный раствор этиленгликоля, иногда с осадком. На коррозионную активность такого раствора можно посмотреть в табличке выше по тексту.

Также цвет помогает понять, где протечка именно антифриза, а не моторного масла, или жидкости ГУРа, да просто уровень окрашенной жидкости лучше видно в расширительном бачке (без красителя антифриз был бы бесцветным). Кроме этого снижение интенсивности цвета и его изменение может говорить об истощении присадок в объёме антифриза. А это означает, что пора проводить его замену. Ну и для повышения лояльности потребителя тоже цвет можно использовать. Например, начать производить серо-буро-малиновый антифриз и использовать его для первой заливки на автозаводе. Автовладелец, исходя из соображения, что можно мешать зелёный с зелёным, красный с красным и т.д., будет искать именно серо-буро-малиновый антифриз. Ну и найдёт у одного единственного производителя, там и купит. За хорошие деньги, ибо эксклюзив:).

Чуть не забыл, иногда в состав антифризов добавляют вкусовую горькую присадку Bitrex, чтобы отбить охоту у детей и животных пить его. Напомню, этиленгликоль является ядом, при этом имеет сладковатый вкус. Кстати, этиловый спирт нейтрализует действие этиленгликоля (чем быстрее выпьете, тем больше вероятность, что останетесь в живых).

Итого.

  • Антифриз – это вода, смешанная с этиленгликолем (пропиленгликолем, глицерином) в пропорции примерно 1 к 1 с добавлением антикоррозионных, антикавитационных, антипенных и цветовых присадок.
  • Водный раствор этиленгликоля даёт низкую температуру замерзания и повышенную температуру закипания.
  • Коррозионная агрессивность этого раствора нейтрализуется антикоррозионными присадками.
  • В дешёвом тосоле часто применяют глицерин, имеющий большую вязкость. Иногда такой тосол имеет более высокую температуру замерзания (при смешивании с этиленгликолем для подгонки плотности).
  • Цвет антифризов ничего не говорит об их совместимости.

P.S.: Если кому интересно, вот статья о составе незамерзайки.

стандартная рецептура антифриза по ГОСТу, характеристика и свойства марки а-40

Охлаждающая жидкость, которая используется для системы охлаждения в двигателе автомобиля, называется антифриз или тосол. В самых первых охлаждающих жидкостях для автомобилей отсутствовали антикоррозийные присадки, в результате чего некоторые детали системы охлаждения покрывались ржавчиной и выходили из строя. Со временем состав жидкости значительно улучшился и даже разделился на две категории — летний и зимний тосол.

Химический состав охлаждающей жидкости

Сегодня каждая марка тосола, которая продаётся на широком рынке, отличается только количеством воды и различных присадок в составе жидкости. Основа же любого тосола — этиленгликоль. Это спирт, который имеет в своей структуре два атома. Эта вязкая, бесцветная жидкость со сладковатым привкусом. Использовать его можно практически при любых суровых погодных условиях, так как этиленгликоль не замерзает даже при температуре -198 градусов.

Этот спирт обладает такими свойствами, при которых вода не будет замерзать в промежутке градусов от -1 и до -89 градусов. И если оптимально соединить водный раствор и спирт, то получится жидкость, которая не будет замерзать и выдержит температуру до 78 градусов по Цельсию.

В химический состав тосола включают такие компоненты:

  • глицерин;
  • фосфаты;
  • присадки, обладающие антикоррозийным действием;
  • гликоль;
  • бураты.

Все эти компоненты отвечают за качество охлаждающей жидкости. Требованиями для нормальной работы автотранспорта должны соответствовать следующие свойства тосола:

  • Не замерзать при низких температурах. Эксплуатация автомобиля при аномально низких градусах по Цельсию должна быть комфортной и неопасной для транспорта.
  • Теми же качествами должна обладать жидкость и при высоких температурах. Это касается работы двигателя в жаркий, летний период.
  • Хорошая циркуляция тосола в системе должна быть обусловлена приемлемой вязкостью охлаждающей жидкости.

Именно такими свойствами и обладает качественная незамерзающая жидкость для системы охлаждения. ГОСТ на эту жидкость был введён ещё в 1989 году, и с тех пор все отечественные производители выпускают тосол по этим стандартам. Производимые антифризы по ТУ имеют несколько другой состав тосола, ГОСТ на них не распространяется.

Важно знать, что со временем химический состав тосола несколько изменяется под воздействием внешних факторов. Поэтому для нормальной работы всех систем необходимо производить замену незамерзайки после каждых 25 тысяч километров.

Характеристика тосола а-40м

Первый советский антифриз был разработан в 1971 году. Предназначался он для использования в автомашинах ВАЗ. Затем его стали применять и для другого транспорта. Буквенное выражение в виде «А» означает, что раствор предназначен только для автотранспорта. А буква M говорит о том, что тосол модернизированный.

Состав тосола а 40 является высшего качества. Основная составляющая этого раствора — спирт этиленгликоль. А также в его состав входят различные антикоррозийные и антипенные присадки.

Основные характеристики антифриза а-40 это:

  • Выдерживает температуру и не замерзает при -45 градусах.
  • Температура закипания по Цельсию 110 градусов.
  • Отсутствует вспениваемость.
  • Не влияет своим химическим составом на другие системы автомобиля.
  • Обладает пониженной плотностью.
  • При хранении не портится и не разлагается.

Основные виды хладагента

Ещё одно нарицательное название тосола — хладагент, или как его называют в народе — незамерзайка. Существует два вида антифриза, они различаются по цветам. Зелёный цвет имеет охлаждающая жидкость силикатная, красный цвет у хладагента карбоксильного.

Оба этих вида антифриза покрывают отдельные части системы небольшой накипью и препятствуют коррозии метала. Красный антифриз имеет более длительный срок службы, и после его замены не требуется промывка всей системы охлаждения.

Чтобы различить антифризы, существует специальная маркировка. Так, антифриз силикатный на упаковке имеет обозначение G11. Рецептура такой жидкости содержит в себе такие компоненты, как амины, нитриты, нитраты, бораты, силикаты, фосфаты.

Карбоксильный антифриз обозначается G12. В европейских странах его используют на автотранспорте, выпущенном до 2001 г. В основном своём виде он красного или розового цвета.

Как выявить некачественный антифриз

Проверку того, что купленный тосол качественный, а не дешёвая подделка, можно осуществить одним простым способом. Подделанную охлаждающую жидкость производят на основе кислоты, а как известно из уроков химии, кислота вступает в бурную реакцию со щёлочью.

Если в небольшую ёмкость отлить немного незамерзайки и к ней добавить щепотку пищевой соды, можно посмотреть на реакцию раствора. Если ничего не произошло, можно спокойно использовать антифриз по назначению.

Можно проверить тосол, его свойства и состав ареометром и лакмусовой бумажкой. Ареометром проверяется плотность тосола. Лакмусовой бумажкой определяется кислотность антифриза. В идеале бумажка должна быть зелёного цвета.

Если же она изменила свой цвет и стала красной или розовой, это означает, что в жидкости присутствует очень много кислоты, а она может повредить некоторые детали системы. Если после проверки бумажка стала фиолетовой, то в антифризе присутствует щёлочь.

Зная эти основные и нехитрые способы проверки, можно обезопасить свой автомобиль от нежелательных последствий.

Состав антифриза |

Антифризы

являются охлаждающими жидкостями для систем охлаждения двигателей внутреннего сгорания автомобилей.

Автомобильные антифризы состоят из смеси воды, этиленгликоля и пакета присадок, придающих антифризу антикоррозионные, антикавитационные, антипенные и флуоресцентные (для облегчения поиска течи) свойства.

1. Состав антифризов.

1.1. Антифриз получают смешиванием этиленгликоля с дистиллированной водой и присадками.

Максимально низкой температурой замерзания (-75°С) является смесь, содержащая 75 % этиленгликоля и 25 % воды.

Определение этиленгликоля из Википедии: Этиленгликоль — кислородсодержащее органическое соединение, двухатомный спирт, простейший представитель полиолов (многоатомных спиртов). В очищенном виде представляет собой прозрачную бесцветную жидкость слегка маслянистой консистенции. Не имеет запаха и обладает сладковатым вкусом. Токсичен. Попадание этиленгликоля или его растворов в организм человека может привести к необратимым изменениям в организме и к летальному исходу.

1.2. По данным  ГОСТ 19710-2019 этиленгликоль — горючая жидкость. Плотность при 20 °С 1116 кг/м3. Температура кипения — 197 °С. Температура вспышки — 111 °С.

Температура самовоспламенения — 412 °С.

Температура замерзания чистого этиленгликоля минус 12,3°С, но в смеси с водой температура замерзания уже антифриза достигает до вышеуказанных минус 75°С

1.3. Из-за применения в смесях дистиллированной воды антифризы не образуют в системе охлаждения двигателей накипи, что является их одним из основных достоинств.

При нагревании антифризов во время работы двигателя из них испаряется вода, этиленгликоль из-за высокой температуры кипения (197°С) не испаряется. Поэтому убыль смеси восполняется добавкой в систему охлаждения дистиллированной воды.

1.4. Перед доливкой воды в систему охлаждения, а также в процессе эксплуатации автомобилей в условиях низких температур, состав антифриза проверяется гидрометром. 

Гидрометр представляет собой разновидность ареометра, но вместо шкалы значений плотности нанесена шкала значений концентрации этиленгликоля в смеси и температура замерзания антифриза. Каждому составу смеси соответствует определенная плотность. Значения плотности антифризов приведены в таблице 2.

2. Марки антифризов.

2.1. В соответствии с ГОСТ 28084 — 89

промышленностью выпускается чистый этиленгликоль марки ОЖ — К (концентрат с массовой долей воды не более 5%), водоэтиленгликолевые смеси марки ОЖ — 40 и марки ОЖ — 65 с температурой замерзания соответственно 40°С и 65°С с антикоррозионными, антивспенивающими, стабилизирующими и красящими добавками.

2.2. Для приготовления рабочих охлаждающих жидкостей концентрат ОЖ — К разбавляют дистилированной водой.

Антифриз марки ОЖ-40 содержит 56% этиленгликоля (концентрата ОЖ – К) и 44% дистиллированной воды, марки ОЖ-65 – 65% этиленгликоля и 35% воды.

2.3. По данному ГОСТу срок хранения антифриза должен быть не менее 5 лет.

2.4. Основные показатели антифризов по ГОСТ 28084 – 89 приведены в таблице 1

Таблица 1.

ПоказателиМарки антифризов
ОЖ-КОЖ-40ОЖ-65
— этиленгликоль, %1005665
— дистиллированная вода4435
— присадкиДо 5 %До 5 %
  2. Плотность, г/см3 при 20°С1,100-1,1501,065-1,0851,085-1,100
3. Температура замерзания, °С-12,3-40-65
4. Внешний видПрозрачная однородная окрашенная жидкость без механических примесей

3. Взаимозависимые показатели антифризов по их концентрации, плотности и температуры замерзания приведены в таблице 2.

Таблица 2.

Концентрация антифриза по этиленгликолю, %Плотность антифриза,  г/см3 при 20°СТемпература замерзания антифриза, °С
27,01,03 – 1,04Минус 12
32,01,04Минус 16
36,01,05Минус 20
44,01,06Минус 28
50,01,069Минус 37
56,01,07Минус 40
60,01,08Минус 54
65,01,085Минус 64
66,01,086Минус 67
70,01,09Минус 70
75,01,095Минус 75
80,01,097Минус 58
84,01,10Минус 46
90,01,108Минус 35
95,01,11Минус 28
97,01,11Минус 22
100,01,14Минус 12

4. Производство антифризов

осуществляется в соответствии с техническими условиями, которые разрабатываются каждым производителем на основании ГОСТ 28084 — 89.

Производители антифризов применяет различные наборы присадок, в том числе и красящие. По этой причине антифризы могут иметь синий , красный, зеленый и другие цвета.

Название Тосол является является торговой маркой, это тот же антифриз.

Классификация G11, G12, G13 — основные характеристики и отличия

Современные теплоносители производят на основе этиленгликоля, пропиленгликоля и полипропиленгликоля. Также в состав входит пакет присадок, улучшающий или просто меняющий технические характеристики материала. Остальные компоненты жидкости призваны окрасить ее в нужный цвет, придать запах. Европейские производители применяют общепринятую классификацию антифризов и теплоносителей, разделяя материалы на три основные группы – G11, G12, G13.

