Как устроен ДВС снаружи и в разрезе
Машина едет за счёт вращения колёс, имеющих сцепление с дорогой. Колёса вращаются за счёт трансмиссии, передающей на них крутящий момент от двигателя. А вот этот самый крутящий момент является продуктом преобразования энергии сжигания топлива в механическую работу, для чего собственно и предназначен двигатель внутреннего сгорания (ДВС).
В славное семейство ДВС входят роторные, газотурбинные и поршневые двигатели. Именно последние находятся под капотом львиной доли автомобилей для частной и коммерческой эксплуатации. О них и поговорим и рассмотрим схемы в разрезе далее.
Устройство двигателя
Итак, поршневой ДВС является сердцем большинства современных легковушек и включает в себя обязательный джентльменский набор из корпуса, двух механизмов и семи систем. Посмотрите одну из схем устройства двигателя в разрезе:
Корпус связывает в единое целое головку блока цилиндров, в которой находятся основные элементы
Системы Двигателя (ДВС) на схеме в разрезе
- Впускная. Горючее не сможет воспламениться без доступа кислорода, и именно впускная система обеспечивает забор, фильтрацию и подачу в нужном объёме воздуха в двигатель.
- Топливная обеспечивает питание мотора. Для современных двигателей в качестве горючего используются бензин, ДТ, биотопливо, водород, как перспективное топливо, сводящее к минимуму отрицательное воздействие на окружающую среду.
- Зажигание обеспечивает воспламенение рабочей смеси. В дизельных двигателях происходит её самовоспламенение.
- Смазка для циркуляции моторного масла, снижающего трение между движущимися частями, создающего защитные плёнки на рабочих поверхностях и нивелирующего негативные эффекты от металлической микро стружки, продуктов сгорания и других вредных факторов работы мотора.
- Охлаждение. Наиболее распространённым является охлаждение ДВС путём принудительной циркуляции антифризов, на худой конец — воды. Есть примеры и воздушного охлаждения мотора, такие как канувший в лету “Запорожец” и широко известный в узких кругах “Porsche 911”.
- Выпускная система отводит от двигателя продукты сгорания, их частичную нейтрализацию и выброс в атмосферу.
Как выглядит схема ДВС в разрезе:
Как работает двигатель внутреннего сгорания (ДВС)
Воспламенения рабочей смеси, состоящей из топлива, воздуха и остатков отработанных газов, происходит в момент максимального верхнего положения поршня, чем достигается наивысшая степень сжатия смеси. Тепловое расширение сгорающих газов толкает поршень вниз, что приводит к вращению коленчатого вала. Двум оборотам коленчатого вала, в четырёхтактном двигателе, соответствуют четыре этапа работы поршня в цилиндре. Для лучшего понимания, рассмотрите еще одну схему ДВС в разрезе:
Как видите на схеме в разрезе показаны: впуск, сжатие, рабочий ход и выпуск. Подробнее об этом далее.
- Впуск. Поршень идёт вниз. Топливно-воздушная смесь — это продукт совместной деятельности топливной и выпускной систем. В бензиновых двигателях с центральным и распределённым впрыском она образуется во впускном коллекторе. В бензиновых моторах с непосредственным впрыском и в дизелях, данная смесь образуется непосредственно в камере сгорания.
- Сжатие. Ход вверх. При закрытых впускных клапанах происходит смешивание и сжатие смеси до максимальных значений. Апофеозом этого процесса является принудительное или самовоспламенение смеси, знаменующее начало третьего такта.
- Рабочий ход. Поршень идёт вниз. Двигаясь к своей нижней точке, в паре с шатуном передают энергию расширения горящих газов коленвалу.
- Выпуск. Поршень идёт вверх.
Стабильная, равномерная работа мотора достигается тем, что цилиндры не совпадают по фазам. Пока один цилиндр совершает полезную работу, в других идут подготовительные циклы, поэтому КПД двигателей внутреннего сгорания не высок (около 40%). Для повышения КПД ДВС и снижения вредных выбросов моторы турбируют, совершенствуют электронное управление рабочим циклом, делая более полным и эффективным сгорание топлива.
Схема цилиндра ДВС в разрезе:
Несколько важных моментов, связанных с устройством ДВС
При всём совершенстве современной электроники, на неё не стоит полагаться на все сто. Знание устройства и принципа работы мотора поможет даже новичку вовремя заметить тревожные симптомы, а значит избежать неприятных последствий поломок и затрат на их ликвидацию. О важности именно ручного контроля уровня масла в картере мы уже неоднократно писали в материалах.
