Простые зарядные устройства
Портал QRZ. RU существует только за счет рекламы, поэтому мы были бы Вам благодарны если Вы внесете сайт в список исключений. Мы стараемся размещать только релевантную рекламу, которая будет интересна не только рекламодателям, но и нашим читателям. Отключив Adblock, вы поможете не только нам, но и себе. Что-то не так?
Поиск данных по Вашему запросу:
Простые зарядные устройства
Схемы, справочники, даташиты:
Прайс-листы, цены:
Обсуждения, статьи, мануалы:
Дождитесь окончания поиска во всех базах.
По завершению появится ссылка для доступа к найденным материалам.
Содержание:
- Как сделать зарядное устройство для аккумулятора
- Зарядное устройство для автомобильного аккумулятора схема
- Простые зарядные устройства
- Простое ЗУ для автомобильных аккумуляторов своими руками
- Современные автоматические зарядные устройства своими руками для аккумулятора автомобиля
- Зарядное устройство для автомобильного аккумулятора: какое выбрать, как применять
- Зарядные устройства — список схем
- Самодельные зарядные устройства для автомобильных аккумуляторов
- Как сделать корпус для зарядного устройства самому
ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Провереная схема зарядного устройства автомобильных аккумуляторов
youtube.com/embed/nKhyFWP04Qo» frameborder=»0″ allowfullscreen=»»/>Как сделать зарядное устройство для аккумулятора
Разбор больше 11 схем для изготовления ЗУ своими руками в домашних условиях, новые схемы и года, как собрать принципиальную схему за час. Чтобы понять, обладаете ли вы необходимой информацией об аккумуляторах и зарядных устройствах для них, следует пройти небольшой тест:. А Желательно производить демонтаж батареи с установленного места, иначе возникнет риск повредить электронику поступлением большого напряжения.
Б Зарядное устройство просто не включится, потребуется переместить на положенные места необходимые контакты. Аккумулятор на автотранспорте требуют периодической зарядки.
Причины разряжения могут быть разные — начиная от фар, что хозяин забыл выключить, и до отрицательных температур в зимний период на улице. Для подпитки АКБ потребуется хорошее зарядное устройство.
Такое приспособление в больших разновидностях представлено в магазинах автозапчастей.
Но если нет возможности или желания покупки, то ЗУ можно сделать своими руками в домашних условиях.
Имеется также большое количество схем — их желательно все изучить, чтобы выбрать наиболее подходящий вариант. Определение: Зарядное устройство для автомобиля предназначается для передачи электрического тока с заданным напряжением напрямую в АКБ.
Самоделка по способу эксплуатации несколько отличается от заводского варианта. Это объясняется тем, что у покупного агрегата имеются встроенные функции, помогающие в работе. Их сложно установить на аппарате, собранном дома, а потому придется придерживаться нескольких правил при эксплуатации. Выполняя эти простые правила, получится правильно произвести подпитку АКБ и не допустить неприятных последствий.
Если нет желания или возможности своими руками собрать ЗУ, то обратите внимание на следующих производителей:. Фирмы хорошо зарекомендовали себя на рынке, а потому о надежности и функциональности переживать при покупке не следует. Выполнение простых правил обеспечит надежную работу самостоятельно сделанного оборудования.
Максимальный ток, получаемый при заряде составляет 6 А. Но аппарат также подходит и для других аккумуляторов — литий-ионных, поскольку напряжение и выходной ток можно отрегулировать. Все основные компоненты для сборки устройства можно найти на сайте Aliexpress. Трансформатор используется любой, по собственному усмотрению Главное, чтобы его мощность была не ниже Вт при зарядном токе в 6 А.
Необходимо установить на оборудование толстые и короткие провода. Диодный мост фиксируется на большом радиаторе. Посмотрите на картинке на схему зарядного устройства Рассвет 2. Она составлена по оригинальному ЗУ. Если освоить эту схему, то самостоятельно получится создать качественную копию, ничем не отличающуюся от оригинального образца.
Конструктивно устройство представляет собой отдельный блок, закрывающийся корпусом, чтобы защитить электронику от влаги и воздействия плохих погодных условий.
На основание корпуса необходимо подсоединить трансформатор и тиристоры на радиаторах. Потребуется плата, что будет стабилизировать заряд тока и управлять тиристорами и клеммы.
Посмотрите на картинке принципиальную схему умного зарядного устройства. Приспособление необходимо для подключения к свинцово-кислотным аккумуляторам, имеющим емкость — 45 ампер в час или больше.
Подключают такой вид аппарата не только к аккумуляторам, что ежедневно используются, но также к дежурным или находящимся в резерве. Это довольно бюджетная версия оборудования. В ней не предусмотрен индикатор, а микроконтроллер можно купить самый дешевый. Если имеется необходимый опыт, то трансформатор собирается своими руками. Нет необходимости устанавливать также и звуковые сигналы оповещения — если аккумулятор подключится неправильно, то загоревшаяся лампочка разряда будет уведомлять об ошибке.
Посмотрите на схему промышленного зарядного устройства от оборудования Барс 8А. Трансформаторы используются с одной силовой обмоткой на 16 Вольт, добавляется несколько диодов vd-7 и vd Это необходимо для того, чтобы обеспечить мостовую схему выпрямителя от одной обмотки.
Посмотрите на картинке схему инверторного зарядного устройства. Это приспособление перед началом зарядки разряжает аккумуляторную батарею до 10,5 Вольт. После этого процесса напряжение повышается до 14,5 Вольт, при помощи разрядно-зарядного цикла. Соотношение величины заряда и разряда составляет десять к одному. Посмотрите на картинке на схему мощного зарядного устройства для автомобильного аккумулятора. Приспособление применяется для кислотных АКБ, имеющих высокую емкость.