Группа G11 – характеристики и особенности

Материалы этого типа изготавливаются на основе этиленгликоля. Пакет неорганических присадок повышает температурную устойчивость. Такие теплоносители окрашивают в зеленый или синий цвет.

В каталоге компании SVA к данному классу относятся жидкости, произведенные по стандарту ГОСТ 159-52, «Тосол-АМ», охлаждающая жидкость «Лена», а также популярный продукт «ТЭН». Сюда входят и продукты с низким порогом замерзания марок «40» и «65».

Группа G12 – популярный выбор клиентов

От предыдущей группы продукция этого класса отличается комплексом присадок. Это более чистый антифриз с точки зрения экологии. Отходы проще перерабатывать, а при разливах не происходит загрязнение грунта и почвенных вод. Цвет состава – красный.

Марка G12 имеет такие важные преимущества:

  • пакет органических присадок для повышения температурной устойчивости;
  • отсутствие силикатов в составе, экологически чистый продукт;
  • создание антикоррозийной пленки на элементах, где есть очаги ржавчины;
  • длительная служба в системах с высокой температурой и значительными перепадами;
  • защита алюминия и стали от образования коррозийных очагов.

В каталоге нашей компании представлен один вид такой продукции – «Карбо-ТЭН». Это популярный выбор для промышленных компаний.

G13 – безопасный и передовой продукт

Этот антифриз производят на основе пропиленгликоля, а также пакета органических присадок. Состав защищает трубы и теплообменники от коррозии, отлично держит температуру, обеспечивает эффективную передачу тепловой энергии. Окрашивают состав в синий, оранжевый и желтый цвет.

Чаще всего применяют продукцию G13 в медицинской сфере, на передовом промышленном оборудовании европейских производителей. Это дорогостоящий и эффективный материал.

Где купить надежные жидкости для теплообменников?

Воспользуйтесь услугами компании SVA. Мы разрабатываем и производим собственную линейку антифризов и прочих жидкостей для систем теплообмена. Доступно индивидуальное окрашивание в нужный цвет, в каталоге есть жидкости всех классов и с нужными вам характеристиками. Для заказа продукции звоните нашим менеджерам.

Антифриз

Для охлаждающих систем автомобиля могут использоваться различные жидкости, в том числе и вода. Однако при понижении температуры вода замерзает, что может стать причиной серьезных поломок в системе (например, выйдет из строя радиатор).  Для того чтобы этого не происходило, и существуют антифризы – жидкости, не замерзающие при низких температурах. Собственно, антифриз  и переводится, как «незамерзающий» (греч. anti — против, англ. freeze – замерзать).

Характерный кислый запах придает антифризу ингибитор коррозии, который называется толитриазолом

Прежде всего, антифриз, как и любая охлаждающая жидкость, не позволяет двигателю перегреваться. Благодаря своим свойствам антифриз препятствует повреждению деталей при замерзании. Во-первых, температура его замерзания  значительно ниже, чем у воды.  Кроме того при  понижении температуры он не расширяется, подобно воде, а становится кашеобразным, благодаря чему исключается возможность поломок в системе охлаждения.

История антифриза

Естественно, что история охлаждающих жидкостей начиналась с обычной воды. Однако достаточно быстро выяснились отрицательные стороны ее использования, а именно замерзание при низких температурах. Для решения этой проблемы пытались применять многие  другие жидкости и растворы.  Первый антифриз появился в 20-х годах ХХ века. В его состав входил глицерин  – бесцветная  вязкая жидкость, растворимая  в воде. Однако он имел недостаточную текучесть.  Кроме того его вязкая структура отрицательно сказывалась на мощности двигателя.

Смесь концентрированного антифриза и дистиллированной воды в пропорции 1:1 дает смесь, не замерзающую до температуры -34 градуса Цельсия

Позже попробовали применять метанол (метиловый, или как еще  говорят, древесный спирт). Это была бесцветная жидкость с запахом, напоминающим запах обычного спирта. С применением этой жидкости в качестве охлаждающей, температуры замерзания стали значительно ниже. Однако и у метанола оказались свои минусы. Во-первых, он активно реагировал с алюминием, что было губительно для двигателя. Но, что еще более страшно, метанол оказался ядом, действующим на нервную и сосудистую систему человека. Разумеется, вскоре использование метанола в этих целях прекратили, и в настоящее время в составе антифризов и тосолов его использование недопустимо.

На смену пришел антифриз на основе этанола – обычного спирта, который входит во все алкогольные напитки. Этанол и сейчас применяется в некоторых видах антифризов.

Наконец, в 30-е годы основой антифриза стал этиленгликоль (двухатомный спирт).  Уже  к 1937 году антифризы на его основе практически вытеснили все остальные. Этиленгликоль обладает очень необычными свойствами: в чистом виде он замерзает уже при 10-12 градусах мороза, но если в него добавить воды, то температура замерзания понизится. Обычный раствор, состоящий из 60% этиленгликоля и 40% воды, замерзает при температуре -45 градусов.

Те, кому случайно «довелось» попробовать антифриз на вкус, знают, что он сладкий. Эту сладость смеси придает пропилен гликоль — основной компонент антифриза

Смесь этиленгликоля с водой вызывала коррозию и имела свойство вспенивания, поэтому в состав антифризов стали  добавлять присадки, которые препятствуют этим отрицательным качествам.

В 1952 году в СССР стали производить жидкость с названием «Антифриз». Выпускалась она двух видов:  М-40 и М- 65 — цифры указывали на температуру замерзания.  Но данные антифризы не подходили по своим качествам для «Жигулей».  Встал вопрос об использовании новой охлаждающей жидкости для новых советских «Жигулей».  Так, в  1971 году  был разработан новый антифриз, который получил название ТОСОЛ.

Разновидности антифризов

Итак, в состав антифризов входит этиленгликоль, вода и различные присадки (противокоррозионные, антивспенивающие и стабилизирующие). По составу присадок антифризы делят на четыре типа.

Расширительный бачок антифриза

Силикатные, или традиционные, — в качестве антикоррозионной присадки в них используют силикаты (соли кремниевых кислот). Силикаты при нагревании и кипении создают слой накипи  и тем самым снижают эффективность системы охлаждения. На сегодняшний день такие антифризы практически вышли из употребления.

Следующий тип – корбоксилатные антифризы. В качестве антикоррозийной присадки (ингибитора)  в этих жидкостях выступают органические кислоты. Эти ингибиторы  менее вредны для человека и безопасны для экологической среды.

Гибридные антифризы содержат в своем составе как органические, так и неорганические ингибиторы.

С 2008 года выпускается вид антифризов, называющийся лобридным. В нем органическая основа сочетается с небольшим количеством минеральных ингибиторов.

Кроме того в состав антифризов могут входить различные красители.  Но они не имеют отношения к свойствам антифриза и являются предметом договоренности производителей и их клиентов.

При возникновении течи в системе охлаждения антифриз попадает в воздуховоды, а затем на лобовое стекло, покрывая его поверхность жирной пленкой, мешающей обзору

Входящий в состав антифриза этиленгликоль, кроме того, что понижает температуру замерзания, еще и повышает температуру кипения охлаждающей жидкости. Это является несомненным преимуществом, так как делает возможным использование антифриза, как в холодное, так и в теплое время года.

Единственным недостатком является тот факт, что антифриз – жидкость ядовитая и требует очень осторожного обращения с ней.

Когда нужно менять антифриз

Срок замены для каждого вида антифриза свой. Однако бывает так, что он приходит в негодность раньше времени. Признаками этого являются: помутнение, выпадение осадка, появление желеобразной массы на горловине расширительного бачка.  Кроме того при использовании «старого» антифриза может чаще обычного срабатывать электровентилятор радиатора.

Если антифриз приобретает рыже-бурый цвет, это тоже признак необходимости его замены. Рыжий цвет является показателем того, что детали системы подверглись коррозии.

Мнение о том, что антифризы можно смешивать по цвету (красные доливать к красным и т.д.) является ошибочным. Смешивать можно только антифризы с одинаковым химическим составом.

Тосол: антифриз с отечественными корнями

В России большой популярностью пользуются антифризы отечественного производства, созданные в 1960-х годах — тосолы. Все о тосоле, его существующих типах, составе, характеристиках, особенностях, а также о применяемости и правильном выборе этого антифриза для автомобиля — читайте в данной статье.


Что такое тосол?

Тосол — общее наименование низкозамерзающих охлаждающих жидкостей (антифризов) на основе этиленгликоля с неорганическими присадками, предназначенных для применения в системе охлаждения автомобильного двигателя в холодное время года.

Зимняя эксплуатация транспортных средств, оборудованных ДВС с жидкостной системой охлаждения, всегда была связана с массой проблем. Одна из них — замерзание охлаждающей жидкости. Вода при замерзании расширяется, что может привести к разрыву радиатора, трубопроводов и даже блока двигателя. Эта проблема решается применением специальных низкозамерзающих (зимних) охлаждающих жидкостей (ОЖ) — антифризов, которые остаются в жидкой фазе при отрицательных температурах.

К таким жидкостям относится и разработанный в России Тосол. Данный антифриз впервые появился почти полвека назад, однако благодаря своей цене все еще популярен и востребован у автомобилистов.

История создания тосола

История тосола тесно связана с самыми массовыми отечественными автомобилями — «Жигулями». В первых ВАЗ 2101 – 2103, разработанных на основе Fiat 124, использовалась итальянская же охлаждающая жидкость Paraflu 11 на основе этиленгликоля (она заливалась в систему охлаждения непосредственно на автозаводе). Данный антифриз был дорогим и недоступным для рядовых автовладельцев, поэтому на рубеже 60-х – 70-х годов были разработаны отечественные охлаждающие жидкости с аналогичными характеристиками.

Работа по созданию нового антифриза проводилась в Государственном НИИ органической химии и технологии (ГосНИИОХТ), а точнее — в отделе Технологии органического синтеза (ТОС). Наименование «Тосол» родилось при объединении аббревиатуры «ТОС» и окончания «-ол», которое в химической номенклатуре применяется для образования названий спиртов. В институте была создана оригинальная рецептура антифриза (авторы — Чижов Е. Б. и Шаталов М. П.), технологии его производства и торговое название (которое со временем стало нарицательным).

Система охлаждения двигателя

До начала 90-х годов существовало три марки (шесть разновидностей) тосола, сегодня же их количество и разнообразие многократно возросло, поэтому сделать грамотный выбор среди этого многообразия бывает непросто. Облегчить этот выбор поможет знание типов, химического состава и применяемости тосолов.


Состав и особенности тосола

Как оригинальный Тосол, так и другие антифризы, продающиеся сегодня под этой маркой, состоят из трех основных компонентов:

  • Этиленгликоль;
  • Дистиллированная вода;
  • Пакет неорганических присадок (антикоррозийные, антивспенивающие, стабилизирующие, другие).

Основу антифриза составляет этиленгликоль — двухатомный спирт, водные растворы которого обладают низкими температурами замерзания. Чистый этиленгликоль замерзает при температуре −12,9°C, раствор 50/50 с водой замерзает уже при −36°C, раствор с 66,7% этиленгликоля замерзает при температуре −75°C, а с дальнейшим повышением концентрации спирта температура замерзания повышается.

Этиленгликоль обладает рядом недостатков: высокая степень токсичности (наносит вред даже при попадании на кожу) и коррозионная активность. Простой водный раствор спирта, работающий в системе охлаждения двигателя, в считанные месяцы приведет к разрушению металлических компонентов (независимо от того, стальные они, чугунные, медные или алюминиевые), не пощадит этиленгликоль и резины с пластиками. Для снижения негативного воздействия ОЖ на металлы в его состав вводятся антикоррозийные присадки — ингибиторы коррозии и вещества, образующие на внутренних поверхностях деталей защитные пленки.

Во время движения транспортного средства и работы силового агрегата все его детали подвергаются вибрациям, толчкам и ударам, что приводит к вспениванию циркулирующего антифриза. Это может серьезно нарушить теплообмен и привести к перегреву мотора. Поэтому в состав тосола вводятся антивспенивающие присадки.