На что ещё нужно обращать внимание?
Не так уж редки случаи растяжения цепи или разрыва приводного ремня ГРМ, особенно у авто с вторичного рынка. Последствия разрыва ремня ГРМ особенно печальны и дороги в устранении. Стоит следить за физическим состоянием ремня, и при появлении бахромы и других визуально определяемых следов его износа, менять на новый без всяких колебаний. Ослабление ремня или цепи привода ГРМ, проявляется в виде свистящих и гремящих звуков, а также определяется тактильно. Неполадки в головке блока цилиндров могут проявлять себя “пением сверчков” кулачкового привода клапанов. Полезно также следить за напором и характером выхлопных газов. Слегка прерывистый напор, с ритмичным чередованием усилений и ослаблений выхлопа, свидетельствует о нормальном рабочем цикле двигателя.
Итак, мы рассказали и показали разные схемы двигателя в разрезе, надеемся, что информация была вам полезна. Здоровья вам и вашему автомобилю. Удачи на дорогах.
Комментарии
Рекомендованные статьи
Устройство и теория двигателей внутреннего сгорания
В данной статье разберем устройство и теорию двигателей внутреннего сгорания, рассмотрим из чего они состоят и как работают. Вы найдете основные понятия и термины, описывается конструкция и работа двигателя.
Автомобильные двигатели различают:
- по способу приготовления горючей смеси — с внешним смесеобразованием (карбюраторные, инжекторные, газовые двигатели) и с внутренним смесеобразованием (дизели),
- по роду применяемого топлива — бензиновые (работающие на бензине), газовые (на горючем газе) и дизели (работающие на дизельном топливе),
- по способу охлаждения — с жидкостным и воздушным охлаждением,
- расположению цилиндров — рядные и V-образные,
- по способу воспламенения горючей (рабочей) смеси—с принудительным зажиганием от электрической искры (карбюраторные и инжекторные двигатели) или с самовоспламенением от сжатия (дизели).
Бензиновые – это двигатели, работающие на бензине, с принудительным зажиганием. Приготовление топливно-воздушной смеси, и её дозирование осуществляют карбюраторные и инжекторные системы питания. Смесь в цилиндре воспламеняется в конце такта сжатия, принудительно от электрической искры.
Дизельные — это двигатели, работающие на дизельном топливе с воспламенением от сжатия. В дизельных двигателях смесь приготавливается непосредственно в цилиндре из воздуха и топлива, подаваемых в цилиндр раздельно. Воспламенение топливно-воздушной смеси в цилиндре происходит самопроизвольно от воздействия высокой температуры при сжатии. Исключением является система непосредственного впрыска бензина, где зажигание смеси осуществляется от электрической искры.
Газовые — это двигатели, которые работают на пропано-бутановом газе, с принудительным зажиганием. Перед подачей в цилиндры двигателя, газ смешивается с воздухом. По принципу работы такие двигатели практически не отличаются от бензиновых и мы не будем их рассматривать. Однако, если вы переоборудовали свой автомобиль «на газ», то советую изучить статью Газобаллонное оборудование. Схема ГБО.
Основные механизмы двигателя внутреннего сгорания:
- кривошипно-шатунный механизм,
- газораспределительный механизм,
- система питания (топливная),
- система выпуска отработавших газов,
- система зажигания,
- система охлаждения,
- система смазки.
Устройство двигателя внутреннего сгорания
Для начала, возьмем простейший одноцилиндровый двигатель и разберемся с его устройством и работой. Рассмотрим протекающие в нем процессы, и выясним откуда все-таки берется тот самый крутящий момент, который в конечном итоге приходит на ведущие колеса автомобиля.
Одна из основных деталей двигателя — цилиндр 6, в котором находится поршень 7, соединенный через шатун 9 с коленчатым валом 12. При перемещении поршня в цилиндре вверх и вниз его прямолинейное движение шатун и кривошип преобразуют во вращательное движение коленчатого вала.
На конце вала закреплен маховик 10, который необходим для равномерности вращения вала при работе двигателя. Сверху цилиндр плотно закрыт головкой, в которой находятся впускной 5 и выпускной клапаны, закрывающие соответствующие каналы.
Клапаны открываются под действием кулачков распределительного вала 14 через передаточные детали 15. Распределительный вал приводится во вращение шестернями 13 от коленчатого вала. Поршень, свободно перемещаясь в цилиндре, занимает два крайних положения.