Устройство с легкостью заряжает автомобильный аккумулятор, имеющий емкость в А. Выходное напряжение устройство регулируется самостоятельно. Оно составляет от 0 до 24 вольт. Схема примечательна тем, что в ней установлено мало компонентов, но дополнительные настройки при работе она не требует. Многие уже могли видеть советское зарядное устройство. Оно похоже на небольшую коробку из металла, и может показаться совсем ненадежной.
Но это вовсе не так. Главное отличие советского образца от современных моделей — надежность.
Оборудование обладает конструктивной мощностью.
В том случае, если к старому устройству подсоединить электронный контроллер, то зарядник получится оживить. Но если под рукой такого уже нет, но есть желание его собрать, необходимо изучить схему.
К особенностям их оборудования относят мощный трансформатор и выпрямитель, с помощью которых получается быстро зарядить даже сильно разряженную батарею.
Многие современные аппараты не смогут повторить этот эффект. Количество мобильных средств связи, находящихся в активном пользовании, постоянно растет. К каждому из них идет зарядное устройство, поставляемое в комплекте. Однако далеко не все изделия выдерживают сроки, установленные производителями. Основные причины заключаются в низком качестве электрических сетей и самих устройств.
Они часто ломаются и не всегда возможно быстро приобрести замену. В таких случаях требуется схема зарядного устройства для телефона, используя которую вполне возможно отремонтировать неисправный прибор или изготовить новый своими руками.
Зарядное устройство считается наиболее слабым звеном, которым укомплектованы мобильные телефоны. Они часто выходят из строя из-за некачественных деталей, нестабильного сетевого напряжения или в результате обычных механических повреждений.
Наиболее простым и оптимальным вариантом считается приобретение нового прибора. Несмотря на различие производителей, общие схемы очень похожи друг на друга. По своей сути, это стандартный блокинг-генератор, выпрямляющий ток с помощью трансформатора. Зарядники могут отличаться конфигурацией разъема, у них могут быть разные схемы входных сетевых выпрямителей, выполненные в мостовом или однополупериодном варианте. Существуют различия в мелочах, не имеющих решающего значения.
Практически все корпуса зарядных устройств являются неразборными. Поэтому во многих случаях ремонт становится нецелесообразным и неэффективным. Гораздо проще воспользоваться готовым источником постоянного тока, подключив его к нужному кабелю и дополнив недостающими элементами.
Основой многих современных зарядных устройств служат наиболее простые импульсные схемы блокинг-генераторов, содержащие всего лишь один высоковольтный транзистор. Они отличаются компактными размерами и способны выдавать требуемую мощность. Эти устройства совершенно безопасны в эксплуатации, поскольку любая неисправность ведет к полному отсутствию напряжения на выходе. Таким образом, исключается попадание в нагрузку высокого нестабилизированного напряжения.
Выпрямление переменного напряжения сети осуществляется диодом VD1. Некоторые схемы включают в себя целый диодный мост из 4-х элементов. Ограничение импульса тока в момент включения производится резистором R1, мощностью 0,25 Вт. В случае перегрузки он просто сгорает, предохраняя всю схему от выхода из строя. Для сборки преобразователя используется обычная обратноходовая схема на основе транзистора VT1.
Более стабильная работа обеспечивается резистором R2, запускающим генерацию в момент подачи питания. Дополнительная поддержка генерации происходит за счет конденсатора С1.
В данном случае входное напряжение выпрямляется за счет использования диодного моста VD1, конденсатора С1 и резистора, мощностью не ниже 0,5 Вт. В противном случае во время зарядки конденсатора при включении устройства, он может сгореть. Конденсатор С1 должен обладать емкостью в микрофарадах, равной показателю мощности всего зарядника в ваттах.
Основная схема преобразователя такая же, как и в предыдущем варианте, с транзистором VT1. Для ограничения тока используется эмиттер с датчиком тока на основе резистора R4, диода VD3 и транзистора VT2. Данная схема зарядного устройства телефона ненамного сложнее предыдущей, но значительно эффективнее. Преобразователь может стабильно работать без каких-либо ограничений, несмотря на короткие замыкания и нагрузки. Необходимо ставить только высокочастотный диод, иначе схема вообще не будет работать.
Данная цепочка может устанавливаться в любых аналогичных схемах.![]()
Зарядное устройство для автомобильного аккумулятора схема
Собственными руками. Автомобильную бортовую сеть , пока силовая установка не запустится питает аккумуляторная батарея. Но сама она электрическую энергию не производит. Аккумулятор вместилищем электричества, которая храниться в нем и при необходимости отдается потребителям. По окончании израсходованная энергия восстанавливается за счет работы генератора, что ее производит. Но кроме того постоянная подзарядка АКБ от генератора не может всецело восстанавливать израсходованную энергию. Для этого иногда нужна зарядка от внешнего источника, а не генератора.
И еще один момент: зарядное устройство для автомобильного аккумулятора своими руками, сделанное по.
Простые зарядные устройства
Однако большинство начинающих автолюбителей попадали в такую ситуацию, причем иногда не раз и не два. Как уберечь аккумулятор своей машины и свою нервную систему — от истощения? Ответ простой: надо следить за уровнем заряда в АКБ и иметь в хозяйстве зарядное устройство.