Наконец, в состав антифриза вводятся стабилизирующие присадки, которые снижают интенсивность разложения спирта и других присадок под воздействием высоких температур и химических реагентов. А для визуального определения типа тосола, его уровня в расширительном бачке и текущего состояния используются красящие добавки синего и красного цвета.

В общем случае состав тосола следующий:

  • Этиленгликоль — от 50 до 65 %;
  • Вода дистиллированная — от 30 до 50 %;
  • Пакет присадок — до 6-7 %.

Состав тосола и концентрация основных веществ зависит от его типа и характеристик.


Типы и характеристики тосола

Тосол-40 — жидкость голубого цвета

Тосол-65 — жидкость красного цвета

На территории РФ действует стандарт ГОСТ 28084-89, регламентирующий основные характеристики и особенности антифризов на основе этиленгликоля. Под действие этого документа попадает и тосол. В соответствии со стандартом, существует три типа этиленгликолевых антифризов:

  • Тосол-К (в общем случае — ОЖ-К) — концентрированный раствор этиленгликоля с массовым содержанием воды не более 5%;
  • Тосол-40 (ОЖ-40) — раствор с массовым содержанием воды не более 50%, замерзающий при температуре ниже −40°C, синего/голубого цвета;
  • Тосол-65 (ОЖ-65) — раствор с массовым содержанием воды не более 40%, замерзающий при температуре ниже −65°C, красного цвета.

Тосол-40 и Тосол-60 — готовые продукты, которыми можно заполнять систему охлаждения двигателя. Тосол-К — концентрат, который является сырьем для изготовления указанных выше типов антифризов путем разбавления их дистиллированной водой до необходимой концентрации.

Стандартом оговорено, что каждый из антифризов должен иметь определенные показатели плотности, температуры кипения, коррозионной активности, вспениваемости и других характеристик. В частности, температура кипения (температура начала перегонки) тосола должна быть не менее 100°C, коррозионная активность — не более 0,1 г/кв. м в сутки для металлов и 0,2 г/кв.м в сутки для припоев, объем пены в системе не должен превышать 30 куб. см (причем она должна оседать в течение 3-5 секунд после успокоения жидкости), а кислотность (pH) — в пределах 7,5-11.

Однако состав антифризов стандартом не регулируется, поэтому производители вольны сами решать, какие пакеты присадок использовать в тосоле — главное, чтобы продукт соответствовал прописанным в документе характеристикам. Интересно, что даже массовая доля этиленгликоля не регламентирована жестко — стандартом лишь указывается максимальная массовая доля воды, которая может содержаться в тосоле. Именно поэтому сегодня на рынке представлено такое широкое разнообразие антифризов с названием «Тосол», которые значительно отличаются друг от друга составом и характеристиками.

Еще нужно обратить внимание, что оригинальный Тосол был двух марок: Тосол-А — автомобильный, и Тосол-АМ — автомобильный модернизированный, каждый из них делился на группы «концентрат», «40» и «65» — итого шесть типов антифризов. Сегодня оригинальный Тосол не производится, а в стандарте антифризов с индексами «А» и «АМ» не предусмотрено. Однако на рынке можно встретить продукты «Тосол-А40», «Тосол-А40М», и т.д. — эти антифризы могут соответствовать указанному выше стандарту, но чаще всего производятся по корпоративным ТУ.


Возможности и ограничения по применяемости тосола

В соответствии с принятой классификацией тосол относится к антифризам традиционного типа — низкозамерзающим ОЖ, в основе которых лежит этиленгликоль и пакет неорганических присадок. Такие антифризы имеют ряд недостатков: уже озвученная выше химическая активность этиленгликоля и неорганические присадки, которые в процессе работы двигателя оседают на внутренних поверхностях деталей системы охлаждения, ухудшая теплообмен. Современные карбоксилатные и лобридные антифризы с органическими присадками лишены этих недостатков, поэтому многие автопроизводители полностью перешли на их применение в своих автомобилях.

Если производителем четко указано, что на данной конкретной модели автомобиля необходимо использовать какой-то определенный тип антифриза — лучше последовать этой рекомендации и отказаться от применения тосола. При использовании тосола очень высок риск повреждения двигателя, а в случае с новым автомобилем — еще и потери гарантии.

Если же автопроизводитель допускает применение традиционных антифризов, то в двигатель смело можно заливать тосол. Однако во избежание быстрой выработки ресурса мотора и повреждения деталей его системы охлаждения следует регулярно производить замену отработанного тосола. Ресурс антифриза зависит от многих факторов, он может существенно отличаться в зависимости от температурного режима силового агрегата, поэтому автовладелец должен сам следить за состоянием тосола — достаточно обращать внимание на его цвет (со временем он изменяется и блекнет) и консистенцию. При своевременной замене тосола двигателю будет нанесен минимальный вред, а автовладелец предотвратит лишние затраты на ремонт.

Основные сведения о охлаждающей жидкости двигателя

Охлаждающая жидкость (или антифриз) защищает двигатель от замерзания, а компоненты от коррозии. Он играет решающую роль в поддержании теплового баланса двигателя за счет отвода тепла.

В сверхмощном дизельном двигателе только одна треть всей производимой энергии работает на продвижение автомобиля вперед. Дополнительная треть отводится выхлопной системой в виде тепловой энергии. Оставшаяся треть произведенной тепловой энергии забирается охлаждающей жидкостью двигателя.

Это тепло, отводимое охлаждающей жидкостью, обеспечивает баланс отвода тепла от двигателя, что имеет решающее значение для обеспечения правильной работы двигателя. Перегрев может привести к ускоренному ухудшению качества масла и самого двигателя.

Хотя вода обеспечивает наилучшую теплопередачу, гликоль также используется в охлаждающих жидкостях двигателя для защиты от замерзания. Добавление гликоля немного снижает теплопередачу воды, но в большинстве климатических условий и применений защита от замерзания имеет решающее значение.

Почти во всех двигателях используются охлаждающие жидкости с аналогичными базовыми жидкостями: смесь этиленгликоля и воды в соотношении 50/50. В некоторых случаях в промышленных двигателях могут использоваться другие базовые жидкости, такие как вода с добавками или смесь пропиленгликоля и воды.

В дополнение к базовой жидкости есть небольшое количество других ингредиентов, включая ингибиторы коррозии, пеногасители, красители и другие добавки. Хотя эти другие ингредиенты составляют лишь небольшую часть охлаждающей жидкости, они именно то, что отличает одну охлаждающую жидкость от другой.

Исторически в Северной Америке обычные охлаждающие жидкости двигателя были зеленого цвета. В настоящее время эти зеленые охлаждающие жидкости обычно используют смесь фосфатов и силикатов в качестве основных компонентов в их системе ингибиторов. Обычные ингибиторы, такие как силикаты и фосфаты, работают, образуя защитный слой, который фактически изолирует металлы от охлаждающей жидкости.

Эти ингибиторы можно химически охарактеризовать как неорганические оксиды (силикаты, фосфаты, бораты и т. Д.).). Поскольку эти системы ингибиторов истощаются из-за образования защитного слоя, обычные зеленые охлаждающие жидкости необходимо заменять через регулярные двухгодичные интервалы, обычно каждые два года.

Для защиты двигателей от коррозии были разработаны разнообразные технологии. В Европе проблемы с минералами жесткой воды вынудили технологии охлаждающих жидкостей отказаться от фосфатов. Кальций и магний, минералы, содержащиеся в жесткой воде, реагируют с ингибиторами фосфата с образованием фосфата кальция или магния, который обычно приводит к образованию накипи на горячих поверхностях двигателя.Это может привести к потере теплопередачи или коррозии под накипью.

Чтобы заменить фосфаты, обычные европейские охлаждающие жидкости содержат смесь неорганических оксидов, таких как силикаты, и ингибиторов, называемых карбоксилатами. Карбоксилаты обеспечивают защиту от коррозии за счет химического взаимодействия в местах коррозии металлов, а не за счет образования слоя ингибиторов, покрывающего всю поверхность.

Смесь карбоксилатов и силикатов также называется гибридной технологией, потому что это смесь традиционной неорганической технологии и полностью карбоксилатной или органической технологии.Европейские охлаждающие жидкости для двигателей существуют в различных цветах; обычно каждый производитель требует другого цвета.


Рис. 1. Оригинальный водяной насос от
Двигатель Caterpillar с более чем 750,000
Мили с использованием охлаждающей жидкости с увеличенным сроком службы (ELC).

В Азии проблемы с уплотнениями водяных насосов и плохая теплопередача привели к запрету охлаждающих жидкостей, содержащих силикаты. Для обеспечения защиты большинство охлаждающих жидкостей содержат смесь карбоксилатов и неорганических ингибиторов, таких как фосфаты.

Эти охлаждающие жидкости являются гибридами. Они отличаются от европейских гибридов отсутствием силикатов. Охлаждающие жидкости от азиатских производителей оборудования могут быть разных цветов, включая красный, оранжевый и зеленый.

Охлаждающие жидкости на основе карбоксилатов с увеличенным сроком службы были разработаны, чтобы быть приемлемыми во всем мире и обеспечивать превосходные характеристики по сравнению с существующими технологиями. Эта технология также известна как технология органических добавок (OAT). Поскольку полностью карбоксилатные охлаждающие жидкости не содержат силикатов, они соответствуют строгим требованиям азиатских спецификаций.

Они также соответствуют европейским требованиям к антифризу, поскольку не содержат фосфатов. Эти охлаждающие жидкости для двигателей приобрели международную популярность благодаря непревзойденной защите от коррозии в течение продолжительных периодов времени.

Стоит отметить, что некоторые люди называют это «технологией органических добавок» (OAT), потому что ингибиторы, обеспечивающие защиту от коррозии, получены из карбоновых кислот. На самом деле защиту обеспечивают нейтрализованные карбоновые кислоты, называемые карбоксилатами.

Это различие важно, потому что все охлаждающие жидкости работают в нейтральном или основном диапазоне pH (pH равен или больше 7). Фактически, большинство охлаждающих жидкостей производятся на основе кислотного предшественника, например, обычные охлаждающие жидкости на основе фосфата начинают свою жизнь как фосфорная кислота.

Ингибиторы карбоксилатов обеспечивают защиту от коррозии за счет химического взаимодействия с металлическими поверхностями там, где это необходимо, а не за счет универсальной укладки слоев, как в случае обычных и гибридных охлаждающих жидкостей.

Последствия этого функционального различия огромны: увеличенный срок службы, непревзойденная защита алюминия при высоких температурах, а также преимущества теплопередачи как на горячих поверхностях двигателя, так и на теплоотводящих трубках радиатора, где теплопередача имеет решающее значение для оптимальной производительности. Высококачественные охлаждающие жидкости на основе карбоксилатов продемонстрировали эффективность более 32 000 часов в стационарных двигателях без каких-либо изменений.

Одним из показателей действительно продленного срока службы является то, что в конце испытания в парке использованная охлаждающая жидкость может быть удалена из двигателя и при этом успешно пройти испытания, предназначенные для свежих охлаждающих жидкостей!

Техническое обслуживание охлаждающей жидкости двигателя

Послепродажный рынок наполнен охлаждающими жидкостями высокого и низкого качества всех цветов; поэтому цвет не является хорошим индикатором типа охлаждающей жидкости.Наилучшая практика технического обслуживания — знать точную охлаждающую жидкость, которая требуется для двигателя и помещаемая в двигатель, а также контролировать любую жидкость, используемую для доливки оборудования.

Хотя доступно множество методов, для измерения отношения гликоль / вода следует использовать рефрактометр, поскольку он предлагает наиболее надежный метод определения точного содержания гликоля в охлаждающей жидкости. Это определяет уровень защиты от замерзания и обеспечивает надлежащую концентрацию ингибиторов коррозии.

Еще одна мера профилактического обслуживания включает проверку самой системы охлаждения, чтобы убедиться, что она заполнена и работает правильно.Работа с низким содержанием охлаждающей жидкости может привести к множеству проблем, поскольку охлаждающая жидкость не может защитить поверхности, с которыми она не контактирует, а водяные пары гликоля могут вызывать коррозию. Простая проверка резервуара для перелива, который не является частью проточной системы, может ввести в заблуждение, если система не работает должным образом. Кроме того, сама крышка радиатора может быть неотъемлемой частью системы, если она предназначена для выдерживания определенного давления. Эти колпачки можно проверить, чтобы определить, выдерживают ли они надлежащее давление, которое является ключом к бесперебойной работе системы.Если давление в системе ниже расчетного, охлаждающая жидкость закипит при более низкой температуре. Быстрое кипение (известное как пленочное кипение) может привести к сильной коррозии из-за горячих точек и неправильного контакта с охлаждающей жидкостью двигателя.