Для нормальной работы двигателя в цилиндры должны подаваться горючая смесь в определенной пропорции (у бензиновых) или отмеренные порции топлива в строго определенный момент под высоким давлением (у дизелей). Для уменьшения затрат работы на преодоление трения, отвод теплоты, предотвращения задиров и быстрого износа трущиеся детали смазывают маслом. В целях создания нормального теплового режима в цилиндрах двигатель должен охлаждаться.
Понятия и термины при работе двигателя
Верхняя мертвая точка (ВМТ) — это крайнее верхнее положение поршня.
Нижняя мертвая точка (НМТ) — это крайнее нижнее положение поршня.
Ход поршня — это расстояние, пройденное от одной мертвой точки до другой. За один ход поршня коленчатый вал повернется на полоборота.
Камера сгорания (сжатия) — это пространство между головкой цилиндра и поршнем, расположенным в ВМТ.
Рабочий объем цилиндра — это пространство, освобождаемое поршнем при перемещение его из ВМТ в НМТ.
Рабочий объем двигателя — это сумма рабочих объемов всех цилиндров двигателя. При малых объемах (до 1 л.) его выражают в кубических сантиметрах, а при больших — в литрах.
Полный объем цилиндра — сумма объема камеры сгорания и рабочего объема.
Степень сжатия — это число, показывающее, во сколько раз полный объем цилиндра больше объема камеры сгорания. В бензиновых двигателях степень сжатия бывает от 8 до 12, а в дизелях — от 14 до 18. Степень сжатия не стоит путать с компрессией, т.к. это два разных понятия.
Такт — процесс (часть цикла), который происходит в цилиндре за один ход поршня. Двигатель, у которого рабочий цикл происходит за четыре хода поршня, называют четырехтактным.
Как работает двигатель внутреннего сгорания
При работе поршневого двигателя внутреннего сгорания поршень совместно с верхней головкой шатуна движется в цилиндре поступательно (вверх – вниз), при этом коленчатый вал совместно с нижней головкой шатуна совершает вращательные движения. У подавляющего большинства двигателей, если смотреть на двигатель со стороны шкива, вращение коленчатого вала осуществляется по часовой стрелке. За один оборот коленчатого вала (360°) поршень в цилиндре совершает два хода (один ход вверх и один вниз).
При постоянной скорости вращения коленчатого вала двигателя, поршень в цилиндре движется с ускорением – замедлением. Наименьшие скорости движения поршня будут наблюдаться при его «крайних» положениях в цилиндре — в верхней (ВМТ) и нижней части (НМТ). В верхней и нижней части цилиндра поршень «вынужден» сделать остановку, чтобы поменять направление движения.
Рабочий цикл четырехтактного двигателя: а) впуск, б) сжатие, в) рабочий ход, г) выпуск.
Работа двигателя складывается из совокупности процессов, протекающих в цилиндрах двигателя с определённой последовательностью. Эти процессы называют рабочим циклом и состоит из тактов впуска, сжатия, рабочего хода и выпуска. Подробнее в статье Принцип работы ДВС. Рабочие циклы двигателя.
Об устройстве двигателя также рассказано в данных статьях:
- Дизельные двигатели. Устройство и принцип работы
- Как работает двигатель (из цикла передачи ‘как это устроено’)
Nissan работает над двигателем с 50-процентным тепловым КПД
PHILIP FONGGetty Images
По большому счету, газовые двигатели внутреннего сгорания не так уж и эффективны, поскольку большая часть того, что они производят, — это отработанное тепло. Считается, что Toyota предлагает самый термически эффективный из производимых на сегодняшний день автомобильных двигателей внутреннего сгорания — 2,0-литровый безнаддувный четырехцилиндровый двигатель, который достигает 41-процентного теплового КПД.
Другими словами, 41 процент работы этого двигателя преобразуется в питание автомобиля, 59процентов это просто бесполезное тепло.Компания Nissan заявляет, что добилась прорыва в области теплового КПД внутреннего сгорания, разработав двигатель, который достигает 50-процентного теплового КПД. Но есть большая разница между этим новым двигателем Nissan и четырехцилиндровым двигателем Toyota — первый рассчитан на работу только в очень узком диапазоне. Nissan разрабатывает этот двигатель в качестве генератора для серийного гибридного автомобиля, в котором только электродвигатель приводит в движение колеса. Двигатель внутреннего сгорания вырабатывает энергию для зарядки аккумулятора, и этот аккумулятор питает двигатель. Механической связи между двигателем и колесами нет.