Какие же они бывают и как их выбирать? Все мы знаем, что в нормальном режиме аккумулятор подзаряжается от генератора время поездки, но зачастую, особенно, если вы ездите по городу на небольшие расстояния, этого бывает категорически мало. Один раз в полгода — с такой частотой следует заряжать свой аккумулятор городским автолюбителям, иначе их шанс в какой-то момент остаться без машины возрастает. Одну из зарядок стоит приурочить к наступлению холодов. Только представьте: вы включите сразу несколько мощных потребителей обогревы сидений, стекол, зеркал, фары.
Простое ЗУ для автомобильных аккумуляторов своими руками
Оставьте ваше имя и телефон в форме ниже, нажмите кнопку «отправить» и мы перезвоним вам в ближайшее время. Простые зарядные устройства подходят под один тип аккумуляторов и входят в базовый комплект игрушки. Они не позволяют регулировать ток заряда и полностью контролировать процесс зарядки. RU, носит ознакомительный характер и не является публичной офертой. Технические характеристики, комплектность, цвет, цена могут быть изменены производителем без уведомления.
Часто владельцам автомобилей приходится сталкиваться с таким явлением как невозможность запуска двигателя по причине разряда аккумулятора.
Современные автоматические зарядные устройства своими руками для аккумулятора автомобиля
Необходимость зарядки АКБ возникает у многих автолюбителей. Одни для этих целей используют фирменные зарядные устройства, другие пользуются самодельными ЗУ, изготовленными в домашних условиях. Как сделать зарядное устройство для автомобильного аккумулятора своими руками и как правильно зарядить батарею таким девайсом? Об этом мы расскажем ниже. Простое зарядное устройство для АКБ на 6 или 12 вольт представляет собой девайс, использующийся для восстановления заряда батареи. Суть функционирования любого ЗУ заключается в том, что этот прибор позволяет преобразовать напряжение из бытовой сети вольт в напряжение, необходимое для заряда АКБ.
Зарядное устройство для автомобильного аккумулятора: какое выбрать, как применять
За основу этого зарядника для авто возьмем одну из самых простых схем которые я смог откопать в просторах интернета, мне в первую очередь понравился тот факт, что трансформатор можно позаимствовать из старого телевизора.
Как уже сказал выше, самую дорогую часть зарядника я взял из блока питания телевизора Рекорд, им оказался силовой трансформатор ТС, что особо порадоволо на нем имелась табличка с отображением всех возможных напряжений и тока. Я выбрал сочетание с максимальным током, т. А на выходе получим 6. Для его выпрямления потребуется собирать диодный мост, но учитывая большую силу тока диоды должны быть не слабыми.
Простые схемы. Такие варианты приборов делятся на: устройства с одним диодным элементом;.
Зарядные устройства — список схем
Простые зарядные устройства
Для того чтобы автомобиль завёлся, ему необходима энергия. Такая энергия берётся из аккумулятора. Как правило, его подзарядка происходит от генератора во время работы двигателя.
Самодельные зарядные устройства для автомобильных аккумуляторов
Каждый автолюбитель сталкивался с ситуацией, когда двигатель автомобиля не заводится из-за севшего аккумулятора. Особенно часто такое случается в зимний период, так как при минусовых температурах масло в двигателе становится более густым, и аккумулятору требуется больший пусковой ток, чтобы его запустить.
Оглавление: Виды зарядных устройств для автомобильных аккумуляторов Схемы простых трансформаторных зарядных устройств АКБ ЗУ из БП компьютера Правила зарядки аккумуляторной батареи зарядным устройством. А также на исправность аккумулятора влияет то, что в обычном режиме он подзаряжается от генератора автомобиля , а он не может обеспечить полную зарядку аккумулятора. И если летом зарядки аккумулятора хватает, чтобы запустить двигатель автомобиля, то в зимних условиях недостаточная ёмкость АКБ становится критической. Чтобы этого избежать рекомендуется периодически проводить ТО своей аккумуляторной батареи, в том числе проводить полую зарядку аккумулятора от зарядного устройства.
Автоматическое зарядное устройство для автомобильного аккумулятора состоит из источника электропитания и схем защиты. Собрать его самостоятельно можно, владея навыками электромонтажных работ.
Как сделать корпус для зарядного устройства самому
Основной недостаток данной зарядки заключается в том, что диод срезает только нижний полупериод, следовательно на выходе устройства у нас не полностью постоянный ток, но зарядить таким током автомобильный аккумулятор можно! Диод, как уже сказал для выпрямления переменного напряжения, он обязательно должен быть мощным, при этом должен быть рассчитан на обратное напряжение не менее Вольт! Ток диода должен быть более 10А! И на рисунке вариант с одним диодом, правда в этом случае ток будет в 2 раза меньше, следовательно время зарядки увеличиться со Ватной лампочкой, подсевший аккумулятор достаточно зарядить часов, чтобы завести автомобиль даже в мороз.
Для увеличения тока заряда можно лампу накаливания заменить другой, более мощной нагрузкой — обогреватель, кипятильник и т. Этот способ работает по тому же принципу, что и первый, за исключением того, что на выходе данного зарядного устройство ток полностью постоянный. Диодный мост можно взять готовый, который можно найти в компьютерных блоках питания.
В Украине количество автомобилей на душу населения хоть и не так велико, как в тех же США и различных странах Европы, однако и маленьким его не назовешь. По одному автомобилю приходится примерно на 5 человек, а значит на тысячу граждан — около , а на всю страну — миллионы. Каждый из автомобилей нуждается в постоянном техническом обслуживании, к которому многие жители нашей страны относятся довольно серьезно.
Выбор схемы зарядного устройства для автомобильного аккумулятора: простые и сложные схемы
Любой автолюбитель знает, сколько неприятностей может доставить аккумулятор, не работающий в штатном режиме.