В литературе и на рынке существует много дезинформации о совместимости различных типов технологий охлаждения. Хотя смешивание двух разных охлаждающих жидкостей не является хорошей практикой технического обслуживания, это не приведет к проблемам совместимости, если будут использоваться охлаждающие жидкости от высококачественных, уважаемых поставщиков.

Обычно считается, что охлаждающие жидкости совместимы, однако смешивание охлаждающих жидкостей двух разных качеств приводит к получению смеси промежуточного качества. Хотя это не катастрофа, смешивание отличной охлаждающей жидкости с посредственной охлаждающей жидкостью приведет к охлаждающей жидкости с невысокими характеристиками.

Избыточное разбавление водой имело бы отрицательный эффект, потому что ингибиторы коррозии будут присутствовать в двигателе в меньших количествах, чем первоначально предполагалось. Охлаждающие жидкости работают в широком диапазоне разбавлений.

Оптимальным вариантом для большинства систем охлаждения является 50% охлаждающей жидкости и 50% воды хорошего качества, и в целом охлаждающие жидкости допускают разбавление примерно до 40% концентрата и 60% воды.

Как правило, деградация охлаждающей жидкости учитывается в интервалах, «рекомендованных производителем». Обычные охлаждающие жидкости, содержащие силикаты, разлагаются в первую очередь из-за быстрого истощения ингибиторов. Это связано с тем, что силикаты накладывают защитные слои на компоненты системы как часть их защитного механизма.

Следовательно, ингибиторы охлаждающей жидкости необходимо добавлять или регулярно менять, чтобы гарантировать, что поверхности останутся защищенными в случае нарушения силикатного слоя.

Как правило, охлаждающие жидкости со временем разлагаются, поскольку этиленгликоль распадается в основном на гликолевую и муравьиную кислоты. Разложение происходит быстрее в двигателях, работающих при более высоких температурах, или в двигателях, которые пропускают больше воздуха в системы охлаждения.

Хладагент следует проверять ежегодно, если предполагается, что система будет эксплуатироваться в течение нескольких лет между заменами хладагента, и особенно в тех случаях, когда хладагент используется в тяжелых условиях.Один тест гарантирует, что pH все еще выше 7,0. Некоторые технологии охлаждающей жидкости могут обеспечивать защиту до pH 6,5, однако, как правило, не рекомендуется допускать работу охлаждающей жидкости при pH ниже 7,0.

Продукты распада гликоля являются кислыми и способствуют снижению pH. После разложения охлаждающей жидкости из-за разложения гликоля и падения pH металлы двигателя подвергаются риску коррозии. Разложение охлаждающей жидкости можно замедлить, используя охлаждающие жидкости с ингибиторами продленного срока службы и обеспечивая правильную работу оборудования и в установленных проектных пределах.

Тестирование на ингибиторы коррозии — еще один метод проверки состояния охлаждающей жидкости. В то время как ингибиторы с увеличенным сроком службы обычно не нуждаются в тестировании, если для доливки используются правильные рекомендации по использованию и правильные жидкости, обычные ингибиторы истощаются, и их необходимо тестировать.

Помимо тестов на нитир и молибдат, для большинства обычных охлаждающих жидкостей требуется либо постоянное добавление охлаждающей жидкости (SCA), либо лабораторный анализ для обеспечения надлежащей работы.

Различные ингибиторы, такие как нитриты и молибдаты, легко контролируются с помощью тест-полосок. Поскольку нитриты истощаются быстрее по сравнению с другими ингибиторами, тестирование на нитриты позволяет узнать уровень нитритов в охлаждающей жидкости, но ничего больше.

Некоторым двигателям требуются ингибиторы, такие как нитриты, которые должны поддерживаться на определенном уровне, чтобы обеспечить защиту от кавитационной коррозии, которая может возникать в двигателях со съемными гильзами цилиндров. Нитриты в обычных охлаждающих жидкостях быстро истощаются, и их необходимо пополнять через регулярные промежутки времени.

Охлаждающие жидкости ELC на основе карбоксилатов обычно имеют более низкий уровень истощения нитритов, поскольку карбоксилаты обеспечивают необходимую защиту от кавитации и, следовательно, гораздо более длительные интервалы профилактического обслуживания.

Производители оригинального автомобильного оборудования (OEM) теперь рекомендуют использовать либо гибридную охлаждающую жидкость, либо полностью карбоксилатный ELC. Обычные, стандартные зеленые охлаждающие жидкости на этой картинке отсутствуют. Рекомендации производителей оборудования для тяжелых дизельных двигателей имеют широкий спектр возможностей.

В промышленном секторе некоторые производители оригинального оборудования требуют использования силикатной охлаждающей жидкости, в то время как другие требуют использования силикатной охлаждающей жидкости для обеспечения теплопередачи. Точно так же для некоторых требуется отсутствие фосфатов, чтобы избежать отложений накипи от жесткой воды. Эта накипь имеет тенденцию к образованию отложений на самой горячей части двигателя, что снижает теплопередачу и может вызвать коррозию.

Наконец, некоторые производители оригинального оборудования требуют использования нитритов для защиты от кавитации, в то время как у других таких требований нет. Поскольку явление кавитации в гильзе цилиндра зависит от конструкции, все двигатели подвержены разному.Важно понимать потребности конкретного оборудования.

Охлаждающие жидкости играют жизненно важную роль в сохранении теплового баланса двигателя и защите компонентов двигателя от коррозии. По оценкам, 60 процентов простоев двигателей в секторе коммерческих грузовых автомобилей связано с охлаждающей жидкостью.

Независимо от рынка, на котором используется охлаждающая жидкость, можно с уверенностью предположить, что обучение охлаждающей жидкости, касающееся химического состава продукта, использования и текущего обслуживания, играет жизненно важную роль в создании производительной и прибыльной среды.

Использование высококачественной охлаждающей жидкости двигателя от надежного поставщика и соблюдение осторожных методов профилактического обслуживания помогут обеспечить надлежащую защиту двигателя.

Antifreeze — обзор | Темы ScienceDirect

Антифризные белки

Известно, что растения и пойкилотермные животные, такие как насекомые и холодноводные рыбы, защищают себя от замерзания как антифризами, такими как гликоли, так и специальными пептидами и гликопептидами, которые действуют как антифризные белки и гликопротеины, которые действуют препятствуя росту кристаллов льда (Klomp et al., 1997). Гликопептиды, состоящие из аланина, треонина, галактозы и N -ацетилгалактозамина, присутствуют у животных в районе Антарктики. У других северных рыб были обнаружены пептиды, содержащие аланин, аспартат, глутамат, треонин и серин (DeVries, 1982).

Микробы демонстрируют необычайное разнообразие приспособлений к экстремальным условиям. Термофилы — это организмы, которые выживают при температурах, близких к температуре кипения воды, а психрофилы — это бактерии, которые переносят необычно низкие температуры.Чтобы выжить при температурах ниже точки замерзания обычной воды, эти микробы защищаются от растущих кристаллов льда, которые могут повредить клеточные мембраны. Они производят криопротекторы, которые снижают температуру зародышеобразования для льда. Эти криопротекторы включают белки зародышеобразования льда (Walker et al., 2008). Рост кристаллов льда можно подавить даже в присутствии небольших количеств таких веществ. Скорости гомогенного зародышеобразования и кристаллизации чувствительны к низким концентрациям.

Антифризная активность гликопротеинов является результатом сорбции белка на активных участках роста кристаллов льда (Franks et al., 1987). По мере того как белки адсорбируются, они изменяют кривизну поверхности, что очень затрудняет зарождение и рост кристаллов льда (Walker et al., 2008). Напротив, зародышевые белки предотвращают сильное переохлаждение и позволяют образовывать лед, близкий к температуре замерзания. Белки-антифризы проявляют три вида активности (Wang, 2000):

1.

Они могут поддерживать переохлажденное состояние жидкостей организма, подавляя обычный рост льда,

2.

Они обладают способностью препятствовать перекристаллизации, и

3.

Они могут служить плазмой мембранные протекторы при низких температурах.

Белки-антифризы подразделяются на несколько основных типов, которые приведены в таблице 13.12 (Tokunaga et al., 2008).

Таблица 13.12. Типы антифризовых белков

Тип Характеристики
I Одинарные, длинные, амфипатические α -спирали
II глоубогенные белки дисульфидные группы III Общая гидрофобность сходна с белками типа I
IV α -Справочные белки, богатые глутаматом и глутамином
V Великолепное значение термического гистерезиса0 эффекта типа I0 был исследован белок-антифриз рыб из озимой камбалы Pleuronectes americanus (Walbaum) на образование клатрат-гидрата тетрагидрофурана.Белок-антифриз действует, изменяя морфологию кристаллов клатрат-гидрата с октаэдрической на пластинчатую. Белок кажется более эффективным, чем поливинилпирролидон. Кроме того, эксперименты предполагают, что рост пропан-гидрата также может быть ингибирован (Zeng et al., 2003).

В качестве задействованного механизма была предложена поверхностная адсорбция. После того, как молекулы белка прикрепляются к поверхности льда, рост кристаллов льда становится неблагоприятным в области между адсорбированными молекулами белка, поскольку они вызывают увеличение кривизны поверхности.Эта кривизна впоследствии препятствует дальнейшему росту кристаллов льда (Zeng et al., 2005).

Низшие спирты, гликоли и неорганические соли являются депрессантами точки плавления, то есть антифризами, которые можно использовать для предотвращения образования гидратов. Однако при высоких степенях переохлаждения, характерных для глубоководных вод, их необходимо добавлять в значительных количествах, до количеств, равных количеству добываемой воды, чтобы они были эффективными (Klomp et al., 1997).

Для ингибирования газовых гидратов были предложены не только сами белки-антифризы, но и производные из них активные фрагменты, а также миметики белков-антифризов.Подходящие белки или фрагменты содержат Р-спираль или 3-спирали, Р-валик, гликопротеин или глобулярную структуру. Такие антифризы могут быть получены из животных, растений, грибов, простейших или бактерий (Walker et al., 2003). Специальные примеры белков-антифризов приведены в Таблице 13.13.

Таблица 13.13. Протеины антифриза (Walker et al., 2003)

Происхождение Ссылка
Насекомые
Жук-мучнистый червь ( T.molitor ) Graham et al. (1999)
Червь еловая ( C. fumiferana ) Walker et al. (1999)
Жук молочая ( Oncopeltus fasciatus ) Patterson et al. (1981)
Dendroides canadensis Duman (1997)
Растения
Рожь ( Lolium perenne ) Kuiper et al.(2001)
Паслен горько-сладкий ( Solanum dulcamara ) Worrall et al. (1998)
Озимая рожь ( Secala cereale ) Worrall et al. (1998)
Морковь ( Daucus carota ) Byass et al. (2000)

Дезоксирибонуклеиновые кислоты (ДНК), кодирующие антифризные белки Tenebrio molitor , были выделены и, как было обнаружено, кодируют 7-13 кДальтон, богатые цистином белки, состоящие в основном из 12 повторяющихся аминокислотных единиц (Graham et al. al., 1997, 1999). ДНК Choristoneura fumiferana , кодирующая антифризные белки 9–12 кДальтон, также была клонирована (Doucet et al., 2002).

Треонины соответствуют решетке льда в моделях антифриз протеин / лед. В некоторых белках-антифризах треонины заменены валином или изолейцином, которые представляют собой аминокислоты с метильными группами и пространственными объемами, аналогичными треонину. Считается, что неполярные взаимодействия могут быть важны для подавления роста льда (Walker et al., 2003). Белки-антифризы из насекомых обладают большей активностью, чем белки-антифризы из рыб, на 1-2 порядка. К сожалению, несмотря на их замечательные характеристики, их производство и использование в нефтяных месторождениях было сочтено неэкономичным (Klomp et al., 1997).

Состав антифриза двигателя — Ethylene Chemical Co., Ltd.

ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ

1. Область изобретения

Настоящее изобретение относится к композиции охлаждающей жидкости антифриза двигателя и, в частности, композиции охлаждающей жидкости антифриза двигателя, которая оказывает хорошее предотвращающее коррозию действие на металлические материалы, такие как алюминиевые сплавы, использование в двигателях внутреннего сгорания.

2. Уровень техники

Металлические материалы, такие как алюминиевые сплавы, медь и медные сплавы, широко используются для изготовления блоков цилиндров, головок цилиндров, радиаторов и водяных насосов. Недостатком этих металлических материалов является отсутствие коррозионной стойкости по отношению к воде, содержащей коррозионные соли, содержащейся в охлаждающей жидкости двигателя, или к спиртам, присутствующим в охлаждающих жидкостях антифриза двигателя; поэтому существует потребность во включении различных ингибиторов коррозии в вышеупомянутые антифризы для двигателей.

Типичные примеры ингибитора коррозии, который может использоваться в обычных охлаждающих жидкостях двигателя, включают те, которые указаны в BS (Британский стандарт) 3150, BS 3151 и BS 3152. И триэтаноламинфосфат, и натриевая соль меркаптобензотиазола, бензоат натрия и нитрит натрия. , и бура включены в качестве ингибитора коррозии в охлаждающую жидкость антифриза, содержащую этиленгликоль в качестве основного компонента в BS 3150, BS 3151 и BS 3152 соответственно. Однако, когда эти ингибиторы коррозии вводятся по отдельности в охлаждающую жидкость-антифриз, полученная охлаждающая жидкость-антифриз не оказывает удовлетворительного антикоррозионного эффекта на металлические материалы для использования в вышеупомянутом механизме охлаждения двигателя; поэтому в литературе было предложено несколько методов (см., например, японские патентные публикации №40916 от 1989 г., 14385 от 1990 г., 28625 от 1990 г., 1355 от 1991 г., 56272 от 1991 г. и 14193 от 1992 г.), где использование новой смеси вышеуказанных ингибиторов или использование дополнительного нового ингибитора коррозии, выбранного из амина соли, силикаты и соединения двухвалентных металлов, включая соединения магния, кальция или цинка.

Проблема, связанная с использованием соли амина в качестве ингибитора коррозии, заключается в образовании токсичного нитрозамина, когда соль амина объединяется с нитритом в охлаждающей жидкости.Недостатки использования силиката в качестве ингибитора коррозии следующие: а) силикаты обладают низкой термической стабильностью по своей природе, б) включение силиката делает охлаждающую жидкость-антифриз нестабильной по отношению к pH, и в) гель легко образуется в охлаждающая жидкость, когда силикат вводится в охлаждающую жидкость, которая содержит другие соли, что снижает присущий охлаждающей жидкости эффект предотвращения коррозии.

Кроме того, при использовании в присутствии соли фосфата и жирной кислоты соединение двухвалентного металла в качестве ингибитора коррозии легко взаимодействует с этими солями, вызывая осаждение солей и уменьшая антикоррозионный эффект охлаждающей жидкости.Таким образом, совместное использование этих ингибиторов коррозии с другими ингибиторами оказывает вредное влияние.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Целью настоящего изобретения является создание экологически чистой и нетоксичной антифризовой охлаждающей композиции, которая оказывает хорошее антикоррозионное действие на металлические материалы, такие как алюминиевые сплавы, для использования в двигателях внутреннего сгорания.

После интенсивных исследований заявители обнаружили, что намеченная цель может быть достигнута путем включения определенного количества лимонной кислоты и / или ее солей в антифриз, содержащий гликоли в качестве основного компонента, который содержит по крайней мере один традиционный ингибитор коррозии, кроме силикатов. .Настоящее изобретение было выполнено на основе этого открытия.

То есть, первый аспект изобретения направлен на охлаждающую композицию антифриза, содержащую большое количество гликолей в качестве основного компонента, по меньшей мере, один ингибитор коррозии, за исключением силикатов, и от примерно 0,005 до примерно 0,5% по массе лимонной кислоты. и / или их соли в качестве основного компонента.

Второй аспект изобретения направлен на состав охлаждающей жидкости антифриза согласно первому аспекту, в котором ингибитор коррозии представляет собой по меньшей мере один, выбранный из группы, состоящей из фосфатов, аминовых солей, боратов, нитратов, нитритов, молибдатов, вольфраматов, бензоаты, триазолы, тиазолы и соли жирных кислот.

ПОДРОБНОЕ ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНЫХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ

Примеры гликоля, используемого в настоящем изобретении, включают этиленгликоль, пропиленгликоль, 1,3-бутиленгликоль, гексиленгликоль, диэтиленгликоль и глицерин, причем предпочтительным гликолем является этиленгликоль и пропиленгликоль.

Ингибиторы коррозии, которые можно использовать в изобретении, кроме силикатов. Силикаты по своей природе обычно не обладают термостойкостью. Добавление силиката делает охлаждающую жидкость-антифриз нестабильной по отношению к pH.Кроме того, гель образуется в охлаждающей жидкости, когда силикат включается в охлаждающую жидкость, которая содержит другие соли, что снижает антикоррозионный эффект охлаждающей жидкости.

Примеры ингибитора коррозии, подходящего для использования в составе охлаждающей жидкости антифриза согласно изобретению, включают фосфаты, соли аминов, бораты, нитраты, нитриты, молибдаты, вольфраматы, бензоаты, триазолы, тиазолы, соли жирных кислот и их смеси.

Типичные примеры ингибитора коррозии включают обычные ингибиторы, такие как ортофосфорная кислота, октановая кислота, себациновая кислота, пара-трет.-бутилбензоат, бензоат натрия, молибдат натрия, натриевая соль меркаптобензотиазола, бензотриазол, толилтриазол, нитрат натрия, нитрит натрия, бура, триэтаноламин и гидроксид калия.

В дополнение к вышеуказанному ингибитору композиция охлаждающей жидкости антифриза по изобретению содержит лимонную кислоту и / или ее соли в качестве основного компонента в количестве от примерно 0,005 до примерно 0,5% по массе, предпочтительно от примерно 0,03 до примерно 0,1%. по весу, более предпочтительно примерно от 0.04 примерно до 0,06% по весу.

Когда вместо лимонной кислоты используется органическая кислота, отличная от лимонной кислоты и ее солей, трехосновная кислота или двухосновная кислота, полученная охлаждающая жидкость имеет слабый антикоррозионный эффект, независимо от того, имеет ли органическая кислота гидроксильную группу. в молекуле или нет.

Когда количество лимонной кислоты и / или ее солей в составе охлаждающей жидкости антифриза составляет менее примерно 0,005% по весу, полученная охлаждающая жидкость не оказывает удовлетворительного антикоррозионного эффекта на металлические материалы, такие как алюминиевые сплавы, что приводит к увеличение потери веса металлических материалов из-за коррозии, а также нежелательное изменение состояния поверхности металлических материалов в черный цвет.И наоборот, когда оно составляет более примерно 0,5% по весу, полученная охлаждающая жидкость также не оказывает желаемого эффекта предотвращения коррозии, что приводит к увеличению потери веса испытательных образцов из литого алюминия из-за коррозии и появлению состояние поверхности испытательных образцов из литого алюминиевого сплава нежелательно становиться черным.

В составах охлаждающих жидкостей двигателя для антифриза согласно настоящему изобретению могут использоваться другие необязательные добавки, такие как пеногасители, красители и горькие добавки, если они не отклоняются от сущности изобретения.

Как описано выше, когда определенное количество лимонной кислоты и / или ее солей вводится в охлаждающую жидкость-антифриз, содержащую большое количество гликолей в качестве основного компонента, который содержит по крайней мере один традиционный ингибитор коррозии, за исключением силикатов, охлаждающая жидкость-антифриз, имеющая может быть получен хороший эффект предотвращения коррозии на металлических материалах, таких как алюминиевые сплавы, используемые в двигателях внутреннего сгорания. С другой стороны, когда вместо лимонной кислоты и / или ее солей используется органическая кислота, отличная от лимонной кислоты и ее солей, трехосновная органическая кислота или двухосновная органическая кислота, полученная охлаждающая жидкость имеет слабую защиту от коррозии. влияние на металлические материалы, такие как алюминиевые сплавы, независимо от того, имеет ли органическая кислота гидроксильную группу в молекуле или нет.

Хотя причина этого не доказана, возможно, верно, что синергизм и взаимодействие между ингибиторами коррозии, гликолями и лимонной кислотой и / или их солями вносят большой вклад в вышеупомянутый хороший антикоррозионный эффект композиций охлаждающей жидкости антифриза изобретение. Синергетический эффект не может быть достигнут за счет использования отдельных компонентов.

ПРИМЕРЫ

Хотя преимущества композиций согласно настоящему изобретению будут подробно описаны ниже в сочетании со следующими примерами, следует отметить, что объем изобретения не должен ограничиваться этими примерами.

Примеры 1-8

Были приготовлены антифризы согласно настоящему изобретению. В таблице 1 приведены формулы. Эффективность охлаждающих жидкостей для предотвращения коррозии алюминиевого сплава в условиях теплопередачи оценивалась в соответствии с методом испытаний, предписанным ASTM D 4340-84 (Коррозия литых алюминиевых сплавов в охлаждающих жидкостях двигателя в условиях отвода тепла), и коррозия металла. свойство было оценено в соответствии с методом испытаний, предусмотренным JIS K 2234-1987 (Engine Antifreeze, 7.4 Испытание на коррозионную способность металла).

В таблицах 2 и 3 показаны элементы испытаний, условия испытаний и требования, указанные в вышеупомянутых стандартах ASTM и JIS, соответственно. В таблицах 4–5 представлены сводные результаты испытаний.

ТАБЛИЦА 1
__________________________________________________________________________
Примеры 1 2 3 4 5 6 7 8
__________________________________________________________________________

Лимонная кислота 0.005
0,02
— — 0,30
— 0,50
0,05
Цитрат натрия
— — 0,10
— — 0,30
— —
Цитрат аммония
— — — 0,20
— — — — —
Бензоат натрия
— 6,0 — 3,0 2,0 2,0 3,0 2,0
п-трет-бутилбензоат
3,0 — — — 2,0 — 1,0 2,0
Октановая кислота
3,0 — — — — — 2,0 — —
Себациновая кислота
— — — — — — 1,0 —
75% фосфорная кислота
0,4 — 0,7 0,4 0,8 0,6 0.5 0,4
Нитрит натрия
— — — — — — 0,5 —
Нитрат натрия
0,5 — 0,3 0,5 0,5 0,3 0,5 0,5
Натрий — — — — 0,1 — — — — Молибдат
. 2H 2 O
Натрий — — — 3,0 — — — — Тетраборат
. 10H 2 O
Бензотриазол
0,3 — — 0,3 0,3 — 0,3 0,1
Трилтриазол
— 0,2 — — — 0,2 — 0,1
Меркаптобензотиазол.
0,3 — 0,3 0,3 0,1 0,1 — 0,3
Na соль
Триэтаноламин
— — 3.6 — — — — —
Гидроксид калия
1,5 — 0,5 0,6 1,6 1,0 2,2 1,2
Вода 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0
Этиленгликоль
88,984
91,769
92,489
89,689
90,289
91,489
88,989

Пропиленгликоль
— — — — — — — 91,339
Краситель 0,01
0,01
0,01
0,01
0,01
0,01
0,01
0,01
Пеногаситель 0,001
0,001
0,001
0,001
0,001
0.001
0,001
0,001
pH (30 об.%)
7,9 7,6 8,9 8,2 8,3 7,9 7,6 8,2
__________________________________________________________________________
4340 Позиции метода испытаний Условия испытаний
ТАБЛИЦА 2-1
________________14________________2
______________________________________

Концентрация охлаждающей жидкости антифриза (%)
25
Испытательный образец Отливка из алюминиевого сплава
Температура испытательного образца (° C.)
135
Количество испытательного раствора (мл)
500
Время работы (час)
168
Содержание хлорид-иона в испытательном растворе
100
(мг / л)
Давление (кПа) 193
______________________________________
ТАБЛИЦА 2-2
______________________________________
Требование, установленное ASTM D 4340 Метод испытания Пункт Требование
______________________________________