Этот двигатель будет использоваться в будущем поколении системы Nissan e-POWER, которая в настоящее время используется на японском рынке Note. Nissan смог достичь 50-процентного теплового КПД в ходе испытаний, по существу настроив двигатель для работы в очень определенном диапазоне скоростей и нагрузок. Поскольку двигатель не приводит в движение колеса, ему не приходится работать с такими широкими параметрами.
«В обычном двигателе существуют ограничения на контроль уровня разбавления топливовоздушной смеси в ответ на изменение нагрузки при вождении, с несколькими компромиссами между различными условиями эксплуатации, такими как поток газа в цилиндре, метод зажигания и компрессия. соотношение, которое может пожертвовать эффективностью в пользу выходной мощности», — говорится в пресс-релизе Nissan. «Тем не менее, специальный двигатель, работающий в оптимальном диапазоне скорости и нагрузки для выработки электроэнергии, позволяет значительно повысить тепловую эффективность».
Nissan
Двигатель настроен на работу с очень разбавленной топливно-воздушной смесью и работает с высокой степенью сжатия. Nissan не стал раскрывать подробности о самом двигателе, отказавшись указать размер, количество цилиндров и степень сжатия. Фотографии, опубликованные Nissan, показывают макет одноцилиндрового двигателя на испытательном стенде, поэтому кажется, что компания еще не определилась с точной формой, которую примет этот двигатель.
Nissan стремится к 100-процентному углеродному нейтралитету к 2050 году, и для достижения этой цели компания вкладывает большие средства в электромобили и автомобили, использующие систему e-POWER. Эта система кажется отличной альтернативой электромобилю, особенно в местах, где отсутствует инфраструктура для зарядки.
На данный момент единственным известным нам газовым двигателем внутреннего сгорания, имеющим тепловой КПД более 50 процентов, является 1,6-литровый V-6 Mercedes-AMG Formula 1. Но в этом двигателе используются технологии, слишком дорогие и сложные для массовых дорожных автомобилей. Пока неясно, когда мы увидим этот новый двигатель от Nissan, но подобные разработки показывают, что во внутреннем сгорании еще может быть жизнь.
Крис Перкинс Главный редактор Крис Перкинс — веб-редактор журнала Road & Track.
Утилизация отходящего тепла
Утилизация отходящего теплаХанну Яаскеляйнен
Это предварительный просмотр статьи, ограниченный некоторым исходным содержанием. Для полного доступа требуется подписка DieselNet.
Пожалуйста, войдите под номером , чтобы просмотреть полную версию этого документа.
- Цикл Ренкина Рекуперация отработанного тепла
- Турбокомпаунд
Abstract : Утилизация сбросного тепла – это использование тепловой энергии, которая в противном случае передавалась бы в окружающую среду для выполнения полезной функции. Примеры двигателей внутреннего сгорания включают использование охлаждающей жидкости двигателя для обогрева салона, турбонаддув для увеличения удельной мощности, циклы понижения для получения дополнительной работы от выхлопных газов или встроенный выпускной коллектор для облегчения прогрева двигателя.
- WHR в двигателях внутреннего сгорания
- Теплообменники
- Циклы дна
- Турбокомпаунд
- Термоэлектрики
- Термохимическая рекуперация
- Термоакустические преобразователи
Рекуперация отработанного тепла (WHR) — это использование тепловой энергии, которая в противном случае передавалась бы в окружающую среду для выполнения полезной функции. Во многих случаях WHR позволяет избежать или уменьшить потребность в дополнительной топливной энергии, которая в противном случае потребовалась бы для достижения этой функции. Примеры двигателей внутреннего сгорания включают:
- Использование охлаждающей жидкости двигателя для обогрева салона
- Турбокомпрессор для увеличения удельной мощности
- Циклы опускания для получения дополнительной работы от выхлопных газов
- Встроенный выпускной коллектор для облегчения прогрева двигателя
Основные пути отвода тепла в двигателе внутреннего сгорания, которые являются потенциальными кандидатами на WHR, включают горячие выхлопные газы, выходящие из выхлопной трубы, радиатор охлаждающей жидкости двигателя, а также охладители рециркуляции отработавших газов и наддувочного воздуха.
Во многих случаях целью WHR является создание дополнительной работы. Источники тепла более высокого качества позволяют преобразовывать большую часть отработанного тепла в работу. «Качество» конкретного источника тепла для целей WHR в значительной степени зависит от его температуры. Чем выше температура среды, тем выше ее энтропия, что позволяет большей части теплоты преобразовываться в полезную работу (т. е. выше КПД или выше ее эксергия). Например, можно ожидать, что система WHR, приводимая в действие теплом от охладителя EGR в контуре EGR высокого давления, будет иметь более высокую эффективность, чем аналогичная система, которая рекуперирует тепло от выхлопных газов выхлопной трубы.