Гарантированно безотказно он может проработать минимум 5 лет при условии, что водитель постоянно следит за его состоянием. Но ситуации, когда аккумуляторная батарея (АКБ) перестаёт выполнять свои функции, случаются довольно часто. Причин может быть довольно много, начиная от неисправностей в системе электроснабжения автомобиля и заканчивая длительным простоем авто в тяжёлых погодных условиях, чаще всего на холоде.
- Виды зарядных устройств
- Основные критерии выбора
- Классификация зарядных устройств
- Трансформаторные ЗУ
- Импульсные устройства
- Сравнение ЗУ разных классов
- Трансформаторные зарядные устройства
- Импульсные ЗУ
Поэтому к выбору подзарядки АКБ автолюбители, не желающие тратить деньги в специальных сервисных центрах, должны подойти с большой ответственностью.
Виды зарядных устройств
Перед приобретением зарядного устройства (ЗУ) автолюбитель должен знать, что торговля предлагает ЗУ двух основных видов:
- устройства зарядно-предпусковые;
- зарядно-пусковые ЗУ.

Первый вид предназначен только для подзарядки аккумуляторных батарей.
При подключении клемм АКБ проводами с клещевидными зажимами к выходу устройства осуществляется подзарядка аккумулятора.
Используя зарядно-пусковые ЗУ можно осуществлять как обычную подзарядку аккумулятора, так и запуск двигателя вращением стартера без подключения аккумуляторной батареи.
Основные критерии выбора
Критериями могут служить рабочие параметры. К ним относятся:
- максимальное выходное напряжение;
- максимальный нагрузочный ток.
Максимальное напряжение для зарядки 12- вольтовых кислотных батарей (с учётом падения напряжения на проводах и клеммах АКБ) 15,5 В. При выборе такого ЗУ в конце зарядки напряжение аккумулятора составит порядка 14,5 В.
Максимальный ток выбирается исходя из номинальной ёмкости АКБ.
Для кислотных аккумуляторов действует простое соотношение между ними:
Imax =0,1 C ном.
Для щелочных батарей:
Imax =0,25Сном.
C ном — мощность АКБ, выраженная в Ампер-часах (А-ч).
Выбрав ЗУ с Imax =10А, можно зарядить любой автомобильный аккумулятор.
Классификация зарядных устройств
ЗУ можно классифицировать по схемным решениям, по элементной базе, используемой при их проектировании, по принципам преобразования переменного тока в постоянный. Исходя из этого, можно выделить две группы устройств зарядки аккумуляторов:
- трансформаторные ЗУ;
- импульсные устройства зарядки.
В устройствах первой группы используется мощный силовой трансформатор.
В импульсных устройствах зарядки осуществляется преобразование тока сети в последовательность импульсов высокой частоты.
Трансформаторные ЗУ
В трансформаторных ЗУ используются мощные электронные компоненты. Они могут выдерживать перегрузки (в разумных пределах), справляются с ситуациями ошибочного подключения к клеммам АКБ.
В ЗУ самодельного изготовления такого типа не всегда присутствуют все компоненты, необходимые для стабильной и безопасной зарядки аккумуляторов. К необходимым компонентам схемы зарядки относятся:
- трансформаторный блок питания;
- стабилизатор тока зарядки;
- токовый регулятор заряда АКБ;
- устройство защиты от коротких замыканий;
- устройства индикации параметров.
В простых «самоделках» регулятором тока часто выступают проволочные реостаты с ручным управлением, лампы ближнего и дальнего света автомобиля, которые облают в некоторой степени свойством термосопротивлений. С увеличением силы тока через спираль лампы её сопротивление возрастает. Таким образом, величина тока как бы поддерживается на постоянном уровне. На элементах таких схем выделяется большая тепловая мощность. КПД этих ЗУ невелик. Элементы устройств, собранных по таким схемам, пожароопасны, и их надёжность оставляет желать лучшего.
В некоторых схемах используют набор конденсаторов разной ёмкости.
Они вручную включаются по очереди последовательно с первичной обмоткой понижающего трансформатора. Обладая ёмкостным сопротивлением, они понижают величину входного напряжения. Уменьшается напряжение в понижающей обмотке трансформатора и величина тока заряда аккумуляторной батареи. Нагрев элементов в этих схемах меньше, а их КПД возрастает.
Диоды в выпрямительном мосту должны быть подобраны по величине тока заряда батареи. Ток через них должен быть больше максимального зарядного тока. Они обычно устанавливаются на пластинчатые металлические радиаторы, отводящие от диодов избыток тепла и предотвращающие их перегрев.
Более совершенные конструкции предусматривают возможность их автоматического отключения от нагрузки при полной зарядке АКБ. Такие схемные решения позволяют не бояться обрывов в цепи нагрузки и коротких замыканий в ней.
В «продвинутых» схемах для регулирования зарядного тока используют тиристоры. Напряжение на управляющем электроде, определяющее степень открывания прибора, через который протекает ток зарядки, устанавливается вручную переменным резистором схемы.
Его ось выведена на переднюю панель устройства зарядки.
В качестве устройств индикации параметров зарядки выступают стрелочные амперметры, включаемые последовательно в цепь нагрузки и вольтметры, контролирующие напряжение на клеммах аккумуляторных батарей. В последних моделях ЗУ стрелочные индикаторы постепенно заменяют цифровыми. Схема усложняется, так как необходимо питать и элементы электронной индикации.