Изменение массы ± 1.0 макс.
______________________________________
ТАБЛИЦА 3-1
______________________________________
Краткое описание JIS K 2234 Элементы метода испытания коррозионных свойств металла для антифриза 14147 9014 9014
Концентрация охлаждающей жидкости антифриза (%)
30
Температура испытательного раствора (° C.)
88
Количество испытательного раствора (мл)
750
Время работы (час)
336
Обдув сухим воздухом (мл / мин)
100
Металлический образец для испытаний Пять видов
______________________________________
Алюминиевое литье
± 0.60 ± 0,30
(мг / см 2 )
Чугун ± 0,60 ± 0,30
Сталь ± 0,30 ± 0,15
Латунь ± 0,30 ± 0,15
Припой ± 0,60 ± 0,30
Медь ± 0,30 ± 0,15
Внешний вид Визуально не должно быть заметная коррозия
на испытательном образце, за исключением
части, контактирующей с прокладкой, но
изменение цвета допустимо.
Пенообразование во время
Нет вытекания пены из охладителя.
операция
Свойства
значение pH 6.5-11.0
раствор после испытания
Изменение pH ± 1,0
Изменение резервной щелочности
необходимо сообщить
(%)
Жидкая фаза Нет значительного изменения цвета. Нет
значительного изменения щелока, такого как отделение
, образование геля.
Количество осадков
0,5 макс.
(об.%)
ТАБЛИЦА 3-2
__________________________________________________________________________
Требования, указанные в JIS K 2234 (охлаждающие жидкости для двигателей, испытание на коррозионную стойкость металлов) Требования Пункты Класс 1 Класс 2
__________________________________________________________________________
__________________________________________________________________________
ТАБЛИЦА 4
______________________________________
Результаты испытаний (Метод испытания ASTM D 4340) Масса металла после испытания, мг (изменение образца) / см 2 )
______________________________________

1 Визуально не заметная коррозия
-0.87
2 Нет визуально заметной коррозии
-0,46
3 Нет визуально заметной коррозии
-0,38
4 Нет визуально заметной коррозии
-0,22
5 Нет визуально заметной коррозии
-0,18
6 Нет визуально заметной коррозии
-0,16
7 Нет визуально заметная коррозия
-0,14
8 Визуально не заметная коррозия
-0,23
______________________________________

ТАБЛИЦА 5
__________________________________________________________________________
__________________________________________________________________________

Внешний вид испытательного образца
Принято
Принято
Принято
Принято
Принято 90 025 Принято
Принято
Принято
Изменение массы
Алюминий
-0.02 -0,08 -0,02 0,00 -0,06 0,02 -0,03 -0,02
(мг / см 2 )
литье
Чугун
0,00 0,02 0,00 0,02 0,00 0,03 0,03 0,02
Сталь 0,00 -0,01 0,01 0,00 -0,01 0,00 0,02 0,00
Латунь -0,03 -0,02 -0,03 -0,02 -0,03 -0,04 -0,03 -0,03
Припой
0,02 0,00 0,02 0,03 0,02 -0,01 0,03 0,00
Медь
-0,04 -0,03 -0,04 -0,03 -0,05 -0,06 -0,04 -0,04
Внешний вид решение
принято
принято
принято
принято
принято
принято
принято
принято
Изменение pH -0.1 0,4 0,2 0,1 0,3 0,2 0,5 0,4
__________________________________________________________________________

Сравнительные примеры 1-18

Для сравнения охлаждающие жидкости-антифризы были приготовлены в соответствии с формулами, приведенными в таблицах 6-7. , затем были протестированы таким же образом, как в примерах выше. Таблицы 8–10 суммируют результаты испытаний.

ТАБЛИЦА 6
__________________________________________________________________________
Сравнительные примеры 1 2 3 4 5 6 7 8 9 10
__________________________________________________________________________

Лимонная кислота001
1,0 — — — — — — —
Натрий — — — 6,0 — 3,0 2,0 2,0 3,0 —
бензоат
п-трет-бутил
3,0 3,0 3,0 — — — — 2,0 — 1,0 3,0
бензоат
октановая кислота
3,0 3,0 3,0 — — — — 2,0 — 3,0
себациновая кислота
— — — — — — — — 1,0 —
75% фосфорная
0,4 0,4 ​​0,4 ​​- 0,7 0,4 0,8 0,6 0,5 0,4
кислота
Нитрит натрия
— — — — — — — — 0,5 —
Нитрат натрия
0,5 0,5 0 .5 — 0,3 0,5 0,5 0,3 0,5 0,55
Молибдат натрия
— — — — — — 0,1 — — —
Натрий — — — — — 3,0 — — — — — Тетраборат
. 10H 2 O
Бензотриазол
0,3 0,3 0,3 — — 0,3 0,3 — 0,3 0,3
Трилтриазол
— — — 0,2 — — — 0,2 — —
Меркаптобензотиазол .
0,3 0,3 0,3 — 0,3 0,3 0,1 0,1 — 0,3
Na соль
Триэтаноламин
— — — — 3,6 — — — — —
Гидроксид калия
1.5 1,5 1,7 — 0,5 0,6 1,6 1,0 2,2 1,5
Вода 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0
Этиленгликоль
88,989
88,988
87,789
91,789
92,589
89,889
90,589
91,789
87,989
88,789
Красители 0,01
0,01
0,01
0,01
0,01
0,01
0,01
0,01
0,01
0,01
Противовспениватель 0,001
0,001
0,001
0,001
0,001
0,001
0,001
0,001
0,001
0,001
Винная кислота
— — — — — — — — — 0.2
pH (30 об.%)
7,9 7,9 7,9 7,6 8,9 8,2 8,3 7,9 7,6 7,9
__________________________________________________________________________
ТАБЛИЦА 7
__________________________________________________________________________ 17 18 19 20
__________________________________________________________________________

Лимонная кислота — — — — — — — — — —
Бензоат натрия
— — — — — — — — 3.0 4,2
п-трет.-бутил
3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0 0,5 —
бензоат
Октановая кислота
3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0 0,5 —
Себациновая кислота
— — — — — — — — — 1,5
75% фосфорная
0,4 0,4 ​​0,4 ​​0,4 ​​0,4 ​​0,4 ​​0,4 ​​0,4 ​​0,4 ​​- —
кислота
Нитрит натрия
— — — — — — — — — —
Нитрат натрия
0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,2 —
Молибдат натрия
— — — — — — — — — —
Натрий — — — — — — — — — 3.0-
тетраборат 10H 2 O
Силикат натрия 9H 2 O
— — — — — — — — 0,15
0,3
Бензотриазол
0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,2 0,05
Трилтриазол
— — — — — — — — 0,1 0,15
Маркаптобензотиазол.
0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,3 0,1 —
Na соль
Триэтаноламин
— — — — — — — — — —
Гидроксид калия
1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,0 2.0
Вода 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0
Этиленгликоль
88,789
88,789
88,789
88,789
88,789
88,789
88,789
88,789
89,237
89,789
Красители 0,01
0,01
0,01
0,01
0,01
0,01
0,01
0,01
0,01
Пеногаситель 0,001
0,001
0,001
0,001
0,001
0,001
0,001
0,001
0,001
0,001
Горькие добавки — — — — — — — — 0.002

(BITREX ™)
Винная кислота
— — — — — — — — — —
Аконитовая кислота
0,2 — — — — — — — — —
Трикарбаллиновая кислота
— 0,2 — — — — — — — —
Яблочная кислота — — 0,2 — — — — — — — —
Молочная кислота — — — 0,2 — — — — — —
Салициловая кислота
— — — — 0,2 — — — — —
Галловая кислота — — — — — — 0,2 — — — —
Додекановая 2-кислота
— — — — — — 0.2 — — —
Адипиновая кислота — — — — — — — 0,2 — —
pH (30 об.%)
7,9 7,9 7,9 7,9 7,9 7,9 7,9 7,9 8,5 9,2
__________________________________________________________________________
ТАБЛИЦА 8
______________________________________
Результаты испытаний (метод испытания ASTM D 4340) Сравнительный внешний вид металлического испытательного образца Изменение массы Примеры после испытания 14 (905 мг / см 12) 907 2
______________________________________

1 Полированный черный -1.22
2 Чёрный -1,43
3 Без значительного изменения цвета
-0,21
4 Чёрный -1,78
5 Чёрный -1,32
6 Чёрный -1,32
7 Чёрный -1,52
8 Чёрный -1,73
9 Точеный черный -2,33
10 стал черным -1,35
11 стал черным -1,47
12 стал черным -1,36
13 стал черным -1.52
14 Чернота -1,62
15 Чернота -1,38
16 Чернота -1,32
17 Чернота -1,56
18 Чернота -1,54
19 Визуально не заметная коррозия
-0,47
20 Визуально заметная коррозия
-0,28
______________________________________
ТАБЛИЦА 9
__________________________________________________________________________
Сравнительные примеры 1 2 3 4 5 6 7 8 9 10
__________________ 900
Принято
Отклонено
Принято
Принято
Принято
Принято
Принято
Принято
Принято epted
Заменить алюминий
-0.08
-0,06
-0,36
-0,12
-0,10
-0,08
-0,12
-0,08
-0,09
-0,06
массы
отливка
(мг / см 2 )
Чугун
0,03
0,00
-0,98
0,02
0,00
0,02
0,00
0,02
0,02
0,03
Сталь 0,00
0,00
-0,12
-0,01
0,01
0,00
-0,01
0,00
0,02
0,00
Латунь -0,03
-0,03
-0,03
-0,02
-0,03
-0,02
-0.03
-0,04
-0,03
-0,04
Припой
0,00
-0,02
-0,01
0,00
0,02
-0,03
-0,02
-0,01
-0,03
-0,02
Медь
-0,05
-0,04
-0,04
-0,03
-0,04
-0,03
-0,05
-0,06
— 0,04
-0,05
Внешний вид раствора
Принято
Принято
Принято
Принято
Принято
Принято
Принято
Принято
0 Принято
Принято
Изменение pH .8 1,5 0,5 0,3 0,2 0,3 0,4 0,5 0,7 0,8
__________________________________________________________________________
ТАБЛИЦА 10
__________________________________________________________________________
Сравнительные примеры 11 12 13 14 157 90__________________________________________________________________________________________________________ 11 12 13 147

Внешний вид образца для испытаний
Принято
Принято
Принято
Принято
Принято
Принято
Принято
Принято
Принято
Принято
Изменить
Алюминий
-0.05
-0,03
-0,05
-0,04
-0,07
-0,09
-0,03
-0,06
-0,02
0,00
массы
отливка
(мг / см 2 )
Чугун
0,02
0,02
0,03
0,04
0,02
0,04
0,03
0,02
0,02
0,01
Сталь 0,03
0,00
0,01
0,03
0,02
0,00
0,01
-0,04
0,00
0,01
Латунь -0,02
-0,03
-0,02
-0,02
-0,05
-0,06
-0,07
-0.05
-0,03
-0,04
Припой
-0,04
-0,02
-0,03
-0,03
-0,02
-0,05
-0,06
-0,07
0,02
0,00
Медь
-0,03
-0,01
-0,04
— 0,07
-0,07
-0,09
-0,08
-0,07
— 0,05
-0,04
Внешний вид раствора
Принято
Принято
Принято
Принято
Принято
Принято
Принято
Принято
Принято
Создание
геля
Изменение pH
0.5 0,4 0,9 0,9 1,2 1,3 0,4 0,4 ​​-0,2 -0,6
__________________________________________________________________________

В сравнительных примерах с 1 по 2 и с 4 по 18 все образцы охлаждающих жидкостей вызвали коррозию алюминия со скоростью, превышающей требуемую. 1,0 мг / см 2 / неделя и были отклонены при испытании с применением метода, предписанного стандартами ASTM.

В сравнительном примере 3, хотя образец охлаждающей жидкости был принят при испытании на скорость коррозии при теплопередаче алюминия методом ASTM, охлаждающая жидкость была отклонена при испытании на внешний вид состояния поверхности и на изменение веса испытательных образцов путем применяя метод JIS (испытание на коррозионную стойкость металла).

Когда количество лимонной кислоты было ниже примерно 0,005% по весу (например, 0,001% по весу в Сравнительном примере 2), образцы охлаждающих жидкостей давали скорость коррозии при теплопередаче алюминия, превышающую требуемую 1,0 мг / см 2 / неделя (например, 1,43 мг / см 2 / неделя в Сравнительном примере 2), и внешний вид состояния поверхности испытательных образцов стал нежелательным.