Отработанное тепло от тепловой машины или электростанции отводится в окружающую среду либо через теплообменник, либо непосредственно за счет вытеснения горячего рабочего тела. В двигателе внутреннего сгорания используются оба из них: горячий выхлопной газ, рабочая жидкость двигателя, выбрасывается непосредственно в окружающую среду, а теплообменники используются для отвода тепла в окружающую среду от охлаждающей жидкости двигателя, охладителя рециркуляции отработавших газов, охладителя наддувочного воздуха и масляный радиатор.
На рис. 1 обобщены основные пути отвода тепла в дизельном двигателе большой мощности, которые являются потенциальными кандидатами на рекуперацию отработанного тепла 9.0076 [3706] . Полезность этих источников тепла для WHR зависит от:
- их температура,
- количество тепла, доступного от каждого источника и
- количество тепла от каждого источника, которое может быть восстановлено.
На рис. 2 более подробно показана температура различных потоков отвода тепла, показанных на рис. 1, для дизельного двигателя большой мощности в зависимости от мощности двигателя. Данные были собраны при 53 оборотах двигателя и условиях нагрузки, а изменения в системе рециркуляции отработавших газов и температуре выхлопных газов отражают влияние скорости/нагрузки, не улавливаемое влиянием мощности двигателя [3709] .
Рисунок 2 . Температура различных потоков отходящего тепла в тяжелом дизельном двигателеДвигатель: 2011 г. 12,8 л Mack MP8-505C, 505 л.с. (377 кВт) при 1800 об/мин/1810 фут-фунт (2454 Нм) при 1100 об/мин. Выбросы EPA 2010. HP EGR/DOC-DPF-SCR.
На Рисунке 3 показана доля энергии топлива, производящей работу торможения и потерянная из-за различных потоков отработанного тепла для трех режимов мощности двигателя, показанного на Рисунке 2. Также показаны более подробные сведения о потоках отходов, которые доступны для WHR, включая долю тепла отработавших газов. количество тепла, остающееся в отработавших газах после системы доочистки, и количество тепла, переданного от охладителя рециркуляции отработавших газов к охлаждающей жидкости двигателя [3709] . В таблице 1 суммированы энергия и первое приближение эксергии (на основе коэффициента Карно) различных источников сбросного тепла для двух рабочих условий, показанных на рис. поток энергии).
Рисунок 3 . Доля энергии топлива, потерянная из-за потоков отработанного тепла на Рисунке 2Мощность двигателя, кВт | 136 | 348 | |||
---|---|---|---|---|---|
EGR | 9 9002Температура, °С 0128 | 600 | |||
Тепло, кВт | 21 | 51 | |||
Эксергия, кВт | 13 | 33 | |||
Выхлоп после СКВ | Температура, °С | 400 | 6 9 9129 400Тепло, кВт | 64 | 187 |
Эксергия, кВт | 35 | 101 | |||
Охладитель наддувочного воздуха | 8 | Температура, °С 901 8 | 200 | ||
Тепло, кВт | 14 | 68 | |||
Эксергия, кВт | 2 | 24 | |||
Охлаждающая жидкость двигателя (без нагрева EGR) | Температура, °C | 90 | 12 | 1212 | |
Тепло, кВт | 21 | 34 | |||
Эксергия, кВт | 3 | 5 | |||
Всего | Тепло, кВт 29 80 | 122129 1 340||||
Эксергия, кВт | 53 | 163 |
Отработанное тепло от охладителя рециркуляции отработавших газов представляет собой тепло с самой высокой температурой и, следовательно, имеет высокий приоритет для WHR. Более 60% отработанного тепла EGR доступно в виде эксергии. В применениях без высокоэффективных систем SCR скорость потока EGR может быть выше, а рекуперация тепла из системы EGR более значительна [3711] . Выхлопные газы после SCR также важны, и, учитывая, что поток выхлопных газов обычно намного выше, чем поток EGR, представляют собой значительные потоки энергии и эксергии. Около 50% тепла выхлопных газов используется в виде эксергии, что также является приоритетом для WHR. Охлаждение наддувочного воздуха и охлаждающая жидкость двигателя имеют значительно более низкие температуры и представляют собой тепло относительно низкого качества. Однако при более высоких нагрузках наддувочный воздух по-прежнему содержит значительное количество эксергии.
Некоторые из важных технологий, которые используются и/или разрабатываются для WHR, обобщены в Таблице 2.