Схема автоматического зарядного устройства для аккумуляторов 12 В позволяет подключать ЗУ к сети при подсоединении проводов с клещевидными зажимами к АКБ. По окончании заряда, когда ток уменьшается до величины срабатывания компаратора схемы, контакты реле размыкаются, светодиод сигнализирует об окончании процесса зарядки и ЗУ отключается от сетевого напряжения.
Импульсные устройства
Устройства этого класса, как и трансформаторные ЗУ, ставят перед собой задачу — восстановление работоспособности аккумуляторных батарей при их частичном или полном разряде.
Но схемные решения, использованные в них, основываются на применении современной базы.
Для того чтобы избавиться от мощных силовых понижающих трансформаторов, в импульсных ЗУ переменное сетевое напряжение (50 Герц) преобразуется в переменное напряжение импульсной формы высокой частоты. Это высокочастотное напряжение с помощью импульсного трансформатора доводится до значений, необходимых для зарядки АКБ. Затем оно выпрямляется и фильтруется. Частота преобразования обычно около 50 килогерц, размеры трансформатора, который в основном определяет размеры устройства, минимизируются.
Повышенные требования в ЗУ импульсного типа предъявляются к уровню помех, создаваемых генераторами этих устройств. Для этих целей в схемах используют высокочастотные дроссели. Трансформаторы выполнены в виде обмоток на ферритовых кольцах. Импульсные диоды имеют небольшие размеры.
Если представить общую схему устройства в виде отдельных составных частей, то она будет включать в себя:
- блок сетевого выпрямителя;
- блок преобразователя;
- импульсный трансформатор;
- блок контроля зарядки;
- приборы индикации параметров.

В устройствах импульсной зарядки можно использовать один из способов восстановления работоспособности батарей:
- постоянным током;
- напряжением постоянной величины;
- комбинированным способом.
Последний из них позволяет на разных этапах процесса использовать как первый, так и второй способы. При разряженном аккумуляторе необходимо его подзарядить постоянным током до определённого предела. После этого включается режим стабилизации напряжения при уменьшающемся токе заряда.
Импульсные ЗУ можно разделить, в свою очередь, на ручные, требующие самостоятельного регулирования напряжения и силы тока, автоматические, в которых процесс регулируется программным путём, и полуавтоматы.
Сравнение ЗУ разных классов
Надо заметить, что как одни, так и другие устройства зарядки аккумуляторов обладают рядом преимуществ и недостатков. Рассмотрев каждый класс и сравнив их между собой, можно прийти к окончательному выводу о приобретении того или иного устройства.
Трансформаторные зарядные устройства
Среди достоинств трансформаторных ЗУ можно отметить такие: простота конструкции, которую может повторить радиолюбитель не очень высокого класса, надёжность, проверенная временем, доступность элементов схемы, отсутствие сетевых и радиопомех.
Из недостатков можно отметить: значительный вес и габариты, невысокий коэффициент полезного действия из-за потерь в металлических сердечниках трансформаторов.
Импульсные ЗУ
Достоинствами этих устройств являются: небольшой вес из-за отсутствия железа сетевых трансформаторов и радиаторов силовых элементов, высокий (до 98%) КПД, большие допуски на частоту и напряжение питающей сети, большое количество элементов защиты и автоматизации процесса зарядки АКБ.
К недостаткам относятся следующие: отсутствие гальванической развязки от питающей сети, наличие широкого спектра гармоник, требующее принимать дополнительные схемные решения для их подавления.
Постепенно всё большее число автолюбителей, стремящихся обезопасить себя от неприятных ситуаций, связанных с неисправностями аккумуляторных батарей, выбирают зарядные устройства импульсного класса.
Обзор зарядки электромобиля| DriveClean
Зарядить электромобиль легко
Представьте, что вы больше никогда не останавливаетесь на заправочной станции, а вместо этого имеете неограниченный запас топлива дома или в любом другом месте, где вы обычно паркуетесь. Для многих водителей электромобилей это реальность. Аккумуляторным электромобилям никогда не нужен бензин, а для коротких поездок подключаемые гибриды могут вообще не использовать бензин.
Зарядка электромобиля проста, экономична и удобна, особенно когда вы подключены к сети дома — заряжайте машину, даже когда спите. Время, необходимое для зарядки, зависит от зарядного оборудования, размера автомобильного аккумулятора и его доступной зарядной емкости.
Хотя водители электромобилей в основном заряжают электромобили дома, зарядные устройства на рабочем месте и в общественных местах становятся все более доступными в населенных пунктах по всей стране.
Используйте карту зарядных станций для электромобилей, чтобы найти ближайшую зарядку.
Зарядка уровня 2
Зарядка уровня 2 значительно быстрее, но требует установки зарядной станции, также известной как оборудование для электромобилей (EVSE). Для установки зарядной станции требуется специальная электрическая цепь на 240 или 208 вольт, аналогичная той, которая требуется для сушилки для белья или электрической плиты. Уровень 2 можно найти на многих общественных и рабочих зарядных станциях, а также во многих домах. Он использует тот же стандартный разъем, что и зарядка уровня 1, а это означает, что любой электромобиль может подключаться к любому зарядному устройству уровня 2.
В зависимости от типа батареи, конфигурации зарядного устройства и емкости цепи, зарядка уровня 2 увеличивает запас хода примерно на 24-35 миль за час времени зарядки .
Стоимость зарядки электромобиля
Стоимость установки зарядного устройства дома
Если вы решите установить дома зарядное устройство уровня 2, стоимость установки будет зависеть от выбранной вами системы, платы за разрешение в вашем районе и конфигурации вашего дома.
. Для компенсации этих расходов могут быть предусмотрены льготы.