И наоборот, когда количество лимонной кислоты было больше примерно 0.5% по весу (например, 1,0% по весу в Сравнительном примере 3), образцы охлаждающих жидкостей вызвали изменения веса образцов для испытаний алюминиевой отливки больше, чем требуется -0,30 мг / см см 2 / неделя в сравнительном примере 3), и внешний вид состояния поверхности образцов для испытаний алюминиевой отливки стал черным при испытании с применением метода JIS (испытание на коррозионную способность металла).

Кроме того, когда вместо лимонной кислоты и / или ее солей использовали органическую кислоту, отличную от лимонной, трехосновную органическую кислоту или двухосновную органическую кислоту, все охлаждающие жидкости для образцов (сравнительные примеры с 10 по 18) скорость коррозии при теплопередаче алюминия выше, чем требуется 1.0 мг / см 2 / неделя при испытании с применением метода ASTM.

В сравнительном примере 19 образец охлаждающей жидкости был принят при испытании как методами ASTM, так и JIS на свойства коррозии металла, но гель образовался в охлаждающей жидкости образца после выдержки в течение примерно 30 дней. Было показано, что состав охлаждающей жидкости непригоден для использования.

В сравнительном примере 20, хотя образец охлаждающей жидкости не был отклонен при испытании с применением метода ASTM для элементов, включая внешний вид состояния поверхности алюминиевых образцов для испытаний, гель также образовался в охлаждающей жидкости после испытания на коррозию при применении JIS. метод.

В отличие от охлаждающих жидкостей в сравнительных примерах, композиции охлаждающих жидкостей согласно настоящему изобретению (примеры с 1 по 8) содержат лимонную кислоту и / или ее соли в качестве основного компонента в дополнение, по меньшей мере, к одному ингибитору коррозии, выбранному из группы состоит из ингибиторов коррозии аминового типа, типа буры, типа ароматической барбоновой кислоты, типа жирной кислоты и нитритного типа. В результате хладагенты согласно изобретению вызывают коррозию алюминия при теплопередаче меньше, чем требуется 1.0 мг / см 2 / неделя, а также удовлетворительный внешний вид состояния поверхности образцов для испытаний.

Кроме того, нет явного изменения цвета образцов охлаждающих жидкостей после испытания на коррозию, что указывает на то, что охлаждающие жидкости по настоящему изобретению оказывают хорошее предотвращающее коррозию действие на металлические детали для использования в охлаждающем механизме двигателей внутреннего сгорания, в частности на детали из алюминиевого сплава для использования на тепловыделяющих поверхностях.

Таким образом, ожидается, что композиции охлаждающей жидкости двигателя с антифризом по настоящему изобретению будут выполнять полезную работу для постепенного внедрения автомобильных алюминиевых деталей и для результирующей экономии топлива.

17.1: Опасность антифриза

Антифриз — это присадка, понижающая точку замерзания жидкости на водной основе. Смесь антифриза используется для достижения депрессии точки замерзания в холодных условиях, а также для достижения повышения точки кипения, чтобы обеспечить более высокую температуру охлаждающей жидкости. Точки замерзания и кипения — это коллигативные свойства раствора, которые зависят от концентрации растворенного вещества. Поскольку вода обладает хорошими охлаждающими свойствами, вода с антифризом используется в двигателях внутреннего сгорания и других системах теплопередачи.Назначение антифриза — предотвратить разрыв жесткого корпуса из-за расширения при замерзании воды. В коммерческих целях и добавка (чистый концентрат), и смесь (разбавленный раствор) называются антифризами, в зависимости от контекста. Тщательный выбор антифриза может обеспечить широкий диапазон температур, в котором смесь остается в жидкой фазе, что имеет решающее значение для эффективной теплопередачи и правильного функционирования теплообменников.

Флуоресцентный антифриз зеленого цвета виден в расширительном бачке радиатора, когда крышка радиатора автомобиля снята.(CC BY-SA 2.0; EvelynGiggles)

Растворы этиленгликоля стали доступны в 1926 году и продавались как «устойчивые антифризы», поскольку более высокие температуры кипения обеспечивали преимущества для использования в летнее время, а также в холодную погоду. Сегодня они используются для различных целей, включая автомобили, но постепенно заменяются пропиленгликолем из-за его меньшей токсичности.

Когда в системе используется этиленгликоль, он может окисляться до пяти органических кислот (муравьиной, щавелевой, гликолевой, глиоксалевой и уксусной).Доступны смеси антифризов на основе этиленгликоля с добавками, которые буферизируют pH и сохраняют щелочность раствора для предотвращения окисления этиленгликоля и образования этих кислот. Нитриты, силикаты, теодин, бораты и азолы также могут использоваться для предотвращения коррозионного воздействия на металл.

Гликолевая кислота является основным метаболитом этиленгликоля, вызывающим токсичность. (Всеобщее достояние).

Этиленгликоль ядовит для людей и других животных [4] [5], с ним следует обращаться осторожно и утилизировать надлежащим образом.Его сладкий вкус может привести к случайному проглатыванию или преднамеренному использованию в качестве орудия убийства. [6] [7] [8] Этиленгликоль трудно обнаружить в организме, и он вызывает симптомы, в том числе интоксикацию, тяжелую диарею и рвоту, которые можно спутать с другими болезнями или заболеваниями. [4] [8] Его метаболизм производит оксалат кальция, который кристаллизуется в головном мозге, сердце, легких и почках, повреждая их; в зависимости от уровня воздействия, накопление яда в организме может длиться недели или месяцы, прежде чем вызвать смерть, но смерть от острой почечной недостаточности может наступить в течение 72 часов, если человек не получит надлежащего лечения от отравления.[4] Некоторые смеси антифризов на основе этиленгликоля содержат горький агент, такой как денатоний, для предотвращения случайного или преднамеренного употребления.

Токсический механизм отравления этиленгликолем в основном обусловлен метаболитами этиленгликоля. Первоначально он метаболизируется алкогольдегидрогеназой до гликолевого альдегида, который затем окисляется до гликолевой кислоты. [7] Увеличение количества метаболитов может вызвать энцефалопатию или отек мозга. [13] Метаболические эффекты проявляются через 12–36 часов после приема внутрь, вызывая в основном метаболический ацидоз, который в основном связан с накоплением гликолевой кислоты.Кроме того, в качестве побочного эффекта первых двух этапов метаболизма происходит повышение концентрации молочной кислоты в крови, что способствует развитию лактоацидоза. Образование кислотных метаболитов также вызывает ингибирование других метаболических путей, таких как окислительное фосфорилирование. [7]

Токсическое действие этиленгликоля на почки возникает через 24–72 часа после приема внутрь и вызвано прямым цитотоксическим действием гликолевой кислоты. Затем гликолевая кислота метаболизируется до глиоксиловой кислоты и, наконец, до щавелевой кислоты.Щавелевая кислота связывается с кальцием с образованием кристаллов оксалата кальция, которые могут откладываться и вызывать повреждение многих областей тела, включая мозг, сердце, почки и легкие. [7] Наиболее значительным эффектом является накопление кристаллов оксалата кальция в почках, которое вызывает повреждение почек, приводящее к олигурической или анурической острой почечной недостаточности [7]. Ограничивающим скорость этапом в этом каскаде является превращение гликолевой кислоты в глиоксиловую кислоту [14]. Накопление гликолевой кислоты в организме в основном является причиной токсичности.[15]

Произошла ошибка при настройке пользовательского файла cookie

Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


Настройка вашего браузера для приема файлов cookie

Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:

  • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
  • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, используйте кнопку «Назад» и примите файлы cookie.
  • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
  • Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
  • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с вашим системным администратором.

Почему этому сайту требуются файлы cookie?

Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


Что сохраняется в файле cookie?

Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

Как правило, в файлах cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

AntiFreeze Coolant

NEO, новая технология в автомобильные охлаждающие жидкости, предлагает полную программу на длительный срок — срок защиты системы охлаждения. Антифриз NEO Coolant обеспечивает более безопасную для окружающей среды защиту системы охлаждения от отрицательных температур и обеспечивает превосходное охлаждение в жаркую погоду. Он также включает NEO Anti-Freeze. Добавка для защиты системы. Очиститель радиатора NEO можно использовать, если система охлаждения загрязнена.НЕО Обезжириватель радиатора следует использовать, если система охлаждения особенно грязный или имеет маслянистый налет.

Мне все это нужно?

Посмотреть в расширительном бачке радиатора и посмотрите, нет ли черного осадка. начинает нарастать. Если да, то можете поспорить, что внутри блока цилиндров и радиатора одинаковы, если не хуже. Этот осадок действует как теплоизолятор, поэтому что охлаждающая жидкость не может выполнять свою работу.Это могло быть очень важно для вас в следующую жару.

Но это еще не все ……

Это шлам показывает, что химический состав теплоносителя меняется, и это еще хуже для вашего двигателя и радиатор. Этиленгликоль, широко продаваемая охлаждающая жидкость, это токсичное химическое вещество, которое превращается в едкое соединение как разлагается!

Почему Не предотвратить проблему?

NEO Антифриз охлаждающая жидкость

NEO Anti-Freeze Coolant — новая технология антифриза, которая на самом деле не так уж и нова.Он экологически безопаснее и не превращается в коррозионный состав. Это продукт, чье время прийти. !

NEO Anti-Freeze Coolant — это в основном пропиленгликоль вместо этиленгликоля. Похожие имена, но разные ли они! Оба требуют присадки при использовании в системе охлаждения автомобиля и NEO содержит патентованную высококачественную добавку для защиты от замерзания. который специально разработан для пропиленгликоля.А также, в отличие от этиленгликоля, он не повредит краску, одежду или твоя кожа.

Этилен гликоль используется так долго; почему сейчас «плохо новости «? Это всегда были» плохие новости «, но он также был дешевле пропиленгликоля. Двое приходят из того же базового компаунда и изготавливаются по аналогии. Цена двух сегодня уравновешивается, и пропиленгликоль, как ожидается, продолжит поступать вниз в относительной цене, поскольку он используется в больших количествах.

Этилен гликоль — очень токсичное химическое вещество. Он указан Штат Калифорния как агент, вызывающий рак, и он отмечается как основная причина случайного отравления собак и кошек при неосторожной утилизации. Он разлагается в щавелевую кислоту, которая повреждает почки, скажем, ничего автомобильного металла. Швейцария и Австрия запретили продажу этиленгликоля для автомобилей, и профсоюзы рабочих в нескольких европейских странах потребовал, чтобы его не использовали на промышленных предприятиях.OSHA регулирует его использование на рабочем месте в этой стране.

Многие Штаты и муниципалитеты начинают регулировать утилизация этиленгликоля, чтобы гарантировать, что он не попасть в подземную водную систему. Вы можете ожидать увеличение активности, требующей утилизации использованных анти- замерзнуть как токсичное химическое вещество, и это вызовет цена этиленгликоля увеличится.

Автор напротив, пропиленгликоль используется в продуктах питания и косметике, и его иногда используют как противоядие от этилена. отравление гликолем.

NEO Антифриз охлаждающая жидкость прошел сертификацию LC50 в штате Калифорния. токсичен для водных рыб и, как известно, разлагается в г. окружающей среды и в канализации.

Но работает ли он как охлаждающая жидкость?

Вы Спорим, это так! В течение многих лет он использовался в автомобилях в некоторых части Европы и несколькими U.S. сверхмощный двигатель производители. Пропиленгликоль лучше работает как охлаждающая жидкость чем этиленгликоль и он не такой плотный; как результат пропиленгликоль проходит через системы охлаждения подробнее без труда. Смесь 50-50 пропиленгликоля и воды охлаждает лучше, чем такая же концентрация этиленгликоля и вода. Испытания показали, что сам пропиленгликоль обеспечивает эквивалент дополнительной защиты от кавитационной коррозии до 20 — 40% дополнительных добавок ингибиторов коррозии.

А автомобилистов больше всего беспокоит то, что произойдет, если охлаждающая жидкость попадает в смазочное масло; например, из протечка прокладки головки блока цилиндров. Этиленгликоль в очень малых концентрация в картере двигателя вызывает выход из строя подшипников и заклинивание двигателя, где пропилен гликоль в гораздо больших концентрациях не имеет видимого влияние на двигатель.