Стоимость зарядки дома
Стоимость зарядки зависит от емкости аккумулятора вашего электромобиля и местных цен на электроэнергию. Большинство электроэнергетических компаний предлагают специальные тарифы на время использования (TOU), которые значительно сокращают расходы за счет меньшего счета за электроэнергию, используемую в непиковые часы. Свяжитесь с вашим поставщиком электроэнергии, чтобы узнать больше. Узнайте, насколько проста домашняя зарядка для нынешних водителей электромобилей.
Хотя стоимость электроэнергии варьируется, средняя цена в Калифорнии составляет около 18 центов за киловатт-час (кВтч). При такой цене полная зарядка электромобиля, такого как Nissan LEAF, от батареи емкостью 40 кВт·ч с запасом хода в 150 миль обойдется примерно в 7 долларов. Между тем, заправка бензинового автомобиля на 25 миль на галлон по цене 3,70 доллара за галлон обойдется примерно в 22 доллара, чтобы проехать примерно 150 миль.
Экономия денег на топливе — лишь одно из многих преимуществ вождения на электричестве.
Стоимость общественных зарядных станций
Многие люди заряжают свои электромобили на общественных зарядных станциях. Они могут быть бесплатными, с оплатой по мере использования или по подписке, а цены устанавливаются сетями или владельцами недвижимости. Некоторые автопроизводители, такие как Hyundai, Nissan и Tesla, могут предоставлять бесплатную общественную зарядку на определенных зарядных устройствах. Промышленность движется к структуре оплаты, основанной на использованных кВтч, а не на времени, необходимом для зарядки автомобиля.
Водители в Калифорнии могут ожидать платить 30 центов за кВтч при зарядке на уровне 2 и 40 центов за кВтч при быстрой зарядке постоянным током. При таких расценках тот же Nissan LEAF с запасом хода в 150 миль и аккумулятором на 40 кВтч будет стоить около 12 долларов США для полной зарядки (от пустого до полного) с использованием уровня 2 и 16 долларов США с быстрой зарядкой постоянным током.
Несколько приложений и онлайн-инструментов помогут вам найти общественные зарядные устройства, включая международную базу данных PlugShare.
Схема литий-ионной батареипроста Когда дело доходит до разработки вашей схемы на основе литий-ионной батареи, я считаю, что вам также может быть полезна кулинарная книга с прямыми предложениями. Здесь я хотел бы дать вам коллекцию рецептов LiIon, которые хорошо работали для меня на протяжении многих лет.
Я буду говорить о конфигурациях ячеек с одной серией (1sXp) по простой причине – конфигурации с несколькими сериями я не считаю тем, с чем я много работал. Одни только конфигурации с одной серией приведут к довольно обширному описанию, но для тех, кто разбирается в обращении с LiIon, я приглашаю вас поделиться своими советами, хитростями и наблюдениями в разделе комментариев — в прошлый раз мы подняли немало интересных моментов. !
Зарядка по соседству
Существует множество способов зарядить аккумуляторы, которые вы только что добавили в свое устройство, — в вашем распоряжении широкий выбор микросхем зарядных устройств и других решений.
Я хотел бы сосредоточиться на одном конкретном модуле, о котором я считаю важным, чтобы вы знали больше.
Вы, вероятно, видели повсюду синие платы TP4056 — они дешевы, и вы в одном заказе на Aliexpress от того, чтобы приобрести кучу, а дюжина плат обойдется всего в несколько долларов. TP4056 — это микросхема зарядного устройства LiIon, способная заряжать ваши аккумуляторы со скоростью до 1 А. Многие платы TP4056 имеют встроенную схему защиты, что означает, что такая плата также может защитить ваш LiIon-аккумулятор от внешнего мира. Эту плату можно рассматривать как модуль; вот уже более полувека площадь печатной платы остается неизменной до такой степени, что вы можете добавить плату TP4056 на свои собственные печатные платы, если вам нужна зарядка и защита LiIon. Я часто так делаю — это намного проще и даже дешевле, чем паять TP4056 и все его вспомогательные компоненты. Вот посадочное место KiCad, если вы тоже хотите это сделать.
Это микросхема линейного зарядного устройства.
Если вам нужен 1 А на выходе, вам нужен 1 А на входе, а разница входного и выходного напряжения, умноженная на ток, преобразуется в тепло. К счастью, модули TP4056 достаточно хорошо выдерживают высокие температуры, и вы можете добавить радиатор, если хотите. Максимальный зарядный ток устанавливается резистором между землей и одним из контактов, резистор по умолчанию равен 1,2 кОм, что дает ток 1 А; для ячеек малой емкости вы можете заменить его резистором 10 кОм, чтобы установить предел 130 мА, и вы можете найти в Интернете таблицы для промежуточных значений.
В микросхеме TP4056 есть кое-что интересное, о чем большинство людей не знают, если используют модули как есть. Контакт CE микросхемы жестко подключен к VIN 5 В, но если вы поднимете этот контакт, вы можете использовать его для отключения и включения зарядки с помощью входа логического уровня от вашего MCU. Вы можете отслеживать зарядный ток, подключив АЦП вашего микроконтроллера к выводу PROG — тому же выводу, который используется для резистора установки тока.
Также имеется контакт термистора, обычно подключаемый к земле, но адаптируемый для широкого спектра термисторов с помощью резистивного делителя, будь то термистор, прикрепленный к ячейке вашего мешочка, или тот, который вы добавили извне в свой держатель 18650.
С TP4056 тоже есть проблемы — это довольно простая микросхема. Эффективность не является обязательным условием при наличии настенного питания, но TP4056 действительно тратит приличную часть энергии в виде тепла. Модуль на основе импульсного зарядного устройства позволяет избежать этого и часто также позволяет заряжать более высокими токами, если это необходимо. Подключение ячейки в обратном порядке убивает микросхему, а также схему защиты — эту ошибку легко сделать, я делал это много, поэтому вам нужны запасные части. Если вы перепутаете контакты ячейки, выбросьте плату — не заряжайте свои ячейки неисправной микросхемой.
Кроме того, учитывая популярность TP4056, копии этой ИС производятся несколькими поставщиками микросхем в Китае, и я заметил, что некоторые из этих копий ИС ломаются легче, чем другие, например, больше не заряжают ваши элементы — опять же , держите запасные.
TP4056 также не имеет таймеров зарядки, как другие, более современные ИС — тема, которую мы затронули в разделе комментариев к первой статье.
В целом, эти модули мощные и достаточно универсальные. Их даже безопасно использовать для зарядки элементов питания 4,3 В, так как из-за работы CC/CV элемент просто не будет заряжаться на полную мощность, что продлевает срок службы вашего элемента в качестве побочного эффекта. Если вам нужно выйти за рамки таких модулей, вы можете использовать множество ИС — линейные зарядные устройства меньшего размера, импульсные зарядные устройства, зарядные устройства со встроенными функциями питания и / или регулятора постоянного тока, а также множество ИС, которые делают LiIon зарядка как побочный эффект. Мир микросхем LiIon для зарядных устройств огромен, и в нем гораздо больше, чем в TP4056, но TP4056 — прекрасная отправная точка.
Цепь защиты, которую вы увидите повсюду
Как и в случае с зарядными ИС, существует множество конструкций, и вам следует знать об одной — комбинации DW01 и 8205A.
Он настолько распространен, что по крайней мере одно из ваших устройств, купленных в магазине, вероятно, содержит его, и модули TP4056 также поставляются с этим комбо. DW01 — это микросхема, которая отслеживает напряжение вашей ячейки и ток, поступающий от нее и от нее, а 8205A — это два N-FET в одном корпусе, помогающие с фактической частью «подключить-отключить батарею». Дополнительный токоизмерительный резистор отсутствует — вместо этого DW01 отслеживает напряжение на переходе 8205A. Другими словами, те же полевые транзисторы, которые используются для отключения ячейки от внешнего мира в случае отказа, используются в качестве токоизмерительных резисторов. Этот дизайн дешев, распространен и творит чудеса.
DW01 защищает от перегрузки по току, переразряда и перезаряда — первые два случая довольно часто встречаются в хобби-проектах, а последний пригодится, если ваше зарядное устройство когда-нибудь выйдет из строя. Если что-то не так, он прерывает соединение между отрицательным выводом ячейки и GND вашей схемы, другими словами, он выполняет переключение на низком уровне — по простой причине полевые транзисторы, которые прерывают GND, дешевле и имеют меньшее сопротивление.
Мы также видели некоторые взломы, сделанные с этим чипом — например, мы рассмотрели исследования хакера, который выяснил, что DW01 можно использовать в качестве переключателя программного питания для вашей схемы — таким образом, чтобы не ставить под угрозу безопасность. Вам нужно только подключить вывод GPIO вашего MCU к DW01, желательно через диод — этот комментарий описывает подход, который мне кажется довольно отказоустойчивым.
Когда вы впервые подключаете литий-ионный аккумулятор к комбинации DW01+8205A, иногда его выход активируется, а иногда нет. Например, если у вас есть держатель для 18650 и подключенная к нему схема защиты, вероятность того, что ваша схема включится, как только вы вставите батарею, составляет 50/50. Решение простое — либо внешнее зарядное подключить, либо закоротить OUT- и B- чем-нибудь металлическим (часто добавляю внешнюю кнопку), но с этим надоело разбираться. Так же, как и TP4056, комбинация DW01+8205A умирает, если вы подключаете батарею в обратном порядке.
Кроме того, DW01 имеет внутреннюю разводку для отсечки переразряда 2,5 В, что технически невозможно изменить. Если у вас нет отдельного программно-управляемого отключения, FS312 является совместимой по выводам заменой DW01 с точкой переразряда 3,0 В, что поможет вам продлить срок службы вашей батареи.
Вы можете купить партию готовых модулей схемы защиты или просто использовать схему защиты, размещенную на плате модуля TP4056. Вы также можете накопить приличный запас цепей защиты, вынимая их из одноэлементных батарей всякий раз, когда ячейка вздувается или умирает — будьте осторожны, чтобы не проколоть ячейку, пока вы это делаете, пожалуйста.
Все способы получить 3,3 В
Для литий-ионного элемента 4,2 В полезный диапазон напряжений составляет от 4,1 В до 3,0 В — элемент на 4,2 В быстро падает до 4,1 В при подаче питания от него, а при 3,0 В или ниже, внутреннее сопротивление элемента обычно растет достаточно быстро, поэтому вы больше не будете получать много полезного тока из своего элемента.
Если вы хотите получить 1,8 В или 2,5 В, это не проблема, а если вы хотите получить 5 В, вам понадобится какой-нибудь повышающий регулятор. Тем не менее, большинство наших чипов по-прежнему работают при напряжении 3,3 В — давайте посмотрим, какие у нас есть варианты.
Когда дело доходит до регулирования от LiIon до 3,3 В, линейные стабилизаторы почти уступают импульсным стабилизаторам с точки зрения эффективности, часто имеют меньший ток покоя (без нагрузки), если вам нужна работа с низким энергопотреблением, и более низкий уровень шума, если вы хочу делать аналоговые вещи. Тем не менее, ваш обычный 1117 не подойдет — это старая и неэффективная конструкция, а 1117-33 начинает шлифовать свои шестерни примерно при 4,1 В. Вместо этого используйте совместимые по выводам замены с низким падением напряжения, такие как AP2111, AP2114 и BL9.110 или AP2112, MIC5219, MCP1700 и ME6211, если вы не против SOT23. Все эти линейные регуляторы удобно обеспечивают 3,3 В с входным напряжением до 3,5 В, а иногда даже 3,4 В, если вы хотите питать что-то вроде ESP32.
Трудно отрицать простоту использования линейного стабилизатора — достаточно одной микросхемы и нескольких конденсаторов.
Если вам нужен постоянный ток от 500 мА до 1000 мА или даже больше, вам лучше всего подойдет импульсный стабилизатор. Мой личный фаворит — PAM2306 — этот регулятор используется на Raspberry Pi Zero, он очень дешевый и доступный, и даже имеет две отдельные выходные шины. Учитывая его способность выполнять 100% рабочий цикл, он может выжать много сока из ваших ячеек, что часто желательно для проектов с более высокой мощностью, где время выполнения имеет значение. И эй, если вы получили Pi Zero с мертвым процессором, вы не ошибетесь, отрезав часть печатной платы и припаяв к ней несколько проводов. При проектировании собственной платы используйте рекомендации таблицы данных по параметрам катушки индуктивности, если весь процесс «выбора правильной катушки индуктивности» сбил вас с толку.
Итак, PAM2306 — это регулятор Pi Zero, и он также совместим с LiIon? Да, вы можете питать Pi Zero напрямую от литий-ионной батареи, так как все бортовые схемы работают до 3,3 В на контактах «5 В».
Я тщательно тестировал его на своих устройствах, и он работает даже с Pi Zero 2 W. В сочетании с этим питанием и зарядным устройством у вас есть полный пакет «Linux с питанием от батареи» со всей мощью Raspberry Pi. обеспечивает – по цене всего нескольких компонентов. Одна проблема, на которую следует обратить внимание, заключается в том, что порт MicroUSB VBUS будет иметь напряжение батареи — другими словами, вам лучше заполнить порты MicroUSB горячим клеем на случай, если кто-то подключит туда блок питания MicroUSB, и коснитесь контрольных точек данных USB для USB. подключение.
Путь питания, чтобы соединить их всех
Теперь у вас есть зарядка, и у вас есть 3,3 В. Есть одна проблема, о которой я должен вам напомнить — пока вы заряжаете аккумулятор, вы не можете рисовать ток от него, так как зарядное устройство полагается на измерения тока для управления зарядкой; если вы путаете зарядное устройство с дополнительной нагрузкой, вы рискуете перезарядить аккумулятор. К счастью, поскольку у вас подключено зарядное устройство, у вас должно быть доступно 5 В.
Было бы здорово, если бы вы могли питать свои устройства от этого источника 5 В, когда он есть, и использовать аккумулятор, когда его нет! Мы обычно используем диоды для таких решений по питанию, но это приведет к дополнительному падению напряжения и потерям мощности при работе от батареи. К счастью, есть простая трехкомпонентная схема, которая работает намного лучше.
В этой цепи питания P-FET играет роль одного из диодов, а резистор открывает FET, когда зарядное устройство отсутствует. P-FET не имеет падения напряжения, но вместо этого имеет сопротивление в доли Ома, поэтому вы избегаете потерь, когда зарядное устройство не подключено. Как только зарядное устройство подключено, полевой транзистор закрывается, и зарядное устройство питает вашу схему через вместо него диод. Вам нужен P-FET логического уровня — IRLML6401, CJ2305, DMG2301LK или HX2301A подойдут, и есть тысячи других, которые будут работать. Что касается диода, то стандартный Шоттки типа 1N5819(SS14 для SMD) подойдет.
Это вездесущая схема, и она заслуживает своего места в наборе инструментов для схем.
Вы можете купить щиты и модули, которые содержат все эти части, а иногда и больше, на одной плате. Вы также можете купить микросхемы, которые содержат все или некоторые части этой схемы, часто улучшенные, и не беспокоиться о специфике. Однако эти ИС, как правило, более дорогие и гораздо более подвержены нехватке микросхем, чем решения на основе отдельных компонентов. Кроме того, когда возникают проблемы, понимание внутренней работы очень помогает. Таким образом, важно, чтобы основы были демистифицированы для вас, и вы не чувствуете себя вынужденным повторно использовать платы powerbank в следующий раз, когда захотите сделать свое устройство портативным.
Следите за тем, что делают другие форумы. Часто вы будете видеть описанную выше схему зарядное устройство + регулятор + цепь питания, особенно когда речь идет о более дешевых платах с чипами, такими как ESP32. В других случаях вы увидите более сложные решения для управления питанием, такие как чипы Powerbank или PMIC. Иногда они будут работать лучше, чем простая схема, иногда наоборот. Например, некоторые платы TTGO с батарейным питанием используют чипы powerbank и чрезмерно усложняют схему, что приводит к странному поведению и неисправностям. С другой стороны, другая плата TTGO использует PMIC, который больше подходит для таких плат, что обеспечивает безупречную работу и даже детальный контроль управления питанием для пользователя.
Взламывайте портативные устройства так, как вы не могли раньше
Теперь вы знаете, что нужно для добавления входного разъема литий-ионного аккумулятора в ваш проект, и секреты плат, которые уже поставляются с ним. Это ни с чем не сравнимое чувство — взять с собой на прогулку проект микроконтроллера, когда вы проверяете свою концепцию.