Как мы перейти в эпоху заботы об окружающей среде, это раз мы применили эти опасения к химическим веществам, используемым в наши автомобили.Вот одно место, с которым мы можем что-то сделать это и сэкономить деньги за счет снижения износа наших автомобили в процессе.

Антифризы

Все системам охлаждения автомобилей нужен набор присадок для защиты. Во-первых, охлаждение самого современного автомобиля в системах используются несколько материалов, помимо стали. блока цилиндров или гильз цилиндров. Медь и соединения алюминия обычны, есть и другие.С участием горячий раствор охлаждающей жидкости, проходящий через эту систему, можно ожидать электрохимической коррозии. Самый большой часть необходимых добавок — ингибиторы коррозии для различных металлических комбинаций.

The охлаждающей жидкости нужно что-то, чтобы удерживать металлические соединения от впитывается охлаждающей жидкостью, и ему требуется моющее средство для смачивания материалов в системе для обеспечения наилучшего теплопередача. Моющее средство также предотвращает образование осадка и накипи.Кроме того, охлаждающая жидкость нужны добавки для контроля пенообразования и смазки насос охлаждающей жидкости.

NEO Анти- Freeze Additive — это запатентованная смесь всех видов ржавчины. и ингибиторы коррозии, моющие средства, ингибиторы пенообразования и смазка для современных систем охлаждения автомобилей.

NEO Anti-Freeze Additive не содержит содержат растворимые масла или тяжелые металлы, а также ингибитор, препятствующий всасыванию тяжелых металлов в система охлаждения.Остается в растворе даже при кипячении. температура. Поскольку он не склеивается, он сохранит термостат работает хорошо. В общем, он сохранит система охлаждения работает с максимальной эффективностью.

Охлаждающая жидкость на пропиленгликоле не разлагаться в двигателе, если пакет присадок поддерживается. Таким образом, добавка NEO Anti-Freeze и NEO Anti — Freeze Coolant прослужит бесконечно, если присадка пополняется регулярно.

NEO Anti-Freeze Additive — это продается отдельно. Если антифриз не нужен, в мягкий климат, его можно использовать отдельно в воде для вашего охлаждающая жидкость автомобиля. NEO предлагает недорогую систему охлаждения Тест-полоски для оценки концентрации NEO Anti — Замораживающая добавка. Поэтому, если вы используете его отдельно или в NEO Anti — Freeze Coolant, вы можете периодически тестировать и при необходимости добавьте еще. Инструкция по применению теста полоски есть на упаковке.

Заявка

Кому переключить ch на охлаждающую жидкость NEO Anti-Freeze Coolant, слейте из системы охлаждения столько охлаждающей жидкости, сколько возможно. Помните, что этиленгликоль — токсичное вещество и утилизируйте его, как требуется в вашем районе. Не только сам по себе токсичен, но используется антифриз на основе этиленгликоля несомненно, будет содержать токсичные тяжелые металлы.

Если радиатор кажется чистым, долить воду и запустить двигатель с подогревателем продолжайте 30 минут или больше.Затем слейте воду из системы. пока он не остынет.

Когда вы впервые заглянете внутрь радиатор, если он выглядит грязным, проверьте дальше, особенно если вы знаете, что система охлаждения была пренебрегали. При холодном радиаторе проверьте пальцем чтобы увидеть, есть ли налипание тяжелого осадка или маслянистая остатки внутри верхней части радиатора. Если так. добавить бутылку обезжиривателя радиатора NEO и залейте водой, вместо смыва водой.Запустите двигатель, как описано выше, а затем слейте воду из системы, прежде чем она остынет. Быть осторожный рабочий горячими жидкостями. Для нейтрализации кислотности NEO Обезжириватель радиатора, выполните эту обработку с помощью NEO. Очиститель радиатора.

Если система охлаждения была грязной, но не жирный, или после обезжиривания добавьте бутылку очистителя радиатора NEO и залейте воду. Теперь запустите двигатель, как описано выше, и слейте жидкость. система охлаждения до того, как она остынет.Если это практично с Ваш автомобиль, после того, как двигатель немного остынет, покиньте откройте сливную пробку радиатора и запустите проточную воду из садовый шланг в радиатор. После того, как он заполнится, начните двигатель и продолжайте подавать воду в радиатор. Это промоет систему водой. Когда вы Убедившись, что система чистая, заглушите двигатель и дать стечь радиатору. Использование садового шланга Комплект для обратной промывки не нужен и не рекомендуемые.

Трудно быть уверенным, что все предыдущая охлаждающая жидкость была смыта этой промывкой операции, но любые оставшиеся остатки будут нейтрализованы добавкой NEO Anti-Freeze Additive. Точно так же любой оставшийся очиститель радиатора NEO или обезжириватель радиатора NEO также будет нейтрализован.

Если трубки радиатора сильно забиты их придется чистил (удилище) профессионально.

Используйте те же процедуры, если вы переход на охлаждающую жидкость NEO Anti-Freeze Coolant или воду.

Разведение антифриза

Для эксплуатации легковых автомобилей в умеренные температуры, используйте смесь 50-50 воды и NEO Антифриз охлаждающая жидкость. Добавка для защиты от замерзания NEO упаковка рассчитана на такую ​​концентрацию воды.

Если вы путешествуете по региону при ожидаемых очень низких температурах, проверьте диаграмма концентрации vs: температура на NEO Anti — Заморозьте контейнер с охлаждающей жидкостью и увеличьте концентрацию соответственно.

Для высокопроизводительных двигателей, NEO Антифриз-охлаждающая жидкость может использоваться в более высоких концентрация, например соотношение 60-40 или 70-30, или выше. Однако за системой охлаждения нужно следить. осторожно на предмет горячих точек, которые могут повредить детали двигателя. Гарантия NEO не распространяется на этот экспериментальный Применение.

Восстановитель:

Используйте тест-полоски системы охлаждения регулярно каждые 6 месяцев или 10000 миль, в зависимости от того, что наступит Во-первых, оценить средство восстановления антифриза NEO.Добавить больше, как указано на этикетке упаковки тест-полосок. Этот следует делать либо с водой, либо с незамерзающими смесями.

Нужна информация сейчас — Звоните 800-959 — 7757
или
Нажмите ниже, чтобы отправить нам электронную почту

История автомобильных охлаждающих жидкостей

Жидкие охлаждающие жидкости (обычно половинная смесь воды и антифриза на основе этиленгликоля (EG)) используются для управления теплом в автомобильных двигателях внутреннего сгорания.Охлаждающая жидкость помогает предотвратить коррозию в системе охлаждения, а также отводит тепло, выделяемое двигателем.

Вода используется из-за ее способности эффективно поглощать и переносить тепло, но она не обеспечивает защиты от коррозии и имеет ограниченный рабочий диапазон из-за температур замерзания и кипения (32 градуса по Фаренгейту и 212 градусов по Фаренгейту). Повышение давления в системе охлаждения с помощью подпружиненного радиатора или крышки бачка с охлаждающей жидкостью может повысить температуру, при которой вода закипает.Для работы в холодную погоду воду необходимо смешать с чем-то еще, чтобы снизить температуру замерзания. Добавление этиленгликоля в равных частях с водой снижает точку замерзания до -34 градусов по Фаренгейту, а также повышает температуру кипения до 265 градусов по Фаренгейту (с крышкой 14 фунтов на квадратный дюйм).

Почему бы не использовать чистый этиленгликоль? Он переносит тепло на 15-20 процентов менее эффективно, чем вода, и, хотя он кипит при 386 градусах по Фаренгейту, он замерзает при 10 градусах по Фаренгейту, что недостаточно для обеспечения адекватной защиты от замерзания в холодном климате.

В антифриз добавляются различные ингибиторы коррозии для предотвращения окисления и коррозии внутри системы охлаждения. Коррозия возникает, когда кислород и растворенные минералы или соли в охлаждающей жидкости вступают в реакцию с металлическими поверхностями. Коррозия также может возникать в результате электролиза, электрохимической реакции между разнородными металлами (такими как алюминий и чугун) или из-за паразитных электрических токов, которые проходят через охлаждающую жидкость из-за плохого заземления между двигателем и шасси.

Обычно ингибиторы коррозии поддерживают химически слабощелочную жидкость (в отличие от кислот). Это позволяет контролировать коррозию до тех пор, пока имеется достаточно ингибитора для нейтрализации кислот. Со временем охлаждающая жидкость со временем становится кислой. В этот момент начинается коррозия и начинают происходить плохие вещи.

Вплоть до середины 1990-х годов в основном использовался один тип охлаждающей жидкости: охлаждающая жидкость с традиционной «зеленой» формулой. Этот тип охлаждающей жидкости содержит быстродействующие, но относительно недолговечные ингибиторы коррозии, срок службы которых составляет около двух-трех лет, или от 24000 до 36000 миль.Охлаждающая жидкость с зеленой формулой по-прежнему доступна для старых автомобилей, но не рекомендуется для новых автомобилей, которые на заводе залиты охлаждающей жидкостью с длительным сроком службы.
В охлаждающих жидкостях с длительным сроком службы используются различные присадки на основе органических кислот (OAT) для достижения срока службы до 5 лет и более или 150 000 миль. Некоторые послепродажные охлаждающие жидкости с длительным сроком службы требуют даже «пожизненной» защиты (для первоначального владельца автомобиля).

Охлаждающие жидкости, разработанные для различных транспортных средств, окрашиваются в разные цвета.General Motors Dex-Cool имеет оранжевый цвет и не содержит силикатов. Спецификация обслуживания GM — GM 6277M. И Ford, и Chrysler определяют формулу на основе технологии гибридной органической кислоты (HOAT), которая окрашена в желтый цвет и содержит силикаты для дополнительной защиты алюминия. Они называются охлаждающими жидкостями «G05». Chrysler сменил антифриз с зеленой формулой на желтый HOAT в 2001 году, в то время как Ford заменил свои грузовики в 2002 году и автомобили в 2003 году на HOAT. Спецификация Ford HOAT — WSS-M97B51-A1, а спецификация Chrysler HOAT — MS9769.Однако для некоторых новых систем, таких как грузовики Ford с 6,7-литровыми дизельными двигателями, Ford вернулся к оранжевой охлаждающей жидкости OAT, аналогичной GM Dex-Cool.

Азиатские и европейские производители автомобилей также имеют свои собственные спецификации и цвета охлаждающей жидкости, из-за чего автомобилистам сложно определить, какой тип охлаждающей жидкости подходит для их автомобиля.

Послепродажное решение для этого состоит в том, чтобы предоставить публике то, что она хочет: сменные охлаждающие жидкости, разработанные для конкретных применений в автомобилях (отечественных и импортных), а также «универсальные охлаждающие жидкости», подходящие для всех марок и всех моделей.Последние продукты упрощают инвентаризацию и процесс выбора, в то время как первые предоставляют специальные охлаждающие жидкости для тех, кому они нужны. Также доступна одна марка охлаждающей жидкости, в которой в качестве основного ингредиента вместо этиленгликоля используется менее токсичный пропиленгликоль (PG). Характеристики аналогичны охлаждающим жидкостям EG, но меньше опасность случайного отравления, если домашнее животное вылизывает охлаждающую жидкость из разлитой жидкости.
Универсальные охлаждающие жидкости обычно используют запатентованную формулу OAT, которая может содержать или не содержать силикаты (для соответствия требованиям GM), а также не содержать фосфатов или боратов (для соответствия европейским и японским требованиям).Универсальные охлаждающие жидкости можно смешивать с ЛЮБЫМ типом охлаждающей жидкости, включая старые традиционные охлаждающие жидкости с зеленой формулой, и можно использовать для заправки почти ЛЮБОГО года выпуска или модели легкового автомобиля или легкого грузовика. Мы говорим практически любое применение, потому что некоторые эксперты говорят, что охлаждающая жидкость с традиционной зеленой формулой по-прежнему обеспечивает лучшую защиту от коррозии для старых автомобилей с медными / латунными радиаторами. Все типы охлаждающей жидкости доступны в готовых к использованию емкостях с предварительной смесью (которые содержат половину антифриза и половину воды) или в емкостях полной концентрации (которые должны быть разбавлены и смешаны с дистиллированной водой при добавлении в систему охлаждения).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *