Схема работы двигателя внутреннего сгорания: Принцип работы и устройство двигателя

Содержание

Бензиновый двигатель внутреннего сгорания: принцип работы

В основе принципа работы любого двигателя внутреннего сгорания лежит воспламенение небольшого количества топлива, обязательно высокоэнергетического, в небольшом замкнутом пространстве. При этом выделяется большое количество энергии, в виде теплового расширения нагретых газов. Так как давление под поршнем равно нормальному атмосферному, а компрессия в цилиндре намного превышает его, то под действием разницы давлений поршень совершает движение.

Бензиновый двигатель внутреннего сгорания: принцип работы

Для того чтобы двигатель внутреннего сгорания постоянно производил полезную механическую энергию, камеру сгорания цилиндра необходимо циклично заполнять новыми дозами воздушно-топливной смеси. В результате, поршень приводит в действие коленчатый вал, который и придает движение колесам автомобиля.

Двигатели почти всех современных автомобилей являются четырёхтактными по своему циклу работы, и энергия, полученная от сжигания бензина, почти полностью преобразовывается в полезную. Цикл Отто, так называется подобный принцип, по имени Николауса Отто, изобретателя двигателя внутреннего сгорания (1867 год).

Схема работы бензинового двигателя внутреннего сгорания:

— такт впуска;

— такт сжатия;

— рабочий такт;

— такт выпуска.

Главным элементом двигателя внутреннего сгорания является поршень, который связан шатуном с коленчатым валом. Так называемый, кривошипно-шатунный механизм, преобразующий прямолинейное возвратно-поступательное движение поршня в радиальное движение коленвала.

Ниже более подробно расписан рабочий цикл бензинового двигателя:

1. Такт впуска

Поршень опускается из верхней крайней точки в нижнюю крайнюю точку, при этом кулачки распределительного вала открывают впускной клапан, и через него воздушно-топливная смесь поступает из карбюратора в камеру сгорания цилиндра. Когда поршень доходит до нижней мертвой точки, впускной клапан закрывается.

2. Такт сжатия

Поршень возвращается из нижней мертвой точки в верхнюю, сжимая топливную смесь. При этом существенно увеличивается температура смеси. Когда поршень доходит до верхней крайней точки, свеча зажигания воспламеняет сжатую рабочую смесь.

3. Рабочий такт

Воспламененная горючая смесь сгорает при высокой температуре, образовавшиеся газы моментально расширяются и толкают поршень вниз. Впускной и выпускной клапаны, во время этого такта, закрыты.

4. Такт выпуска

Коленвал продолжает вращаться по инерции, поршень идет в верхнюю мертвую точку. В то же время открывается клапан выпуска, и поршень вытесняет отработанные газы в выхлопную трубу. Когда он достигает верхней крайней точки, выпуск закрывается.

Следующий такт необязательно должен начинаться после окончания предыдущего. Такая ситуация, когда одновременно открыты оба клапана (впуска и выпуска), называется перекрытием клапанов. Это необходимо для эффективного наполнения цилиндра воздушно-топливным соединением, а также для более результативной очистки цилиндров от выхлопных газов. После этого рабочий цикл повторяется.

 

Отличительной особенностью двигателя внутреннего сгорания является то, что поршень двигается прямолинейно, а движение, осуществляющееся при сгорании топливной смеси, — вращательное. Линейный ход поршней преобразовывается в поворотное движение, необходимое для работы колес автомобиля, при помощи коленчатого вала.

Ниже рассмотрены основные элементы двигателя, которые принимают участие в преобразовании тепловой энергии в механическую.

1. Свеча зажигания

Искровая свеча вырабатывает электрическую искру, которая воспламеняет воздушно-топливную смесь. Для равномерной и бесперебойной работы поршня искра должна появляться в заданный момент времени.

2. Клапаны

Выпускные и впускные клапаны закрываются и открываются в заданный момент, впуская воздух в цилиндр и выпуская отработанные газы. Во время процесса горения топливной смеси оба клапана закрыты. Клапан выпуска открывается до достижения поршня крайней нижней точки и остается открытым до прохождения поршня к верхней крайней точке. К этому моменту впускной уже будет открыт.

3. Поршень

Образующиеся во время сгорания топливной смеси горячие газы выдавливают поршень, передавая энергию через шатун и палец коленвалу. Для сохранения компрессии в цилиндрах на поршень устанавливаются уплотняющие кольца, изготовленные из высокопрочного чугуна. Для повышения износостойкости поршневые кольца покрываются тонким слоем пористого хрома. К основным характеристикам колец относятся следующие показатели: высота, наружный диаметр, радиальная толщина, форма разреза в стыке и упругость. Внешний диаметр поршневого кольца должен соответствовать внутреннему диаметру цилиндра. В настоящее время применяются узкие кольца (высотой — 1,5-2 мм) и широкие (высотой — 2,5-3 мм). Первые более надежны при частом движении поршня. Радиальная толщина увеличивается с возрастанием диаметра цилиндра. Износ поршневых колец происходит, в среднем, через каждые 3 тысячи километров пробега.

4. Шатун

Шатун соединяет коленчатый вал с поршнем. Вращение шатуна является двухсторонним, это нужно для того, чтобы его угол мог изменяться в зависимости от местоположения поршня, обеспечивая движение коленвала. Обычно шатуны бывают стальными, иногда — алюминиевыми.

5. Коленчатый вал

Поворот коленчатого вала осуществляется вследствие вертикального хода поршня. Коленвал приводит в движение колеса автомобиля.

 

Современные двигатели внутреннего сгорания делятся на два типа: карбюраторные и инжекторные.

В карбюраторном двигателе процесс приготовления воздушно-топливной смеси происходит в специальном устройстве — карбюраторе. В нем, используя аэродинамическую силу, горючее смешивается с воздушным потоком, засасываемым двигателем.

В инжекторном типе двигателя топливо впрыскивается под давлением в поток воздуха при помощи специальных форсунок. Дозировка горючего происходит при помощи электронного блока управления, который открывает форсунку электрическими импульсами. В двигателях устаревшей конструкции, этот процесс происходит с использованием специфической механической системы. Последний тип почти полностью вытеснил устаревшие карбюраторные силовые агрегаты. Это произошло из-за современных экологических стандартов, которые устанавливают высокие нормы чистоты выхлопных газов. Что повлекло за собой внедрение новых эффективных нейтрализаторов выхлопа (каталитических конвертеров или катализаторов). Такие системы нейтрализации требуют постоянного состава отработанных газов, который могут обеспечить только инжекторные системы впрыска топлива, контролируемые электронным блоком управления. Нормальная работа катализатора обеспечивается исключительно при соблюдении стабильного состава выхлопных газов. Необходимостью этого является то, что он требует содержания определенных пропорций кислорода в отработанных газах. Для соблюдения подобных условий в таких системах катализации обязательно устанавливается кислородный датчик (лямбда-зонд), который анализирует процент содержания кислорода в выхлопных газах и контролирует точность пропорций оксида азота, несгоревших остатков топлива и углеводородов.

 

Основными вспомогательными системами являются:

Система зажигания. Отвечает за поджигание топливной смеси в нужный момент. Она бывает контактной, бесконтактной и микропроцессорной. Система контактного типа состоит из распределителя-прерывателя, катушки, выключателя зажигания и свечей. Бесконтактная система аналогична предыдущей, только вместо прерывателя стоит индукционный датчик. Управление системой зажигания микропроцессорного типа осуществляется специальным компьютерным блоком, в ее состав входит датчик положения коленвала, коммутатор, блок управления зажиганием, катушки, датчик температуры двигателя и свечи. В двигателях с инжекторной системой к ней добавляется еще датчик положения дроссельной заслонки и термоанемометрический датчик массового расхода воздуха.

Система запуска двигателя. Состоит из специального электромотора (стартера), подключенного к аккумулятору, или механического стартера, использующего физические усилия человека. Применение этой системы объясняется тем, что для запуска рабочего цикла двигателя необходимо, чтобы коленчатый вал произвел хотя бы один оборот.

Система выпуска выхлопных газов. Обеспечивает своевременное удаление продуктов горения топливной смеси из цилиндров. Включает в себя выпускной коллектор, катализатор и глушитель.

Система приготовления воздушно-топливной смеси. Предназначена для приготовления и впрыска смеси горючего с воздухом, в камеру сгорания цилиндров двигателя. Может быть карбюраторной или инжекторной.

Система охлаждения. Современная система состоит из вентилятора, радиатора, термостата, расширительного бачка, жидкостного насоса, датчика температуры, рубашки и головки охлаждения блока цилиндров. Предназначена для создания и поддержания приемлемого температурного режима работы ДВС. Обеспечивает отвод тепла от цилиндров клапанной системы и поршневой группы. Может быть воздушной, жидкостной или гибридной.

Система смазки. Состоит из масляного фильтра, маслонасоса с маслоприемником, каналов в блоке и головках цилиндров для впрыска масла под высоким давлением, поддона картера. Предназначена для подачи автомобильного масла с целью уменьшения трения и охлаждения, к взаимодействующим деталям двигателя. Также циркуляция масла смывает нагар и продукты механического износа.

Источник: Авто Релиз.ру.

Устройство двигателя: схема, строение и принцип работы ДВС

На чтение 10 мин. Просмотров 1.3k. Опубликовано Обновлено

Практически все современные автомобили оснащены двигателем внутреннего сгорания, имеющим аббревиатуру ДВС. Несмотря на постоянный прогресс и сегодняшнее стремление автомобильных концернов отказаться от моторов, работающих на нефтепродуктах в пользу более экологичной электроэнергии, львиная доля машин ездит на бензине или дизельном топливе.

Основными принципом ДВС является то, что топливная смесь воспламеняется непосредственно внутри агрегата, а не вне его (как, к примеру, в тепловозах или устаревших паровозах). Такой способ имеет относительно большой коэффициент полезного действия. К тому же, если говорить об альтернативных моторах на электрической тяге, то двигатели внутреннего сгорания обладает рядом неоспоримых преимуществ.

  • большой запас хода на одном баке;
  • быстрая заправка;
  • согласно прогнозам, уже через несколько лет энергосистемы развитых стран не будут в силах погасить потребность в электроэнергии из-за большого количества электрокаров, что может привести к коллапсу.

Классификация двигателей внутреннего сгорания

Непосредственно ДВС отличаются по своему устройству. Все моторы можно разделить на несколько самых популярных категорий в зависимости от принципа работы:

Бензиновые

Наиболее распространенная категория. Работает на главных продуктах нефтепереработки. Основным элементом в таком моторе является цилиндро-поршневая группа или ЦПГ, куда входит: коленвал, шатун, поршень, поршневые кольца и сложный газораспределительный механизм, который обеспечивает своевременное наполнение и продувку цилиндра.

Бензиновые двигатели внутреннего сгорания подразделяются на два типа в зависимости от системы питания:

  1. карбюраторные. Устаревшая в условиях современной реальности модель. Здесь формирование топливно-воздушной смеси осуществляется в карбюраторе, а пропорцию воздуха и бензина определяет набор жиклеров. После этого карбюратор подает ТВС в камеру сгорания. Недостатками такого принципа питания является повышенное потребление топлива и прихотливость всей системы. К тому же она сильно зависит от погоды, температуры и прочих условий.
  2. инжекторные или впрысковые. Принципы работы двигателя с инжектором кардинально противоположны. Здесь смесь впрыскивается непосредственно во впускной коллектор через форсунки, а затем разбавляется нужным количеством воздуха. За исправную работу отвечает электронный блок управления, который самостоятельно высчитывает нужные пропорции.

Дизельные

Устройство двигателя, работающего на дизеле, кардинально отличается от бензинового агрегата. Поджог смеси здесь происходит не благодаря свечам зажигания, дающим искру в определенный момент, а из-за высокой степени сжатия в камере сгорания. Данная технология имеет свои плюсы (больший КПД, меньшие потери мощности из-за большой высоты над уровнем моря, высокий крутящий момент) и минусы (прихотливость ТНВД к качеству топлива, большие выбросы СО2 и сажи).

Роторно-поршневые двигатели Ванкеля

Данный агрегат имеет поршень в виде ротора и три камеры сгорания, к каждой из которых подведена свеча зажигания. Теоретически ротор, движущийся по планетарной траектории, каждый такт совершает рабочий ход. Это позволяет существенно повысить КПД и увеличить мощность двигателя внутреннего сгорания. На практике это сказывается гораздо меньшим ресурсом. На сегодняшний день только автомобильная компания Mazda делает такие агрегаты.

Газотурбинные

Принцип работы ДВС такого типа заключается в том, что тепловая энергия переходит в механическую, а сам процесс обеспечивает вращение ротора, приводящего в движения вал турбины. Подобные технологии используются в авиационном строительстве.

Устройство двигателя внутреннего сгорания

Любой поршневой ДВС (самые распространенные в современных реалиях) имеет обязательный набор деталей. К таким частям относится:

  1. Блок цилиндров, внутри которого двигаются поршни и происходит сам процесс;
  2. ЦПГ: цилиндр, поршни, поршневые кольца;
  3. Кривошипно-шатунный механизм. К нему относится коленвал, шатун, «пальцы» и стопорные кольца;
  4. ГРМ. Механизм с клапанами, распределительными валами или «лепестками» (для 2-х тактных двигателей), который обеспечивает корректную подачу топлива в нужный момент;
  5. Cистемы впуска. О них говорилось выше – к ней относятся карбюраторы, воздушные фильтры, инжекторы, топливный насос, форсунки;
  6. Системы выпуска. Удаляет отработанные газы из камеры сгорания, а также снижает шумность выхлопа;

Принцип работы ДВС

В зависимости от своего устройства, двигатели можно разделить на четырехтактные и двухтактные. Такт – есть движение поршня от своего нижнего положения (мертвая точка НМТ) до верхнего положения (мертвая точка ВМТ). За один цикл двигатель успевает наполнить камеры сгорания топливом, сжать и поджечь его, а также очистить их. Современные ДВС делают это за два или четыре такта.

Принцип работы двухтактного ДВС

Особенностью такого мотора стало то, что весь рабочий цикл происходит всего за два движения поршня. При движении вверх создается разреженное давление, которое засасывает топливную смесь в камеру сгорания. Вблизи ВМТ поршень перекрывает впускной канал, а свеча зажигания поджигает топливо. Вторым тактом следует рабочий ход и продувка. Выпускной канал открывается после прохождения части пути вниз и обеспечивает выход отработанных газов. После этого процесс возобновляется по новой.

Теоретически, преимуществом такого мотора более высокая удельная мощность. Это логично, ведь сгорание топлива и рабочий такт происходит в два раза чаще. Соответственно, мощность такого двигателя может быть в два раза больше. Но эта конструкция имеет массу проблем. Из-за больших потерь при продувке, большого расхода топлива, а также сложностей в расчетах и «норовистой» работе двигателя, эта технология сегодня используется только на малокубатурной технике.

Интересно, что полвека назад активно велись разработки дизельного двухтактного ДВС. Процесс работы практически не отличался от бензинового аналога. Однако, несмотря на преимущества такого мотора, от него отказались из-за ряда недостатков.

Основным минусом стал огромный перерасход масла. Из-за комбинированной системы смазки топливо попадало в камеру сгорания вместе с маслом, которое потом попросту выгорало или удалялось через выпускную систему. Большие тепловые нагрузки также требовали более громоздкой системы охлаждения, что увеличивало габариты мотора. Третьим минусом стал большой расход воздуха, который вел к преждевременному износу воздушных фильтров.

Четырёхтактный ДВС

Мотор, где рабочий цикл занимает четыре хода поршня, называется четырехтактным двигателем.

  1. Первый такт – впуск. Поршень двигается из верхней мертвой точки. В этот момент ГРМ открывает впускной клапан, через который топливно-воздушная смесь поступает в камеру сгорания. В случае с карбюраторными агрегатами поступление может осуществляться за счет разрежения, а инжекторные двигателя впрыскивают топливо под давлением.
  2. Второй такт – сжатие. Далее поршень движется из нижней мертвой точки вверх. К этому моменту впускной клапан закрыт, а смесь постепенно сжимается в полости камеры сгорания. Рабочая температура поднимается до отметки 400 градусов.
  3. Третий такт – рабочий ход поршня. В ВМТ свеча зажигания (или большая степень сжатия, если речь идет о дизеле) поджигает топливо и толкает поршень с коленчатым валом вниз. Это основной такт во всем цикле работы двигателя.
  4. Четвертый такт – выпуск. Поршень снова движется вверх, выпускной клапан открывается, а из камеры сгорания удаляются отработанные газы.

Дополнительные системы ДВС

Независимо от того, из чего состоит двигатель, у него должны быть вспомогательные системы, которые способны обеспечить его исправную работу. К примеру, клапаны должны открываться в нужное время, в камеры поступать нужное количество топлива в определенной пропорции, вовремя подаваться искра и т.д. Ниже рассмотрены основные части, способствующие корректной работе.

Система зажигания

Эта система отвечает за электрическую часть в вопросе воспламенения топлива. К основным элементам относится:

  • Элемент питания. Основным источником питания является аккумулятор. Он обеспечивает вращение стартера на выключенном двигателе. После этого в работу включается генератор, который питает двигатель, а также подзаряжает саму аккумуляторную батарею через реле зарядки.
  • Катушка зажигания. Устройство, которое передает одномоментный заряд непосредственно на свечу зажигания. В современных автомобилях количество катушек равносильно количеству цилиндров, которые работают в двигателе.
  • Коммутатор или распределитель зажигания. Специальной «умное» электронное устройство, которое определяет момент подачи искры.
  • Свеча зажигания. Важный элемент в бензиновом ДВС, который обеспечивает своевременное воспламенение топливно-воздушной смеси. Продвинутые двигатели имеют по две свечи на цилиндр.

Впускная система

Смесь должна вовремя поступать в камеры сгорания. За этот процесс отвечает впускная система. К ней относится:

  • Воздухозаборник. Патрубок, специально выведенный в место, недоступное для воды, пыли или грязи. Через него осуществляется забор воздуха, который потом попадает в двигатель;
  • Воздушный фильтр. Сменная деталь, которая обеспечивает очистку воздуха от грязи и исключает попадание посторонних материалов в камеру сгорания. Как правило, современные автомобили обладают сменными фильтрами из плотной бумаги или промасленного поролона. На более архаичных моторах встречаются масляные воздушные фильтры.
  • Дроссель. Специальная заслонка, которая регулирует количество воздуха, попадающего в впускной коллектор. На современной технике действует посредством электроники. Сначала водитель нажимает на педаль газа, а потом электронная система обрабатывает сигнал и следует команде.
  • Впускной коллектор. Патрубок, который распределяет топливно-воздушную смесь по различным цилиндрам. Вспомогательными элементами в этой системе являются впускные заслонки и усилители.

Топливная систем

Принцип работы любого ДВС подразумевает своевременное поступление топлива и ее бесперебойную подачу. В комплекс также входит несколько основных элементов:

  • Топливный бак. Резервуар, где хранится топливо. Как правило, располагается в максимально безопасном месте, вдали от мотора и сделан из негорючего материала (ударопрочный пластик). В нижней его части установлен бензонасос, который осуществляет забор топлива.
  • Топливопровод. Система шлангов, ведущая от топливного бака непосредственно к двигателю внутреннего сгорания.
  • Прибор образования смеси. Устройство, где смешиваются топливо и воздух. Об этом пункте уже упоминалось выше – за эту функцию может отвечать карбюратор или инжектор. Основным требованием является синхронная и своевременная подача.
  • Головное устройство в инжекторных двигателях, которое определяет качество, количество и пропорции образования смеси.

Выхлопная система

В ходе того, как работает двигатель внутреннего сгорания, образуются выхлопные газы, которые необходимо выводить из мотора. Для правильной работы эта система обязана иметь следующие элементы:

  • Выпускной коллектор. Устройство из тугоплавкого металла с высокой устойчивостью к температурам. Именно в него первоначально поступают выхлопные газы из двигателя.
  • Приемная труба или штаны. Деталь, обеспечивающая транспортировку выхлопных газов далее по тракту.
  • Резонатор. Устройство, снижающее скорость движения выхлопных газов и погашение их температуры.
  • Катализатор. Предмет для очистки газов от СО2 или сажевых частиц. Здесь же располагается лямда-зонд.
  • Глушитель. «Банка», имеющая ряд внутренних элементов, предназначенных для многократного изменения направления выхлопных газов. Это приводит к снижению их шумности.

Система смазки

Работа двигателя внутреннего сгорания будет совсем недолгой, если детали не будут обеспечиваться смазкой. Во всей технике используется специальное высокотемпературное масло, обладающее собственными характеристиками вязкости в зависимости от режимов эксплуатации мотора. Ко всему, масло предотвращает перегрев, обеспечивает удаление нагара и появление коррозии.

Для поддержания исправности системы предназначены следующие элементы:

  • Поддон картера. Именно сюда заливается масло. Это основной резервуар для хранения. Контролировать уровень можно при помощи специального щупа.
  •  Масляный насос. Находится вблизи нижней точки поддона. Обеспечивает циркуляцию жидкости по всему мотору через специальные каналы и его возвращение обратно в картер.
  •  Масляный фильтр. Гарантирует очистку жидкости от пыли, металлической стружки и прочих абразивных веществ, попадающих в масло.
  •  Радиатор. Обеспечивает эффективное охлаждение до положенных температур.

Система охлаждения

Еще один элемент, который необходим для мощных двигателей внутреннего сгорания. Он обеспечивает охлаждение деталей и исключает возможность перегрева. Состоит из следующих деталей:

  • Радиатор. Специальный элемент, имеющий «сотовую» структуру. Является отличным теплообменником и эффективно отдает тепло, гарантируя охлаждение антифриза.
  • Вентилятор. Дополнительный элемент, дующий на радиатор. Включается тогда, когда естественный поток набегающего воздуха уже не может обеспечить эффективное отведение тепла.
  • Помпа. Насос, который помогает жидкости циркулировать по большому или малому кругу системы (в зависимости от ситуации).
  • Термостат. Клапан, который открывает заслонку, пуская жидкость по нужному кругу. Работает совместно с датчиком температуры движка и охлаждающей жидкости.

Заключение

Первый двигатель внутреннего сгорания появился еще очень давно – почти полтора столетия назад. С тех пор было сделано огромное количество разных нововведений или интересных технических решений, которые порой меняли вид мотора до неузнаваемости. Но общий принцип работы двигателя внутреннего сгорания оставался прежним. И даже сейчас, в эпоху борьбы за экологию и постоянно ужесточающийся норм по выбросу СО2, электромобили все еще не в силах составить серьезную конкуренцию машинам с ДВС. Бензиновые автомобили и сейчас живее всех живых, а мы живем в золотую эпоху автомобилестроения.

Ну а для тех, кто готов погрузиться в тему еще глубже, у нас есть отличное видео:

Двигатель внутреннего сгорания: устройство и принцип работы

Автор автомеханик А.Зарядин На чтение 14 мин. Просмотров 1.8k. Опубликовано

Первым двигателем внутреннего сгорания (ДВС) считается изобретение французского механика Ленуара в 1860 году. Поршневой агрегат работал за счёт сжигания в цилиндре светильного газа. Более удачную конструкцию предложил немец Отто в 1866 году. Его двигатель работал по 4-тактному циклу, сжимая в цилиндрах смесь газа и воздуха перед воспламенением запальной свечи. Следующим этапом развития стал переход на жидкое нефтяное топливо и внесение технических новшеств в конструкцию ДВС.

Что такое ДВС

Двигатель преобразует топливную, электрическую и другие виды энергии в механическую для передачи её исполнительным органам машины или установки: трансмиссии, насосу, ротору и т.д. Автомобильные двигатели различаются по виду первичной энергии и процессу её преобразования:

  • поршневой двигатель внутреннего сгорания;
  • газовая турбина;
  • паровой двигатель;
  • роторно-поршневой мотор;
  • двигатель внешнего сгорания;
  • электромотор;
  • маховичный двигатель и др.

Наиболее распространён поршневой двигатель внутреннего сгорания. Источником энергии ДВС служит жидкое нефтяное топливо или горючий газ. Популярность этого типа мотора обусловлена возможностью компактного хранения топлива и его малого расхода при большом пробеге автомобиля.

Рассмотрим подробнее, что такое двигатель внутреннего сгорания, его устройство, принцип работы, плюсы и минусы.

Устройство двигателя внутреннего сгорания

В устройство двигателя внутреннего сгорания входят различные механизмы и системы. Так, поршневой 4-тактный агрегат состоит из кривошипно-шатунного (КШМ) и газораспределительного (ГРМ) механизмов:

  • КШМ включает в себя подвижные и неподвижные детали. Основу составляет блок цилиндров, установленный на картере. Сверху блок закрыт головкой, в которой находятся впускные и выпускные клапаны, свечи зажигания, форсунки. Внутри цилиндров перемещаются поршни, соединённые через поршневой палец с верхней головкой шатуна. Нижняя часть шатуна охватывает шейку коленвала. На конце вала закреплён маховик;
  • в состав ГРМ входит распределительный вал, клапаны и привод ГРМ. Подробнее о механизме поговорим ниже.

 

В 2-тактном поршневом ДВС клапана отсутствуют. Вместо них в конструкции предусмотрены продувочные окна.

Достойной заменой поршневому агрегату можно рассмотреть только роторно-поршневой мотор или двигатель Ванкеля. Он работает по 4-тактому циклу, а поршень имеет форму треугольника Рёло. Газораспределение в роторном агрегате происходит через впускные и выпускные окна, поэтому необходимость в сложном клапанном механизме отпадает. Двигатели Ванкеля встречаются в машинах Mazda и советских ВАЗах.

Системы двигателя

Надёжная и долговременная работа двигателя внутреннего сгорания невозможна без питания, смазки, охлаждения. Кроме того, нужно обеспечить первый запуск коленвала и каждый раз воспламенять рабочую смесь в цилиндрах. Для этих целей разработаны следующие системы двигателя:

  • смазки;
  • охлаждения;
  • питания;
  • запуска;
  • зажигания;
  • впрыска;
  • управления.

Если раньше системы были механические, сейчас в них появляется больше электроники. Электронное управление делает работу мотора высокоэффективной, экономичной и надёжной. Системы становятся компактными, но требуют качественного и регулярного обслуживания.

ГРМ — газораспределительный механизм

Устройство двигателя внутреннего сгорания включает в себя ГРМ. Его функция — вовремя подать в определённые цилиндры рабочую смесь, а также выпустить из этих цилиндров продукты горения. Работу механизма определяют последовательность работы цилиндров и фазы газораспределения.

Для функционирования ГРМ необходимы минимум 1 впускной и 1 выпускной клапан на каждый цилиндр. Диаметр тарелки впускного клапана обычно больше, чем у выпускного, что позволяет улучшить наполняемость цилиндра и увеличить рабочие показатели ДВС. Открытие и закрытие клапанов регулирует кулачковый распределительный вал. Сам вал приводится цепью или ремнём от коленвала.

Конструктивно привод клапанов делится на 4 вида:

  • OHV — распредвал расположен в блоке цилиндров, а управление клапанами происходит через дополнительные толкатели и штанги;
  • ОНС — распредвал размещён в головке блока, привод клапанов осуществляется за счёт рычажных толкателей;
  • DОНС — схема расположения с двумя распредвалами в головке блока. В этом случае один вал используется для впускных, а другой для выпускных клапанов.

Фазы газораспределения — это моменты открытия и закрытия клапанов, выраженные в углах поворота коленвала. Правильно подобранные фазы обеспечивают лучшее наполнение и очистку цилиндров. Если в устройство двигателя включить механизм управления фазами VVT, это позволит получить максимальную мощность при высокой частоте вращения коленвала и экономить ресурсы на малых оборотах.

Система смазки

Смазка двигателя автомобиля защищает детали от трения, коррозии, охлаждает конструкцию и смывает грязь. В ДВС часто используются комбинированные системы, в которых моторное масло подаётся под давлением и разбрызгиванием.

В типичной смазочной системе масло заливают через маслозаливную горловину в поддон картера до определённого уровня. При работе двигателя маслонасос высасывает из поддона смазку через маслозаборник. Затем масло фильтруется от примесей и переходит в главную магистраль.

Магистраль представляет собой ответвления каналов, по которым масло поступает к коренным подшипникам коленвала, опорам распредвала, поршневой группе и другим деталям. Из зазоров подшипников смазка вытекает и разбрызгивается движущимися элементами в виде капель и масляного тумана. Под действием силы тяжести масло стекает в поддон, смазывая при этом привод ГРМ.

В высокофорсированных ДВС спорткаров, в тракторах и спецавтомобилях применяется система смазки с сухим картером. Масло постоянно выкачивается дополнительным маслонасосом в масляный бак, из которого подаётся под давлением в систему смазки двигателя. Такое решение помогает предотвратить перемещение масла при резких манёврах, когда маслозаборник окажется выше уровня масла.

Система смазки выполняет функцию вентиляции картера от газов, которые прорываются из цилиндра через поршневые кольца. Соединяясь с парами воды, газы образуют агрессивные кислоты и могут вызвать коррозию. Самым простым способом вентиляции картерных газов является выведение их в атмосферу. Однако, высокие нормы экологии привели к появлению закрытых принудительных систем вентиляции, в которых газы направляются в камеры сгорания через впускной тракт.

Система охлаждения

Температура в камере сгорания в момент воспламенения доходит до 2500℃. Перегрев цилиндров, поршней, головки блока и других деталей приводит к потере мощности, тепловому расширению, выгоранию масла, обгоранию клапанов и заклиниванию двигателя. Для охлаждения конструкции разработана система, которая принудительно отводит тепло потоком воздуха или жидкости.

Воздушная система охлаждения ДВС применяется на мопедах, мотоциклах и газонокосилках. Жидкостная система более сложная и шумная, но обеспечивает равномерный и эффективный отвод тепла. В качестве теплоносителя используются антифризы — жидкости с низкой температурой замерзания.

Для отвода тепла от блока цилиндров и головки предусмотрена рубашка охлаждения — канал для прохождения жидкости. Рубашка соединяется патрубками с радиатором, который забирает тепло от жидкости и выбрасывает его в воздух. За радиатором располагают вентилятор, который увеличивает скорость прохождения воздуха. Вентилятор приводится от ременной передачи коленвала или электропривода. Часто вентилятор оснащают вязкостной или гидравлической муфтой.

Во время работы двигателя охлаждающая жидкость циркулирует от насоса, который приводится от коленвала или электродвигателя. Чтобы система обеспечивала оптимальный температурный режим, в контур охлаждения встраивают термостат с управляемым теплочувствительным элементом. Термостат может быть соединён с электронным блоком управления.

Система подачи топлива

Система подачи топлива в двигателях внутреннего сгорания может быть карбюраторной или инжекторной. Наиболее распространённой является инжекторная система питания с распределённым впрыском. Она состоит из следующих подсистем:

  • подачи и очистки топлива;
  • подачи и очистки воздуха;
  • улавливания и сжигания паров бензина;
  • выпуска и дожигания отработанных газов;
  • электронной части с набором датчиков.

Во время включения ДВС запускается электробензонасос, который закачивает топливо из бака. Бензин проходит через топливный фильтр к рампе с форсунками. На корпусе форсунки находятся электрические контакты, которые регулируют количество топлива, впрыскиваемого в цилиндр.

За количеств воздуха, поступающего в цилиндры ДВС, отвечает дроссельная заслонка. Она работает от механического троска или электропривода.  Регулировку оборотов на холостом ходу осуществляет шаговый электродвигатель или непосредственно компьютер. Для корректной работы системы впрыска электронный блок получает информацию с датчиков массового расхода воздуха, температуры охлаждающей жидкости, положения и частоты вращения коленвала и др.

Помимо распределённого впрыска существуют системы непосредственного впрыска. Однако, они более сложные и дорогие. Специалистам компании Mitsubishi удалось разработать сбалансированную систему, которая улучшила топливную экономичность и повысила мощность мотора. Это объясняется возможностью двигателя работать на обеднённых смесях и повышением степени сжатия до с 10 до 12,5.

Впервые система непосредственного впрыска появилась в моторах 1,8 GDI на Mitsubishi Galant в 1996 году. Сейчас подобные двигатели внутреннего сгорания встречаются в машинах Peugeot-Citroen, Renault, Toyota.

Системы питания дизельных ДВС отличаются от бензиновых. Существуют две схемы подачи дизельного топлива: с разделённой камерой сгорания и непосредственный впрыск. Первый вариант работает мягче и тише, но распространение получил второй вариант с лучшей топливной экономичностью в 20 %.

Дизельное топливо поступает из бака в нагнетательный трубопровод, затем через подкачивающий насос в топливный фильтр. После очистки дизель попадает в топливный насос высокого давления ТНВД, который распределяет топливо по форсункам.

Альтернативой системе с ТНВД является система питания Common Rail от Bosch. Особенность системы — установка аккумуляторного узла со штуцерами для подсоединения форсунок. Топливо в узле находится постоянно под высоким давлением, что позволяет подавать в цилиндр небольшие и точно отмеренные порции.

Выхлопная система

Выхлопная система влияет на мощность ДВС, расход топлива и количество выбросов в атмосферу. Для уменьшения содержания вредных веществ в отработанных газах применяется каталитический нейтрализатор.  Он состоит из восстановительного и двух окислительных катализаторов, которые превращают углеводороды в водяной пар, а окиси углерода — в углекислый газ. Нейтрализатор устанавливают максимально близко к выпускному коллектору.

Нейтрализатор работает эффективнее, если двигатель внутреннего сгорания работает на смеси из воздуха и топлива в соотношении 14,7:1. Количество воздуха в отработанных газах отслеживает датчик лямбда-зонд. Уровень вредных окисей азота снижают с помощью системы рециркуляции путём забора части газов из выпускной системы для подачи его во впуск.

Классификация двигателей

Конструкция ДВС бывает различной. Каждый разработчик мотора пытается внести свои улучшения, повысить мощность и экономичность, снизить выбросы вредных веществ и стоимость агрегата. Давайте посмотрим, по каким критериям классифицируют двигатели внутреннего сгорания.

По рабочему циклу

Рабочий цикл ДВС — это последовательность процессов внутри каждого цилиндра, в результате которой энергия топлива превращается в механическую энергию. Цикл может быть двухтактным или четырехтактным:

  • четырёхтактный мотор работает по «циклу Отто» или Аткинсона и включает в себя такты: впуск, сжатие, рабочий ход и выпуск;
  • в двухтактном ДВС впуск и сжатие происходят одновременно за один такт, а рабочий ход переходит в выпуск на втором такте.

Если сравнивать двигатели внутреннего сгорания одной мощности по рабочему циклу, 2-тактный окажется проще и компактнее. А вот по топливной экономичности и экологическим показателям в выигрыше окажется 4-тактный мотор.

По типу конструкции

По конструкции ДВС делятся на:

  • поршневые, в которых расширяющиеся при сгорании газы приводят в движение поршень, который в свою очередь толкает коленвал;
  • роторные.Растущее давление газов воздействует на ротор, соединённый с корпусом через зубчатую передачу. Роторный мотор не имеет ГРМ. Его функции выполняют впускные и выпускные окна в боковых стенках корпуса;
  • газовые турбины. В этих двигателях внутреннего сгорания газы с высокой скоростью попадают на лопатки силовой турбины, которая соединяется через редуктор с трансмиссией. Для нагнетания воздуха в мотор установлен турбинный компрессор.

Моторы могут быть без наддува, с турбокомпрессором или нагнетателем. Конструкция подбирается под назначение двигателя: будь то стационарная установка или транспорт.

По количеству цилиндров

Одно цилиндровые двигатели работают неравномерно, что не критично для лодочных моторов, мопедов и мотоциклов. Двигатель автомобиля устроен сложнее, поскольку нужна высокая мощность, а значит и большой объём цилиндра. Так, в транспорте малого класса применяются 4-цилиндровые моторы. В грузовые автомобили ставят 6- и 8-цилиндровые ДВС.

В моделях премиум класса встречаются 12-цилиндровые агрегаты. Например, в Audi A8 установлен мотор W12 с 4 клапанами на каждый цилиндр и мощностью 420 л.с.

По принципу создания рабочей смеси

Принцип работы двигателя внутреннего сгорания различается способами смесеобразования:

  • внешнее: в карбюраторных моторах и в агрегатах с впрыском топлива во впускной коллектор;
  • внутреннее: в дизельных двигателях и бензиновых с непосредственным впрыском в камеру сгорания.

По расположению цилиндров

Поршневые двигатели автомобиля различаются компоновочной схемой блока цилиндров и могут представлять собой конструкцию:

  • рядную;
  • V-образную;
  • оппозитную с углом развала между поршнями 180°;
  • VR-образную;
  • W -образную.

В зависимости от компоновки моторы устанавливаются в подкапотное пространство вертикально, горизонтально или под углом к вертикальной плоскости для уменьшения высоты конструкции.

По типу топлива

Работа двигателя внутреннего сгорания происходит за счёт сжигания смеси воздуха с бензином, газа или дизеля. В качестве газового топлива ДВС применяются углеводород, сжиженный газ, смесь пропана и бутана, метан, водород.

По принципу работы ГРМ

Выше мы рассматривали, что ГРМ может быть устроен по схеме OHV, ОНС или DОНС. Выбор компоновки влияет на принцип работы двигателя. Также приводы клапанов различаются способами регулировки тепловых зазоров, которые увеличиваются в результате нагрева конструкции. Настройку зазоров проводят вручную, меняя специальные винты в коромыслах, или устанавливают гидрокомпенсаторы для автоматической регулировки.

Принцип работы двигателя

Изучив устройство, перейдём к рассмотрению принципа работы ДВС. Как работает двигатель внутреннего сгорания разберём на примере одноцилиндрового бензинового мотора.

Принцип работы четырехтактного двигателя

Внутри цилиндра возвратно-поступательно перемещается поршень, соединённый с коленчатым валом через шатун. Положение, в котором остаётся поршень после перемещения вверх, называется верхней мёртвой точкой ВМТ. А положение после перемещения вниз — нижней мёртвой точкой НМТ. Ход поршня между двумя крайними точками называется тактом. Рабочий цикл включает 4 последовательных такта: впуск, сжатие, рабочий ход и выпуск.

Посмотрим поэтапно, как работает 4-тактный двигатель внутреннего сгорания:

  1. В начале такта впуска открывается впускной клапан, а поршень перемещается от ВМТ. В это время в цилиндр всасывается горючая смесь.
  2. После прохода НМТ поршень поднимается вверх, сжимая рабочую смесь и остаточные газы. Все клапана закрыты. Растёт давление и температура сжатых газов. В это время свеча зажигания даёт искру для воспламенения смеси.
  3. Рабочая смесь горит, толкая поршень от ВМТ вниз. Клапана ещё закрыты.
  4. На такте выпуска открывается выпускной клапан, и поршень поднимается вверх, выталкивая отработавшие газы из цилиндра.

В многоцилиндровом блоке одинаковые такты в цилиндрах проходят в разном порядке. Например, если в устройство двигателя входит 4-цилиндровый блок, то очередность работы может выглядеть, как 1-3-2-4. Это означает, что такт впуска пройдёт сначала в 1, потом в 3, затем во 2, а после в 4 цилиндре.

Принцип работы двухтактного двигателя

Кривошипно-шатунный и газораспределительный механизмы двигателя с двумя рабочими тактами отличаются от 4-тактного. Здесь вместо клапанов в определённых местах цилиндра предусмотрены отверстия — продувочные окна. Свечи зажигания установлены в головке цилиндра.

Во время первого такта поршень двигается от НМТ к ВМТ. Через впускное окно под давлением насоса поступает рабочая смесь, заполняя цилиндр. Выпускное окно открыто и выпускает остатки отработавших газов. Перемещаясь, поршень перекрывает окна. Горючая смесь сжимается. Вблизи ВМТ подаётся искра зажигания, после чего начинается второй такт.

Поршень перемещается вниз под действием давления газов. Открываются окна. Сначала выпускное, через которое выходят отработанные газы, а затем впускное, через которое снова подаётся смесь.

Схема двухтактного двигателя имеет большой КПД: поршень за весь рабочий цикл совершает 2 хода, а коленчатый вал делает один полный оборот. Однако, часть топливно-воздушной смеси теряется вместе с отработанными газами, что даёт низкую топливную экономичность. Кроме того, поршневые кольца, постоянно пересекая кромки продувочных окон, быстро изнашиваются.

Преимущества и недостатки ДВС

ДВС — основной силовой агрегат, который устанавливают в автомобили. Несмотря на популярность, устройство двигателя внутреннего сгорания далеко от идеала.

Плюсы ДВС

Минусы ДВС

Автономная работаЗависимость мощности и крутящего момента от частоты вращения коленвала
Топливная экономичностьТоксичные выбросы
Высокая мощностьТрудный запуск при минусовых температурах
Доступная ценаВибрация и шум
Сложная конструкция с большим количеством расходников
Необходимость использования коробки передач
Малый ресурс
Затраты на обслуживание

Заключение

Устройство двигателя внутреннего сгорания постоянно усложняется, в попытках угодить запросам потребителей. Растёт количество модификаций, применяются новые электронные системы и перспективные виды топлива. Но эпоха доминирования ДВС постепенно заканчивается, на смену приходят более экологические чистые, эффективные и бесшумные конструкции. Например, гибридная машина, в которой ДВС работает в паре с электродвигателем. 

Двигатель внутреннего сгорания: устройство, принцип работы

Двигатель внутреннего сгорания – это такой тип мотора, у которого топливо воспламеняется в рабочей камере внутри, а не в дополнительных внешних носителях. ДВС преобразует давление от сгорания топлива в механическую работу.

Из истории

Первый ДВС являлся силовым агрегатом Де Риваза, по имени его создателя Франсуа де Риваза, родом из Франции, который сконструировал его в 1807 году.

В этом двигателе уже было искровое зажигание, он был шатунный, с поршневой системой, то есть, это своего рода прообраз современных моторов.

Спустя 57 лет соотечественник де Риваза Этьен Ленуар изобрел уже двухтактный агрегат. Этот агрегат имел горизонтальное расположение своего единственного цилиндра, наличествовал искровым зажиганием и работал на смеси светильного газа с воздухом. Работы двигателя внутреннего сгорания в то время хватало уже на малогабаритные лодки.

Еще через 3 года конкурентом стал немец Николаус Отто, детищем которого стал уже четырехтактный атмосферный мотор с вертикальным цилиндром. КПД в данном случае увеличился на 11%, в отличие от кпд двигателя внутреннего сгорания Риваза, он стал 15-процентным.

Чуть позже, в 80-х годах этого же столетия, российский конструктор Огнеслав Костович впервые запустил агрегат карбюраторного типа, а инженеры из Германии Даймлер и Майбах усовершенствовали его в облегченный вид, который стал устанавливаться на мото- и автотехнике.

В 1897 году Рудольф Дизель выводит в свет ДВС по типу воспламенения от сжатия, используя нефть в качестве топлива. Этот вид двигателя стал родоначальником дизельных моторов, использующихся по настоящее время.

Виды двигателей

  • Бензиновые моторы карбюраторного типа работают от топлива, смешанного с воздухом. Смесь эта предварительно подготавливается в карбюраторе, далее поступает в цилиндр. В нем смесь сжимается, воспламеняется искрой от свечи зажигания.
  • Инжекторные двигатели отличаются тем, что смесь подается напрямую от форсунок во впускной коллектор. У этого вида имеются две системы впрыска – моновпрыск и распределенный впрыск.
  • В дизельном моторе воспламенение происходит без свечей зажигания. В цилиндре данной системы находится воздух, разогретый до температуры, которая превышает температуру воспламенения топлива. В этот воздух через форсунку подается топливо, и вся смесь воспламеняется по образу факела.
  • Газовый ДВС имеет принцип теплового цикла, топливом может являться как природный газ, так и углеводородный. Газ поступает в редуктор, где давление его стабилизируется в рабочее. Затем попадает в смеситель, а в итоге воспламеняется в цилиндре.
  • Газодизельные ДВС работают по принципу газовых, только в отличие от них, смесь воспламеняется не свечой, а дизельным топливом, впрыск которого происходит также, как и у обычного дизельного мотора.
  • Роторно-поршневые типы двигателей внутреннего сгорания принципиально отличаются от остальных наличием ротора, который вращается в камере, имеющей форму восьмерки. Чтобы понять, что такое ротор, нужно усвоить, что в данном случае ротор выполняет роль поршня, ГРМ и коленчатого вала, то есть специальный механизм ГРМ здесь полностью отсутствует. При одном обороте происходит сразу три рабочих цикла, что сравнимо с работой двигателя с шестью цилиндрами.

Принцип работы

В настоящее время преобладает четырехтактный принцип работы двигателя внутреннего сгорания. Это объясняется тем, что поршень в цилиндре проходит четыре раза – вверх и вниз одинаково по два.

Как работает двигатель внутреннего сгорания:

  1. Первый такт – поршень при движении вниз втягивает топливную смесь. При этом клапан впуска находится в открытом виде.
  2. После достижения поршнем нижнего уровня, он двигается вверх, сжимая горючую смесь, которая, в свою очередь, принимает объем камеры сгорания. Этот этап, включенный в принцип работы двигателя внутреннего сгорания, является вторым по счету. Клапаны, при этом, находятся в закрытом виде, и чем плотнее, тем качественнее происходит сжатие.
  3. В третий такт включается система зажигания, так как здесь происходит воспламенение топливной смеси. В назначении работы двигателя он называется «рабочим», так как при этом начинается процесс привода в работу агрегата. Поршень от взрыва топлива начинает движение вниз. Как и во втором такте, клапаны находятся в закрытом состоянии.
  4. Завершающий такт – четвертый, выпускной, который дает понять, что такое завершение полного цикла. Поршень через выпускной клапан избавляется от отработавших газов цилиндра. Затем все циклически повторяется снова, понять, как работает двигатель внутреннего сгорания, можно представив цикличность работы часов.

Устройство ДВС

Устройство двигателя внутреннего сгорания логично рассматривать с поршня, так как он является основным элементом работы. Он представляет собой своеобразный «стакан» с пустой полостью внутри.

Поршень имеет прорези, в которых фиксируются кольца. Отвечают эти самые кольца за то, чтобы горючая смесь не выходила под поршень (компрессионное), а так же за то, чтобы масло не попадало в пространство над самим поршнем (маслосъемное).

Порядок работы

  • При попадании внутрь цилиндра топливной смеси, поршень проходит четыре вышеописанных такта, и возвратно-поступательное движение поршня приводит в движение вал.
  • Дальнейший порядок работы двигателя следующий: верхняя часть шатуна закреплена на пальце, который находится внутри юбки поршня. Кривошип коленвала фиксирует шатун. Поршень, при движении, вращает коленвал и последний, в свое время, передает крутящий момент системе трансмиссии, оттуда на систему шестерен и далее к ведущим колесам. В устройстве двигателей автомобилей с задним приводом посредником до колес выступает еще и карданный вал.

Конструкция ДВС

Газораспределительный механизм (ГРМ) в устройстве двигателя внутреннего сгорания отвечает за впрыск топлива, а так же за выпуск газов.

Механизм ГРМ состоит из верхнеклапанного и нижнеклапанного, может быть двух видов – ременной или цепной.

Шатун чаще всего изготавливается из стали путем штамповки или ковки. Есть виды шатунов, изготовленные из титана. Шатун передает усилия поршня коленвалу.

Коленвал из чугуна или из стали представляет собой набор коренных и шатунных шеек. Внутри этих шеек есть отверстия, отвечающие за подачу масла под давлением.

Принцип работы кривошипно-шатунного механизма в двигателях внутреннего сгорания заключается в преобразовании движений поршня в движения коленвала.

Головка блока цилиндров (ГБЦ), большинства двигателей внутреннего сгорания, как и блок цилиндров, чаще всего изготавливается из чугуна и реже из различных сплавов алюминия. В ГБЦ находятся камеры сгорания, каналы впуска – выпуска, отверстия свечей. Между блоком цилиндров и ГБЦ находится прокладка, обеспечивающая полную герметичность их соединения.

В систему смазки, которую включает в себя двигатель внутреннего сгорания, входит поддон картера, маслозаборник, маслонасос, масляный фильтр и масляный радиатор. Все это соединено каналами и сложными магистралями. Система смазки отвечает не только за уменьшения трения между деталями мотора, но и за их охлаждение, а также за уменьшение коррозии и износа, увеличивает ресурс ДВС.

Устройство двигателя, в зависимости от его вида, типа, страны изготовителя, может быть чем-либо дополнено или, напротив, могут отсутствовать какие-то элементы ввиду устаревания отдельных моделей, но общее устройство двигателя остается неизменным так же, как и стандартный принцип работы двигателя внутреннего сгорания.

Дополнительные агрегаты

Само собой, двигатель внутреннего сгорания не может существовать как отдельный орган без дополнительных агрегатов, обеспечивающих его работу. Система запуска раскручивает мотор, приводит его в рабочее состояние. Существуют разные принципы работы запуска в зависимости от типа мотора: стартерный, пневматический и мускульный.

Трансмиссия позволяет развить мощность при узком диапазоне оборотов. Система питания обеспечивает ДВС двигатель малым электричеством. В нее входит аккумуляторная батарея и генератор, обеспечивающий постоянный поток электричества и заряд АКБ.

Выхлопная система обеспечивает выпуск газов. В любое устройство двигателя автомобиля входят: выпускной коллектор, который собирает газы в единую трубу, каталитический конвертер, который снижает токсичность газов путем восстановления оксида азота и использует образовавшийся кислород, чтобы дожечь вредные вещества.

Глушитель в этой системе служит для того, чтобы уменьшить выходящий из мотора шум. Двигатели внутреннего сгорания современных автомобилей должны соответствовать установленным законом нормам.

Тип топлива

Следует помнить и об октановом числе топлива, которое используют двигатели внутреннего сгорания разных типов.

Чем выше октановое число топлива – тем больше степень сжатия, что приводит к увеличению коэффициента полезного действия двигателя внутреннего сгорания.

Но существуют и такие двигатели, для которых увеличение октанового числа выше положенного заводом изготовителем, приведет к преждевременной поломке. Это может произойти путем прогорания поршней, разрушения колец, закопченности камер сгорания.

Заводом предусмотрено свое минимальное и максимальное октановое число, которое требует двигатель внутреннего сгорания.

Тюнинг

Любители увеличить мощность работы двигателей внутреннего сгорания зачастую устанавливают (если это не предусмотрено заводом изготовителем) различного рода турбины или компрессоры.

Компрессор на холостых оборотах выдает небольшую мощность, при этом держит стабильные обороты. Турбина же, наоборот, выжимает максимальную мощность при ее включении.

Установка тех или иных агрегатов требует консультации с мастерами, имеющими опыт работы в узком направлении, поскольку ремонт, замена агрегатов, или же дополнение двигателя внутреннего сгорания дополнительными опциями – это отклонение от назначения работы двигателя и уменьшают ресурс ДВС, а неправильные действия могут привести к необратимым последствиям, то есть работа двигателя внутреннего сгорания может быть навсегда окончена.

Устройство и принцип работы двигателя внутреннего сгорания. Motoran.ru

С момента изобретения первого мотора, работающего за счет горения топливной смеси прошло уже больше ста пятидесяти лет. Человечество продвинулось в техническом прогрессе, однако заменить двигатель внутреннего сгорания так и не удаётся. Этот тип силовой установки используется как привод на технике. За счет мотора работают мопеды, автомобили, трактора, и другие самоходные агрегаты.

За время эксплуатации, изобретено и применено к использованию больше десяти видов и типов моторов. Однако, принцип работы не поменялся. В сравнении с паровым агрегатом, который предшествовал установке, двигатель, преобразующий тепловую энергию сгорания в механическую работу, экономичней с большим коэффициентом полезного действия. Эти свойства, залог успеха мотора, который полтора века остаётся востребованным и пользуется популярностью.

Поршневой двигатель внутреннего сгорания в разрезе

Особенность работы

Особенность, делающая мотор не похожим на другие установки, заключается в том, что работа двигателя внутреннего сгорания сопровождается воспламенением топливной смеси непосредственно в камере. Само пространство, где происходит горение, внутри установки, это легло в основу названия классификации моторов. В процессе сложной экзотермической реакции, когда исходная рабочая смесь превращается в продукты сгорания с выделением тепла, выполняется преобразование в механическую работу. Работа за счет теплового расширения, движущая сила, без которой было бы не возможно существование установки. Принцип завязан на давлении, газов в пространстве цилиндра.

Виды моторов

В процессе технического прогресса разрабатывались и испытывались виды агрегатов, в которых горючее сжигалось во внутреннем пространстве, не все доказали свою целесообразность. Выделены распространенные типы двигателей внутреннего сгорания:

Поршневая установка.

Составная часть агрегата выполнена в виде блока с вмонтированными внутрь цилиндрическими полостями. Часть цилиндра служит для сжигания горючего. Посредством поршня, кривошипа и шатуна происходит трансформация энергии горения в энергию вращения вала. В зависимости от того, как готовится горючая смесь, агрегаты делят:

  • Карбюраторные. В таких установках, горючее готовится за счет карбюрации. Атмосферный воздух и топливо транспортируются в механизм в пропорции, после чего смешивается внутри установки. Готовая смесь подается в камеру и сжигается;
  • Инжектор. В установку рабочая смесь подаётся при помощи распылителя. Впрыск осуществляется в коллектор и контролируется электроникой. По коллектору горючее поступает в камеру, где поджигается свечой;
  • Дизель. Принцип коренным образом отличается от предыдущих оппонентов. Процесс протекает за счёт давления. В объём через распылитель впрыскивается порция топлива (солярка), температура воздуха выше температуры горения, горючее воспламеняется.

Поршневой мотор:

  • Роторно-поршневой мотор. Преобразование энергии расширения газов в механическую работу происходит за счет оборотов ротора. Ротор представляет собой деталь специального профиля, на которую давят газы, заставляя совершать вращательные движения. Траектория движения ротора по камере объёмного вытеснения сложная, образована эпитрохоидой. Ротор выполняет функции: поршня, распределителя газов, вала.

Роторно-поршневой мотор:

  • Газотурбинные моторы. Процесс выполняется за счёт преобразования тепла в работу. Непосредственное участие принимают лопатки ротора. Вращение деталей от потока газов передаётся на турбину.

Сегодня, поршневые моторы окончательно вытеснили остальные типы установок и заняли доминирующее положение в автомобильной отрасли. Процентное соотношение роторно-поршневых моторов мало, поскольку производством занимается только Mazda. К тому же выпуск установок ведётся в ограниченном количестве. Газотурбинные агрегаты так же не прижились, поскольку имели ряд недостатков для гражданского использования, основной, это повышенный расход топлива.

Классификация двигателей внутреннего сгорания так же возможна и по потребляемому горючему. Моторы используют: бензин, дизель, газ, комбинированное топливо.

Газотурбинный мотор:

Устройство

Несмотря на разнообразие установок, виды двигателей внутреннего сгорания компонуются из нескольких узлов. Совокупность компонентов размещается в корпусе агрегата. Чёткая и слаженная работа каждой составной части в отдельности, в совокупности представляет мотор единым неделимым организмом.

  • Блок мотора.Блок цилиндров объёдиняет в себе полости цилиндрической формы, внутри которых происходит воспламенение, и сгорание топливовоздушной смеси. Горения приводит к тепловому расширению газов, а цилиндры мотора служат направляющей, не дающей тепловому потоку выйти за пределы нужных рамок;

Блок цилиндров мотора:

  • Механизм кривошипов и шатунов мотора.Совокупность рычагов, посредством которых на коленчатый вал передается сила, заставляющая совершать вращательные движения;

Кривошипно-шатунный механизм мотора:

  • Распределитель газа мотора.Приводит в движение клапана впуска и выпуска, способствует процессу газообмена. Выводит отработку из полости агрегата, наполняет её нужной порцией с целью продолжить работу механизма;

Газораспределительный механизм мотора:

  • Подвод горючего в моторе.Служит для приготовления порции горючего в нужной пропорции с воздухом, передаёт эту порцию в полость посредством распыления или самотёком;

Карбюратор:

  • Система воспламенения в моторе.Механизм поджигает поступившую порцию в полости камеры. Выполняется посредством свечи зажигания или свечи накаливания.

Свеча зажигания:

  • Система вывода отработанных продуктов из мотора.Механизм предназначен для эффективного удаления сгоревших продуктов и излишков тепла.

Приёмная труба:

Запуск силовой установки внутреннего сгорания сопровождается подачей горючего в агрегат, в полости камеры объёмного вытеснения субстанция сгорает. Процесс сопровождается выделением тепла и увеличением объёма, что провоцирует перемещение поршня. Перемещаясь, деталь преобразует механическую работу в кручение коленчатого механизма.

По завершению действие повторяется снова, таким образом, не прерываясь ни на минуту. Процессы, в течении которых совершается работа установки:

  • Такт.Перемещение поршня из крайнего нижнего положения в крайнее верхнее положение и в обратном порядке. Такт считается одним перемещением в одну сторону.
  • Цикл.Суммарное количество тактов, необходимое при совершении работы. Конструктивно, агрегаты в состоянии выполнять цикл за 2 (один оборот вала) или 4 (два оборота) такта.
  • Рабочий процесс.Действие, подразумевающее: впуск смеси, сдавливание, окисление, рабочий ход, удаление. Рабочий процесс характерен как для двухтактных моторов, так и для четырёхтактных двигателей.

Двухтактный мотор

Принцип работы двигателя внутреннего сгорания, использующего в качестве рабочего процесса два такта прост. Отличительная особенность мотора, выполнение двух тактов: сдавливание и рабочий ход. Такты впуска и очистки интегрированы в сдавливание и рабочий ход, поэтому вал проворачивается на 360° за рабочий процесс.

Выполняемый порядок таков:

  1. Сдавливание.Поршень из крайнего нижнего положения уходит в крайнее верхнее положение. Перемещение создает разряжение под поршнем, благодаря чему через продувочные отверстия просачивается горючее. Дальнейшее перемещение провоцирует перекрытие отверстия впуска юбкой поршня и отверстий выпуска, выводящих отработку. Замкнутое пространство способствует росту напряжения. В крайней верхней точке заряд поджигается.
  2. Расширение.Горение создает давление внутри камеры, заставляя посредством расширения газов перемещаться поршень в низ. Происходит поочередное открытие выпускных и продувочных окон. Напряжение в области днища провоцирует поступление горючего в цилиндрическую полость, одновременно очищая её от отработки.

Устройство агрегата на два такта исключает механизм распределяющий газы, что сказывается на качестве процесса обмена. Кроме того, невозможно исключить продувку, а это сильно увеличивает расход топлива, поскольку часть смеси выбрасывается наружу с отработанными газами.

Принцип работы двухтактного мотора:

Четырёхтактный мотор

Моторами, которые выполняют 4 такта работы двигателя внутреннего сгорания за рабочий процесс, оснащена используемая сегодня техника. В этих моторах, ввод и вывод горючего и отработки, выполняются отдельными тактами. Двигатели используют механизм распределения газов, что синхронизирует клапана и вал. Преимущество мотора на четыре такта, подача горючего в очищенную от отработанных газов камеру при закрытых клапанах, что исключает утечку топлива.

Порядок таков:

  • Ввод.Перемещение поршня из крайнего верхнего положения в крайнее нижнее. Происходит разряжение в полости, что открывает клапана впуска. Горючее заходит в камеру объёмного вытеснения.
  • Сдавливание.Перемещение поршня снизу вверх (крайние положения). Отверстия входа и выхода перекрыты, что способствует нарастанию давления в камере объёмного вытеснения.
  • Рабочий ход.Смесь загорается, выделяется тепло, резкое увеличение объёма и рост силы, давящей на поршень. Движение последнего в крайнее нижнее положение.
  • Очистка.Отверстия выпуска открыты, поршень перемещается снизу вверх. Избавление от отработки, очистка полости перед следующей порцией рабочей смеси.

Механический КПД двигателя внутреннего сгорания, с циклом на 4 такта ниже, в сравнении с агрегатом на 2 такта. Это обусловлено сложным устройством и наличием механизма распределения газов, который забирает часть энергии на себя.

Принцип работы четырёхтактного мотора:

Механизм искрообразования

Цель механизма, своевременное искрение в полости цилиндра мотора. Искра помогает воспламениться горючему и совершить агрегату рабочий ход. Механизм искрообразования, составная часть электрического оборудования автомобиля, куда входят:

  • Источник хранения электрической энергии, аккумулятор. Источник, вырабатывающий электрическую энергию, генератор.
  • Механическое или электрическое устройство, подающее электрическое напряжение в сеть автомобиля, его еще называют зажигание.
  • Накопитель и преобразователь электрической энергии, трансформатор, или катушка. Механизм обеспечивает достаточный заряд на свечах мотора.
  • Механизм распределения зажигания, или трамблёр. Устройство предназначено для распределения и своевременной подачи в нужный цилиндр электрического импульса на свечи зажигания.

Система зажигания:

Механизм впуска

Цель механизма, бесперебойное образование в цилиндрах двигателя внутреннего сгорания автомобиля, нужного количества воздуха. Впоследствии, воздух смешивается с топливом, и всё это воспламеняется для рабочего процесса. Устаревшие, карбюраторные моторы для впуска использовали элемент для фильтрации воздуха и воздуховод. Современные установки укомплектованы:

  • Механизм забора воздуха мотором.Деталь выполнена в виде патрубка, определённого профиля. Задача конструкции, подать в цилиндр как можно больше воздуха создав при этом меньшее сопротивление на входе. Всасывание воздушной массы происходит за счет разницы давлений при движении поршня в положение нижней мёртвой точки.
  • Воздушный фильтрующий элемент мотора.Деталь применяется для очистки воздуха, попадающего в мотор. Работа элемента влияет на ресурс и работоспособность силовой установки. Фильтр относится к расходным материалам, и меняется через промежуток времени.
  • Заслонка дросселя мотора.Перепускной механизм, находящийся во впускном коллекторе и регулирующий количество подаваемого в мотор воздуха. Деталь работает за счёт электроники, или механическим путём.
  • Коллектор впуска мотора.Предназначение механизма, распределить количество воздуха равномерно по цилиндрам мотора. Процесс регулируется заслонками впуска и усилителями потока.

Система впуска:

 

Механизм питания

Назначение, бесперебойная подача горючего для последующего смешивания с воздухом и приготовлением гомогенной стехиометрической смеси. Механизм питания включает:

  • Бак мотора.Ёмкость замкнутого типа, в которой хранится топливо (бензин, солярка). Бак оборудован устройством забора горючего (помпа) и устройством, заправляющим ёмкость (заливная горловина).
  • Топливная проводка мотора.Патрубки, шланги, по которым транспортируется или перенаправляется топливо.
  • Механизм, смешивающий горючее в моторе.Изначально силовые установки оборудовались карбюратором, в современных двигателях применяют инжектор. Задача, подать приготовленную смесь внутрь камеры сгорания.
  • Блок управления.Назначение механизма, управлять смесеобразованием и впрыском. В установках, оборудованных инжектором, устройство синхронизирует работу для увеличения эффективности процесса.
  • Помпа мотора.Устройство, создающее напряжение в топливном проводе мотора и способствующее движению горючей жидкости.
  • Элемент фильтрации.Механизм очищает поступающее топливо от примесей и грязи, что увеличивает ресурс силовой установки.

Механизм питания:

Механизм смазки

Назначение механизма, обеспечить детали силовой установки необходимым количеством масла для создания на поверхностях защитной плёнки. Применение жидкости уменьшает воздействие силы трения в точках соприкосновения деталей, удаляет продукты износа, защищает агрегат от коррозии, уплотняет узлы и механизмы. Система смазки состоит:

  • Поддон мотора.Ёмкость, в которой помещается, хранится и охлаждается смазочная жидкость. Для нормального функционирования мотора важно соблюдать требуемый уровень масла, поэтому поддоны укомплектованы щупом, для контроля.
  • Масляная помпа мотора.Механизм, перекачивающий жидкость из поддона двигателя и направляющий масло к точкам, нуждающимся в смазке. Движение масла происходит по магистралям.
  • Масляный фильтрующий элемент.Назначение детали, очистить масло от примесей и продуктов износа, которые циркулируют в моторе. Элемент меняют при каждой замене масла, поскольку работа влияет на износ механизма.
  • Охладитель масла мотора.Назначение механизма, отбор излишков тепла, из системы смазки. Поскольку масло, отводит тепло от перегретых поверхностей, то само масло так же подвержено перегреву. Характерная особенность механизма смазки, обязательное использование, не зависимо, от того, какова модель двигателя внутреннего сгорания применяется. Происходит это по той причине, что на сегодня эффективней этого метода защиты мотора нет.

Система смазки:

Механизм выпуска

Механизм предназначен для отвода отработанных газов и уменьшения шума в процессе работы двигателя. Состоит из следующих компонентов:

  • Коллектор выпуска мотора.Набор патрубков, выполненных из жаропрочного материала, поскольку они первыми соприкасаются с раскалёнными газами, выходящими из камеры сгорания. Коллектор гасит колебания и переправляет газы далее в трубу;
  • Труба мотора.Приёмная труба предназначена для получения газов и транспортировки далее по системе. Материал, из которого выполнена деталь, обладает высокой стойкостью к температурам.
  • Резонатор.Устройство, позволяющее разделить газы и снизить их скорость.
  • Катализатор.Устройство очистки и нейтрализации газов.
  • Глушитель мотора.Резервуар с вмонтированными перегородками, благодаря перенаправлению отработанных газов, позволяет снизить шум.

Система выпуска мотора:

Механизм охлаждения

На маломощных двигателях внутреннего сгорания применяется охлаждение мотора встречным потоком. Современные агрегаты, автомобильные, судовые, грузовые используют жидкостное охлаждение. Задача жидкости, забрать на себя часть избыточного тепла и снизить тепловую нагрузку на узлы и механизмы агрегата. Механизм охлаждения включает:

  • Радиатор мотора.Задача устройства передать избыточное тепло от жидкости окружающей среде. Деталь включает в себя набор алюминиевых трубок с отводящими ребрами;
  • Вентилятор мотора.Задача вентилятора, увеличить эффект от охлаждения за счёт принудительного обдува радиатора и отвода с его поверхности излишков тепла.
  • Помпа мотора.Задача водяной помпы обеспечить циркуляцию охлаждающей жидкости по системе. Циркуляция проходит по малому кругу (пока двигатель не разогрет), после чего, клапан переключает движение жидкости на большой круг.
  • Перепускной клапан мотора.Задача механизма, обеспечить переключение циркуляции жидкости с малого круга обращения на большой круг.

Система охлаждения мотора:

Несмотря на многочисленные попытки уйти от двигателя внутреннего сгорания, в ближайшем обозрим будущем, такой возможности не предвидится. Поэтому силовые установки данного типа еще долго будут радовать нас своей слаженной работой.

Двигатель внутреннего сгорания: виды, устройство, принцип работы

Автомобильные двигатели чрезвычайно разнообразны. Технология, которая применяется при разработке и запуске в производство силовых агрегатов, имеет богатую историю. Требования современности вынуждают производителей ежегодно внедрять в свои проекты доработки и модернизировать имеющиеся технологии.

Двигатель внутреннего сгорания имеет устройство и принцип работы, способный обеспечивать высокую мощность и длительный период эксплуатации — от пользователя требуется только минимально необходимое обслуживание и своевременный мелкий ремонт.

При первом взгляде сложно представить, как работает двигатель: слишком много взаимосвязанных механизмов собранно в одном небольшом пространстве. Но при детальном изучении и анализе связей в этой системе работа двигателя автомобиля оказывается предельно простой и понятной.

В состав двигателя автомобиля входит ряд узлов, имеющих важное значение и обеспечивающих выполнение рабочих функций всей системы.

Блок цилиндров иногда называют корпусом или рамой всей системы. Описание двигателя не обходится без изучения данного элемента конструкции. Именно в этой части мотора обустроена система связанных каналов, предназначеных для смазки и создания необходимой температуры двигателя внутреннего сгорания.

Верхняя часть корпуса поршня имеет каналы для колец. Сами поршневые кольца подразделяются на верхние и нижние. Исходя из выполняемых функций, данные кольца называют компрессионными. Крутящий момент двигателя определяется прочностью и работой рассмотренных элементов.

Нижние кольца поршня играют важную роль для обеспечения ресурса двигателя. Нижние кольца выполняют 2 роли: сохраняют герметичность камеры сгорания и являются уплотнителями, которые предотвращают проникновение масла внутрь камеры сгорания.

Двигатель автомобиля представляет собой систему, в которой осуществляется передача энергии между механизмами с минимальными потерями ее величины на различных этапах. Поэтому кривошипно-шатунный механизм становится одним из важнейших элементов системы. Он обеспечивает передачу возвратно-поступательной энергии от поршня на коленвал.

В целом, принцип работы двигателя достаточно прост и претерпел мало фундаментальных изменений за период существования. В этом просто нет необходимости — некоторые усовершенствования и оптимизации позволяют достигать лучших результатов в работе. Концепция же всей системы неизменна.

Крутящий момент двигателя создается за счет выделяемой при сгорании топлива энергии, которая передается от камеры сгорания к колесам по соединительным элементам. В форсунках топливо передается в камеру сгорания, где происходит его обогащение воздухом. Свеча зажигания создает искру, которая мгновенно воспламеняет образовавшуюся смесь. Так происходит небольшой взрыв, который обеспечивает работы двигателя.

В результате такого действия происходит образования большого объема газов, стимулируя к совершению поступательных движений. Так формируется крутящий момент двигателя. Энергия от поршня передается на коленвал, который передает движение на трансмиссию, а после этого, специальная система шестеренок переносит движение на колеса.

Порядок работы работающего двигателя незатейлив и при исправных связующих элементах гарантирует минимальные потери энергии. Схема работы и строение каждого механизма основаны на преобразовании созданного импульса в практически используемый объем энергии. Ресурс двигателя определяется износостойкостью каждого звена.

Принцип работы двигателя внутреннего сгорания

Двигатель легкового автомобиля выполняется в виде одного из типов систем внутреннего сгорания. Принцип действия двигателя может отличаться по некоторым показателям, что служит основой для разделения моторов на различные типы и модификации.

В качестве определяющих параметров, служащих для разделения силовых агрегатов на категории, служат:

  • рабочий объем,
  • количество цилиндров,
  • мощность системы,
  • скорость вращения узлов,
  • применяемое для работы топливо и др.

Разобраться в том, как работает двигатель, просто. Но по мере изучения всплывают новые показатели, которые вызывают вопросы. Так, часто можно встретить разделение двигателей по числу тактов. Что это такое и как влияет на работу машины?

Устройство двигателя автомобиля основано на четырехтактовой системе. Эти 4 такта равны по времени — за весь цикл поршень дважды поднимается вверх в цилиндре и дважды опускается вниз. Такт берет начало в тот момент, когда поршень находится в верхней или нижней части. Механики называют эти точки ВМТ и НМТ — верхняя и нижняя мертвые точки соответственно.

Такт № 1 — впуск. По мере движения вниз, поршень втягивает в цилиндр наполненную топливом смесь. Работа системы происходит при открытом клапане впуска. Мощность двигателя автомобиля определяется количеством, размерами и временем, которое клапан открыт.

В отдельных моделях работа педали газа увеличивает период нахождения клапана в открытом состоянии, что позволяет увеличить объем топлива, попадающего в систему. Такое устройство двигателей внутреннего сгорания обеспечивает сильное ускорение работы системы.

Такт № 2 — сжатие. На этом этапе поршень начинает свое движение вверх, что приводит к сжатию полученной в цилиндр смеси. Она сживается ровно до объемов камеры сгорания топлива. Эта камера представляет собой пространство между верхней частью поршня и верхом цилиндра в момент нахождения поршня в ВМТ. Клапаны впуска в этот момент работы прочно закрыты.

От плотности закрытия зависит качество сжатия смеси. Если сам поршень, или цилиндр, или кольца поршней потерты и не в надлежащем состоянии, то качество работы и ресурс двигателя значительно снизятся.

Такт № 3 — рабочий ход. Этот этап начинается с ВМТ. Система зажигания гарантирует воспламенение топливной смеси и обеспечивает выделение энергии. Происходит взрыв смеси, при котором высвобождается энергия. И за счет увеличения объема происходит выталкивание поршня вниз. Клапаны при этом закрыты. Технические характеристики двигателя во многом зависят от протекания третьего такта работы мотора.

Такт № 4 — выпуск. Окончание цикла работы. Движение поршня вверх обеспечивает выталкивание газов. Таким образом, осуществляется вентиляция цилиндра. Этот такт важен для обеспечения ресурса двигателя.

Двигатель имеет принцип работы, основанный на распределении энергии от взрывов газов, требует внимания к созданию всех узлов.

Работа двигателя внутреннего сгорания циклична. Вся энергия, которая создается в процессе выполнения работы на всех 4 тактах работы поршней, направляется на организацию работы автомобиля.

Варианты конструкций внутреннего двигателя

Характеристика двигателя зависит от особенностей его конструкции. Внутреннее сгорание — основной тип физического процесса, протекающего в системе мотора на современных автомобилях. За период развития машиностроения успешно реализовано несколько типов ДВС.

Устройство бензинового двигателя разделяет систему на 2 типа — инжекторные двигатели и карбюраторные модели. Также в производстве есть несколько типов карбюраторов и систем впрыска. Основа работы — сжигание бензина.

Характеристика бензинового двигателя выглядит предпочтительнее. Хотя для каждого пользователя есть свои личные приоритеты и преимущества от работы каждого двигателя. Бензиновый двигатель внутреннего сгорания является одним из самых распространенных в современном автомобилестроении. Порядок работы мотора прост и не отличается от классической интерпретации.

Дизельные двигатели основаны на применении подготовленного дизельного топлива. Оно попадает в цилиндры через форсунки. Главное преимущество дизельного двигателя заключается в отсутствии необходимости электричества для сжигания топлива. Оно требуется только для запуска двигателя.

Газовый двигатель применяет для работы сжиженные и сжатые газы, а также некоторые другие типы газов.

Узнать какой ресурс у двигателя на вашем авто лучше всего у производителя. Примерную цифру разработчики озвучивают в сопроводительных документах на транспортное средство. Здесь содержится вся актуальная и точная информация о моторе. В паспорте вы узнаете технические параметры мотора, сколько весит двигатель и всю информацию о движущем агрегате.

Срок службы двигателя зависит от качества обслуживания, интенсивности использования. Заложенный разработчиком срок эксплуатации подразумевает внимательное и бережное отношение с машиной.

Что значит двигатель? Это ключевой элемент в автомобиле, который призван обеспечить его движение. Надежность и точность работы всех узлов системы гарантирует качество движения и безопасность эксплуатации машины.

Характеристики двигателей различаются в широких пределах, несмотря на то. Что принцип внутреннего сгорания топлива остается неизменным. Так разработчикам удается удовлетворять потребности покупателей и реализовывать проекты по улучшению работы автомобилей в целом.

Средний ресурс двигателя внутреннего сгорания составляет несколько сотен тысяч километров. При таких нагрузках от всех составных частей системы требуется прочность и точная совместная работа. Поэтому известная и детально изученная концепция внутреннего сгорания постоянно подвергается доработкам и внедрениям новых подходов.

Ресурс двигателей различается в широком диапазоне. Порядок работы, при этом, общий (с небольшими отклонениями от стандарта). Несколько может различаться вес двигателя и отдельные характеристики.

Современный двигатель внутреннего сгорания имеет классическое устройство и досконально изученный принцип работы. Поэтому механикам не составляет труда решить любую проблему в кратчайшие сроки.

Ремонтные работы усложняются в том случае, если поломка не была устранена сразу. В таких ситуациях порядок работы механизмов может, нарушен окончательно и потребуется серьезная работа по восстановлению. Ресурс двигателя после грамотного ремонта не пострадает.

Как работает двигатель внутреннего сгорания [простым языком]

Что такое цилиндры, турбонаддув, как расшифровывать характеристики двигателя без технической документации

Двигатель внутреннего сгорания работает за счет сжигания бензина и дизельного топлива. Независимо от вида топлива, на котором работает движок, принципы его работы, термины и названия запчастей одинаковы.

Как работает?

Принцип работы двигателя внутреннего сгорания похож на принцип работы насоса: на одном конце в него втягивается воздух и воспламеняется (внутреннее сгорание), затем, через выхлопную трубу вытесняются отработанные (выхлопные) газы. Движок преобразует энергию сгорания в механическую энергию для движения машины.  Детальная работа «сердца машины» разобрана здесь, а в этой статье обсудим из чего состоит мотор машины и как устроен.

Для описания размера и мощности мотора автомобиля пользуются устоявшимися терминами и маркерами. Правда, не разобравшись в каждом, не сообразишь, что они означают.  Если не до конца понимаете, что собой представляет 1,8-литровый, 4-цилиндровый, V-образный двигатель на 20 клапанов и с турбонаддувом эта статья для вас.

Что означает «1,8-литровый»?

Значение «1,8-литровый», «2-х литровый», «3-х литровый» указывает на объем движка. Объем двигателя влияет на объем воздуха, который тот может переработать в течение одного цикла. Эта величина обычно отображается в литрах или в кубических сантиметрах, в зависимости от производителя, но измерение в сантиметрах встречается крайне редко.

Чем больший объем мотора, тем больше он производит энергии. Больше энергии — больше расход топлива. Правда, инженеры автоконцернов пытаются сломать этот стереотип. О том, как им это удается, читайте в статье журнала Zap-Online.ru: «Топ 10 улучшений в конструкции мотора автомобиля».

Характеристика «4-цилиндровый» означает количество цилиндров в движке

Цилиндром называют камеру двигателя цилиндрической формы, в которой смешиваются и сгорают воздух, и топливо. Каждая такая камера считается одним цилиндром. Чем больше цилиндров, тем больше мощность автомобиля и расход топлива. Для экономии топлива, некоторые современные 8-цилиндровые движки разработаны так, чтобы цилиндры оставались закрытыми, когда их работа не принципиально важна. Эта технология применена в последних моделях Mercedes. На светофоре движок будет работать на холостом ходу, отключив 6 цилиндров и оставив в работе 2, чтобы машина не заглохла. Движок будет смешивать топливо и воздух в двух цилиндрах вместо восьми, перекрыв подачу бензина или солярки в ненужные.

Также будет и на загородной трассе, где водитель, включив круиз-контроль, двигается с одной скоростью до 90 км/ч.

V-образный или рядный двигатель означает угол расположения цилиндров друг к другу — это называется конфигурация мотора

У автомобильных моторов бывают разные конфигурации: разные расположения цилиндров по отношению друг к другу. Размещение цилиндров в один ряд создает «линию» двигателя: 4-рядный– 4 цилиндра в линию, или 6-рядный — 6 цилиндров и т.д. —это общая и простая конфигурация классической силовой установки внутреннего сгорания.

Когда цилиндры расположены противоположно друг другу в угловых блоках, они имеют вид латинской буквы «V». Цифра, следующая за этим символом, опять-таки, обозначает количество цилиндров в одном ряду, например: V-4, V-6, V-8 и т.д.

Три блока цилиндров располагают в форме латинской буквы «W». По количеству цилиндров в одном ряду различают движки W-8, W-12 или W-16. От конфигурации цилиндров зависит физический размер движка и то, как ровно он работает. V – образная форма облегчает ход цилиндров, т.к. сила тяжести распределяется под наклоном, а не вертикально, как на обычных автомобильных моторах. Все эти разработки стали результатом тщательнейших испытаний, которые привели к совершенствованию внутреннего КПД (коэффициента полезного действия) мотора и к его экономичности.

Клапаны

Воздух входит в цилиндры и выходит из них через клапаны, работающие по принципу работы клапанов сердца. Раньше цилиндры имели только два клапана: один для воздуха, который поступает в цилиндр, второй — для выхода отработанных газов. Современные двигатели имеют по три, четыре и даже пять клапанов в каждом цилиндре, что более эффективно перемещает воздух по двигателю, увеличивает мощность автомобиля и сокращает расход топлива. Обычно автопроизводители сообщают общее число клапанов в движке. Разделите это число на количество цилиндров и узнаете, сколько клапанов в каждом из них.

Наддув и турбонаддув

Нагнетание воздуха в двигатель под давлением называется «принудительная индукция». Нагнетанием воздуха можно резко увеличить мощность автомобиля. Наддув работает на ременном приводе от мотора автомобиля и разработан, чтобы немедленно давать дополнительную мощность, когда отработанный газ выходит из движка. Турбонаддув приводится в действие выхлопными газами и требует меньших затрат мощности самого двигателя, что делает его более экономным, чем просто наддув. При этом у турбонаддува реакция на дроссель гораздо медленнее. Еще есть электрический турбонаддув, о нем подробно писали здесь, различия с классическим незначительные. Хотя при увеличении скорости наддувом и турбонаддувом сжигается больше топлива — они позволяют маленьким экономным моторам показывать те же результаты, что и их более большие собратья.  

Остались вопросы по терминологии принципам работы мотора автомобиля? Задавайте их в комментариях, будем рады ответить.

 

Ступени двигателя внутреннего сгорания

Чтобы самолет двигался по воздуху, тяга создается какой-то двигательная установка. Начиная с братьев Райт ‘ первый полет, многие самолеты использовали двигатель внутреннего сгорания повернуть пропеллеры для создания тяги. Сегодня большинство самолетов гражданской авиации или частных самолетов с двигателем внутреннего сгорания (IC) , как и двигатель в вашем семейном автомобиле. Обсуждая двигатели, мы должны учитывать как механическая работа машина и термодинамический процессы, которые позволяют машине производить полезные работай.На этой странице мы рассматриваем термодинамику четырехтактный Двигатель IC .

На рисунке показан внутренний вид Двигатель братьев Райт 1903 года в шесть раз, или ступени , во время термодинамический цикл. Двигатель Райта был выбран из-за его простоты, но те же шесть ступеней встречаются во всех четырехтактных двигателях IC . Этапы идут от левого верхнего угла к левому нижнему, затем от от нижнего правого до верхнего правого в непрерывном цикле.Мы обозначаем этапы по тем же причинам, что и станции из газотурбинный двигатель; чтобы лучше организовать наши анализ производительности двигателя. Разработан термодинамический цикл для четырехтактного двигателя внутреннего сгорания. доктором Н. А. Отто, 1876 г. Цикл протекает следующим образом:

  • Цикл начинается, когда впускной клапан открывается и смесь топлива и воздух всасывается в цилиндр из впускной коллектор. Поршень тянется к коленчатому валу, на рисунке слева, при постоянном давлении, потому что клапан открыт.Движение поршень называется ход поршня . Этап 1 — это начало впускной ход.
  • В конце такта впуска впускной клапан закрывается, а поршень вернулся к камере сгорания. Поскольку клапаны закрыты, давление и температура увеличиваются адиабатическое сжатие. Этап 2 — начало ход сжатия.
  • В конце такта сжатия, давление в камере сгорания максимальное.Свеча зажигания в современном двигателе, или контактный переключатель двигателя Райта, а затем генерирует электрическую искру, которая воспламеняет топливно-воздушная смесь. Этап 3 — начало процесс горения.
  • В двигателе внутреннего сгорания горение происходит очень быстро и при постоянном объем в камере сгорания. Высокое давление заставляет поршень вернуться в исходное положение. в сторону коленчатого вала. Этап 4 — начало рабочий ход.
  • В конце рабочего хода высокая температура отклоняется в окружение, как того требует второй закон термодинамики. Этап 5 — начало теплоотдача.
  • После отвода тепла выпускной клапан открывается и остаточный газ вытесняется в окружающую среду, чтобы подготовиться к следующему впускной ход. Этап 6 — начало такт выхлопа.

В конце такта выпуска условия вернулись к Этап 1 условий, и цикл повторяется. Вариация давление и цилиндр объем может отображаться на диаграмма p-V для Цикл Отто.Площадь участка равна полезной работай генерируется одним цилиндром двигателя.



Деятельность:

Экскурсии с гидом

Навигация ..


Руководство для начинающих Домашняя страница

Как работают автомобильные двигатели | HowStuffWorks

Используя всю эту информацию, вы можете начать понимать, что существует множество различных способов улучшить работу движка. Производители автомобилей постоянно играют со всеми перечисленными ниже параметрами, чтобы сделать двигатель более мощным и / или более экономичным.

Увеличение рабочего объема: Чем больше рабочий объем, тем выше мощность, поскольку вы можете сжигать больше газа за каждый оборот двигателя. Вы можете увеличить рабочий объем, увеличив цилиндры или добавив больше цилиндров. Двенадцать цилиндров кажутся практическим пределом.

Увеличьте степень сжатия: Чем выше степень сжатия, тем больше мощность, до определенного предела. Однако чем сильнее вы сжимаете топливно-воздушную смесь, тем больше вероятность самопроизвольного воспламенения (до того, как свеча зажигания воспламенит его).Бензины с более высоким октановым числом предотвращают такое преждевременное сгорание. Вот почему высокопроизводительным автомобилям обычно нужен высокооктановый бензин — их двигатели используют более высокую степень сжатия, чтобы получить большую мощность.

Добавьте больше в каждый цилиндр: Если вы можете втиснуть больше воздуха (и, следовательно, топлива) в цилиндр заданного размера, вы можете получить больше мощности от цилиндра (точно так же, как если бы вы увеличили размер цилиндр) без увеличения количества топлива, необходимого для сгорания.Турбокомпрессоры и нагнетатели сжимают входящий воздух, чтобы эффективно втиснуть больше воздуха в цилиндр.

Охлаждение поступающего воздуха: Сжатие воздуха повышает его температуру. Однако вы хотите, чтобы в цилиндре был как можно более холодный воздух, потому что чем горячее воздух, тем меньше он будет расширяться при сгорании. Поэтому многие автомобили с турбонаддувом и наддувом имеют интеркулер . Интеркулер — это специальный радиатор, через который проходит сжатый воздух, чтобы охладить его перед попаданием в цилиндр.

Позвольте воздуху поступать более легко: Когда поршень опускается на такте впуска, сопротивление воздуха может лишить двигатель мощности. Сопротивление воздуха можно значительно уменьшить, поместив по два впускных клапана в каждый цилиндр. В некоторых новых автомобилях также используются полированные впускные коллекторы для устранения сопротивления воздуха. Большие воздушные фильтры также могут улучшить воздушный поток.

Упростите выход выхлопных газов: Если сопротивление воздуха затрудняет выход выхлопных газов из цилиндра, это лишает двигатель мощности.Сопротивление воздуха можно уменьшить, добавив второй выпускной клапан к каждому цилиндру. Автомобиль с двумя впускными и двумя выпускными клапанами имеет четыре клапана на цилиндр, что улучшает рабочие характеристики. Когда вы слышите объявление об автомобиле, в котором говорится, что автомобиль имеет четыре цилиндра и 16 клапанов, в рекламе говорится, что двигатель имеет четыре клапана на цилиндр.

Если выхлопная труба слишком мала или глушитель имеет большое сопротивление воздуха, это может вызвать противодавление, которое имеет тот же эффект. В высокоэффективных выхлопных системах используются коллекторы, большие выхлопные трубы и глушители со свободным потоком для устранения противодавления в выхлопной системе.Когда вы слышите, что у автомобиля «двойной выхлоп», цель состоит в том, чтобы улучшить поток выхлопных газов, используя две выхлопные трубы вместо одной.

Сделайте все легче: Легкие детали помогают двигателю работать лучше. Каждый раз, когда поршень меняет направление, он расходует энергию, чтобы остановить движение в одном направлении и запустить его в другом. Чем легче поршень, тем меньше энергии он потребляет. Это приводит к повышению топливной экономичности и производительности.

Впрыск топлива: Впрыск топлива позволяет очень точно дозировать топливо в каждый цилиндр.Это улучшает характеристики и экономию топлива.

В следующих разделах мы ответим на некоторые распространенные вопросы, связанные с двигателем, которые задают читатели.

Двигатель внутреннего сгорания, объяснение

Современный двигатель внутреннего сгорания — это чудо техники, чудо механики, для использования которого не нужно много знать о его работе. Если вы не автомобильный фанат, вы, вероятно, не так много думаете о двигателе своей машины.

Конечно, пока что-то под капотом не пойдет не так.Когда дела идут плохо, проблемы и причины могут сбивать с толку многих водителей, для которых такие термины, как «поршень» и «картер» являются непонятной терминологией, а «боксер» напоминает Мухаммеда Али, а не Фердинанда Порше.

Итак, чтобы немного прояснить, что происходит под капотом, мы в Gear Patrol собрали воедино краткое руководство о том, как работает двигатель внутреннего сгорания, и краткое изложение различных типов двигателей внутреннего сгорания, доступных массовому потребителю. автомобили.

Полезные термины

Карбюратор: Устройство, которое смешивает воздух и топливо в надлежащем соотношении для сгорания.Система механическая, а не электронная, как современные двигатели с впрыском топлива или с прямым впрыском; как таковой, он менее эффективен.
Картер: Часть блока двигателя, в которой находится коленчатый вал. Обычно изготавливается из одного или двух кусков алюминия или чугуна.
Коленчатый вал: Компонент двигателя, соединенный с поршнями, который обеспечивает вращательное движение при сгорании.
Цилиндр: Часть блока двигателя, в которой находятся поршень и шатун, а также место, где происходит сгорание.
Прямой впрыск: Метод, с помощью которого бензин нагнетается под давлением и впрыскивается в камеру сгорания цилиндра. В отличие от впрыска топлива, когда газ впрыскивается во впускной канал цилиндра.
Гармонический балансир: Также известный как демпфер, круглое устройство из резины и металла, прикрепленное к передней части коленчатого вала для поглощения вибрации и уменьшения износа коленчатого вала. Он уменьшает гармоники двигателя, возникающие при движении нескольких цилиндров вдоль коленчатого вала.
Поршень: Компонент, расположенный внутри стенок цилиндра и закрепленный поршневыми кольцами.Он движется вверх и вниз во время четырехтактного процесса сгорания, создавая силу при взрыве топлива, а воздух перемещает его.
Rev Matching: Технология в автомобилях с механической коробкой передач, в которой используются датчики педали сцепления, переключения передач и трансмиссии, отправляющие сигналы электронному блоку управления, которые сообщают ему, чтобы он автоматически увеличивал обороты двигателя, если обороты в минуту падают слишком низко. Согласование оборотов также происходит во время переключения на пониженную передачу, повышая обороты, чтобы соответствовать более низкой передаче. Это снижает износ двигателя и упрощает процесс переключения передач.
Вибрация кручения: Вибрация, возникающая из-за вращающихся валов внутри автомобиля.

Двигатель внутреннего сгорания

Как только вы преодолеете защитную пластиковую крышку двигателя, которая есть на большинстве новых автомобилей, становится ясно сердце автомобиля: двигатель, окруженный радиатором, резервуарами для жидкости, воздушной камерой и аккумулятором. Независимо от того, насколько сложными могут быть двигатели — отчасти благодаря таким функциям, как прямой впрыск, согласование оборотов и т. Д. — в большинстве автомобилей используется так называемый четырехтактный цикл сгорания для преобразования топлива в кинетическую энергию.Короче говоря, ваш двигатель 1. втягивает воздух и топливо, 2. сжимает его, 3. зажигает его, толкая поршни вниз и создавая механическую силу, которая перемещает автомобиль, а 4. выталкивает. воздух, чтобы освободить место для следующего цикла цикла.

Хотя реальный процесс значительно сложнее, четыре этапа в основном можно суммировать следующим образом:

Такт впуска: Воздух и топливо втягиваются в цилиндр по мере того, как поршень движется вниз.
Ход сжатия: Воздух, подаваемый в двигатель, и топливо сжимаются, когда цилиндр перемещается в положение хода вверх.
Ход сгорания: Искра от свечи зажигания воспламеняет топливно-воздушную смесь, создавая давление. Расширяющаяся смесь толкает поршень вниз.
Ход выхлопа: Образовавшаяся газовая смесь, образовавшаяся в результате воспламенения и расширения, выбрасывается из цилиндра как отходы.

Мощность двигателя сильно различается в зависимости от количества цилиндров, конфигурации двигателя и таких технологий, как турбонаддув и наддув.Лошадиная сила — это не просто добавление цилиндров или рабочий объем; Фактически, многие из сегодняшних высокопроизводительных четырехцилиндровых двигателей могут легко соответствовать или превосходить мощность своих шестицилиндровых собратьев. В наши дни это еще и технологическая игра; Соедините меньший бензиновый двигатель с электродвигателем, и вы получите рецепт дополнительного ускорения. (Показательный пример: BMW i8, который сочетает в себе 1,5-литровый рядный трехцилиндровый двигатель с турбонаддувом и электродвигатель общей мощностью 357 лошадиных сил и 420 фунт-фут крутящего момента.)

Типы двигателей

Современные двигатели внутреннего сгорания прошли долгий путь с 1876 года, когда уроженец Германии Николаус Отто построил первый четырехтактный двигатель внутреннего сгорания. Сегодня автомобильные инженеры регулярно творят чудеса, извлекая из конструкции максимальную мощность и эффективность. И хотя гибридные и электрические силовые агрегаты находятся на подъеме, на данный момент двигатели внутреннего сгорания — рядные / прямые, V-образные и оппозитные / плоские, работающие на бензине или дизельном топливе, владеют дорогой.

Рядные / прямые двигатели

Примеры рядных / прямолинейных двигателей
Рядные / прямые тройки: BMW i8
Рядные / прямые четверки: Honda Civic Si
Рядные / прямые шестерки: BMW X3 / X4 M

В «рядном» или «прямом» двигателе цилиндры расположены по прямой линии.Подавляющее большинство автомобилей с четырьмя цилиндрами на дорогах — это двигатели с «рядным четырехцилиндровым двигателем», поэтому промышленность обычно называет их «четырехцилиндровыми». Рядные четырехцилиндровые двигатели, как правило, используются в автомобилях эконом-класса, поскольку они менее дороги в сборке и проще в обслуживании — цилиндры выстраиваются вдоль одного коленчатого вала, который приводит в движение поршни.

Рядный / рядный шестицилиндровый двигатель по своей сути сбалансирован из-за того, что отсутствуют вторичные гармоники, генерируемые парами поршней, движущихся под нечетным углом или на разных осях друг от друга, что приводит к гораздо меньшей вибрации, чем у рядных четырехцилиндровых двигателей. -цилиндровые двигатели.В настоящее время только BMW и Mercedes-Benz производят рядные / рядные шестицилиндровые двигатели для своих легковых автомобилей, и они имеют звездную репутацию благодаря плавности хода и сбалансированности.

Двигатели V-типа

Примеры двигателей V-типа
V-4: Porsche 919 Hybrid Le Mans
V-6: Toyota 4Runner
V-8: Dodge Challenger
V- 10: Lamborghini Huracán
V-12: Ferrari 821 Superfast

«V-6» и «V-8» настолько встроены в американский словарь, что некоторые люди могут не знать, что двигатели бывают в каком-либо другом формате.Двигатели V-типа обычно имеют два ряда цилиндров, установленных под углом 90 градусов друг к другу — отсюда V-образная форма — причем каждый ряд имеет половину общего числа цилиндров. В результате V-образные двигатели короче и занимают меньше места, чем прямые, что позволяет автопроизводителям уменьшить размер моторного отсека и увеличить зоны деформации и пространство для пассажиров. Кроме того, их легче установить ниже в автомобиле, что улучшит управляемость.

Если вы считаете себя фанатом автоспорта, вам нравятся двигатели V-типа из-за их частого использования в гоночных автомобилях.Жесткая конструкция и прочные материалы, используемые в двигателях V-типа, позволяют им выдерживать высокие нагрузки. Это также обеспечивает низкие силы крутильной вибрации, обеспечивая плавную подачу при переключении передач и высоких оборотах.

Boxer / Flat Engine

Примеры двигателей Boxer / Flat
Flat-Four: Subaru WRX
Flat-Six: Porsche 911 Carrera

Термин «оппозитный» двигатель происходит от расположения поршней, которые лежать горизонтально друг к другу, как два боксера-соперника, которые касаются перчаток в начале боя.Поршни в оппозитном / плоском двигателе образуют два ряда — по одному с каждой стороны одного коленчатого вала.

Двигатель оппозитного типа не просто устрашает; он обеспечивает более низкий центр тяжести, чем рядные / прямые и V-образные двигатели, что улучшает управляемость. (Есть причина, по которой Porsche использует оппозитный двигатель в своих спортивных автомобилях 911, 718 Boxster и 718 Cayman.) Однако оппозитные двигатели имеют тенденцию быть более громоздкими и иметь более неудобную форму, что затрудняет их размещение в переднем моторном отсеке. . (Subaru — единственный производитель автомобилей, использующий в настоящее время оппозитный двигатель — однако, это удается довольно успешно.)

Дизельные двигатели

Примеры дизельных двигателей
Турбодизель V-6: Ram 1500 EcoDiesel
Турбодизель V-8: Ford F-250 Super Duty

Избавьтесь от старого представления о выбросе дыма хриплых 18-колесных автомобилей; современные дизельные двигатели, работающие на экологически чистом топливе, используемые в легковых автомобилях, гораздо менее тяжелые. Сгорание, происходящее в дизельном двигателе, не требует искры; скорее, высокоэнергетическое дизельное топливо воспламеняется из-за сильного сжатия поршней: воздух сжимается, нагревая его до очень высоких температур; топливо впрыскивается, и смесь воспламеняется.

Хотя дизельные двигатели имеют разное количество цилиндров, они отличаются от своих газовых аналогов тем, что они используют сжатие, а не искру для воспламенения сжатой топливно-воздушной смеси. Но не только то, как происходит сгорание, отличает эти силовые установки от других: в силу того, что для сгорания требуется более высокое давление, дизельный двигатель должен быть построен как резервуар, чтобы противостоять неправильному обращению. В результате они, как правило, служат дольше, чем стандартные двигатели внутреннего сгорания.Дизельные двигатели также более эффективны; они извлекают из своего топлива больше энергии, чем бензин.

И, наконец, у дизельных двигателей есть одно преимущество, которое нравится многим энтузиастам: больший крутящий момент на более низких оборотах двигателя, что заставляет их чувствовать себя более быстрыми вне очереди.

Подробнее Обзоры Gear Patrol


Горячие отзывы и подробные обзоры заслуживающих внимания, актуальных и интересных продуктов. Прочитать историю

Этот контент создается и поддерживается третьей стороной и импортируется на эту страницу, чтобы помочь пользователям указать свои адреса электронной почты.Вы можете найти больше информации об этом и подобном контенте на сайте piano.io.

Двигатель внутреннего сгорания — обзор

Первые разработки

Развитие транспортного биотоплива идет рука об руку с изобретением двигателя внутреннего сгорания. Считается, что его прототип был впервые концептуализирован изобретателем из США Сэмюэлем Мори (1762–1843) в начале 19 века (Коварик, 1998). Однако только в начале 1860-х годов немецкий изобретатель Николаус Август Отто (1832–1891) в сотрудничестве с механиком Майклом Джозефом Зонс разработал первую четырехтактную версию двигателя внутреннего сгорания, широко известную сегодня как искровое зажигание ( или бензиновый) двигатель, или просто двигатель Отто (Коварик, 1998).Другой вариант двигателя внутреннего сгорания, двигатель с воспламенением от сжатия, был разработан несколькими десятилетиями позже немецким изобретателем Рудольфом Дизелем (1858–1913). Этот дизельный двигатель до сих пор носит имя своего изобретателя (Коварик, 1998).

Хотя сегодня двигатели внутреннего сгорания используют продукты на нефтяной основе для питания транспортных средств, изначально они были разработаны для использования биотоплива, такого как этанол. Отто разработал свой двигатель в сотрудничестве с Ойгеном Лангеном (1833–1895 гг.), Немецким изобретателем и предпринимателем, который также владел сахарным заводом.Это заставляет многих полагать, что Отто использовал этанол в качестве основного топлива. Точно так же Дизель тестировал в своем двигателе различные виды топлива, включая этанол и биодизель. Фактически, на одной из первых демонстраций Дизеля на Всемирной выставке в Париже в 1897 году дизельный двигатель работал на арахисовом масле (Biofuels, 2018). Хотя из-за высокого содержания воды и более низкого энергосодержания потребовалось несколько регулировок для работы двигателей внутреннего сгорания на этаноле в течение длительного периода времени, все испытания, проведенные Diesel, продемонстрировали возможность его использования с выходом энергии, идентичным топливо на основе нефти (Коварик, 1998).Это соответствовало большинству других исследований этанола в качестве моторного моторного топлива, которые продемонстрировали либо удовлетворительные, либо даже превосходные характеристики этанола по сравнению с топливом на нефтяной основе (Kovarik, 1998).

Первоначальная конструкция двигателя внутреннего сгорания для биотоплива была обусловлена ​​тем, что это был самый популярный вид топлива, и в то время никто не мог подумать о том, чтобы маркировать биотопливо как «новое» или «альтернативное». Например, этанол в качестве топлива для освещения уже тогда широко использовался во всем мире, в то время как нефть, впервые обнаруженная в Пенсильвании (США) в 1859 году, только появлялась в качестве источника энергии (Коварик, 1998).Коммерческое использование этанола в качестве «обычного» моторного топлива стало жертвой недальновидных политических и экономических решений в Соединенных Штатах. Чтобы собрать деньги на войну, во время Гражданской войны в США (1861–1865 гг.) На этанол был введен налог в размере 2,08 доллара за галлон. Этанол стал слишком дорогим, и его производство резко сократилось, что способствовало развитию нефтяной промышленности США, поскольку последняя извлекала выгоду из того, что не облагалась этим налогом.

Когда в 1906 году налог на этанол был отменен, в Соединенных Штатах были предприняты отдельные попытки коммерциализировать этанол и топливные смеси на основе нефти.Наиболее ярким примером этих усилий стало движение сельскохозяйственных химиков 1930-х годов, целью которого было содействие производству промышленных продуктов из сельскохозяйственного сырья (Hale, 1934). Движение поддержали некоторые промышленники. Например, оригинальный автомобиль Генри Форда (1863–1947) (так называемая Модель Т), построенный в то время, был разработан для работы на этаноле (New York Times, 1925). Однако эти усилия были встречены противодействием нефтяной промышленности, которая лоббировала возрождение этанола и его использования в топливных смесях с нефтью.Из-за сильного лоббирования отрасли законодательные предложения по продвижению этанола в качестве моторного топлива не увенчались успехом. Начало сухого закона в 1919 году также сыграло отрицательную роль. Хотя этанол в этот период все еще можно было использовать в транспортных средствах в смеси с нефтью (Управление энергетической информации, 2017), производство этанола в качестве моторного топлива было остановлено из-за отсутствия спроса. После отмены сухого закона в 1933 году производство этанола в США возродилось, но только для того, чтобы в значительной степени удовлетворить быстро растущий рыночный спрос на давно запрещенные алкогольные напитки.В результате возросла национальная и глобальная зависимость от транспортного топлива на нефтяной основе.

Еще одним важным фактором, способствовавшим снижению популярности этанола в качестве транспортного топлива в Соединенных Штатах, было открытие положительного влияния свинца на характеристики двигателя внутреннего сгорания в 1920-х годах. Чтобы уменьшить детонацию двигателя, этанол можно смешивать с топливом на нефтяной основе; однако два промышленных исследователя, Томас Мидгли (1889–1944) и Чарльз Кеттеринг (1876–1958), обнаружили, как тетраэтилсвинец может быть использован для тех же целей (Коварик, 1998).Исследования воздействия этилированного транспортного топлива на здоровье не обсуждались или прекращались в то время, что в сочетании с производственными ограничениями, введенными запретом, привело к полной замене этанола тетраэтилсвинцом в моторном топливе. Только в 1980–90-х годах негативные последствия использования этилированного транспортного топлива для здоровья были клинически доказаны и, следовательно, получили политическое признание, и тетраэтилсвинец был запрещен в качестве топливной добавки в развитых странах (Loefgren and Hammar, 2000).

В отличие от Соединенных Штатов, (известные в то время) запасы нефти в Европе были ограничены, что вызвало политическую озабоченность по поводу надежности ее поставок в качестве топлива. В результате такие страны, как Франция, Германия и Великобритания, начали продвигать использование этанола на транспорте. Двигатели были разработаны для работы на смеси этанола и топлива на основе нефти, а некоторые двигатели даже были разработаны для работы на чистом этаноле. В Европе этанол получали из картофеля и винограда в качестве основного сырья, тогда как в других странах мира сахарный тростник и патока представляли собой еще одно важное сырье в то время (Коварик, 1998).Использование этанола в качестве транспортного топлива поощрялось политически и с помощью налоговых льгот. В Германии, например, на нефть были введены специальные импортные пошлины, и специализированная организация, Centrale für Spiritus-Verwerthung, отвечала за регулирование национального рынка этанола, в том числе для производства транспортного топлива (Kovarik, 1998). Некоторые ученые считают, что политическая поддержка использования этанола на транспорте в Германии могла продлить Первую мировую войну, поскольку (сэкономленные) запасы нефти использовались в военных целях (Kovarik, 1998).Несмотря на более высокую популярность, чем в США, этанол не стал «обычным» транспортным топливом в Европе в межвоенный период. Частично это было связано с быстрым снижением затрат на производство топлива на основе нефти, но также и потому, что подготовка ко Второй мировой войне перенаправила традиционное этанольное сырье на производство военных материалов (Коварик, 1998).

Во время Второй мировой войны спрос на биотопливо снова увеличился, поскольку ископаемое топливо стало менее распространенным (Biofuels, 2018).Однако этот спрос длился недолго, и послевоенное восстановление мировой экономики явилось основным фактором, уменьшившим роль биотоплива на транспорте. Поскольку нефть была доступна в изобилии и дешево, промышленные и академические исследования технологии биотоплива в то время в значительной степени бездействовали. Именно топливный кризис 1970–80-х годов и более жесткие стандарты выбросов и экономии топлива, введенные в 1990-х годах, вернули к жизни общественный интерес к биотопливу (Biofuels, 2018; Lee and Mo, 2011). С тех пор соответствующая программа исследований неуклонно развивалась, и регулярно публикуются исследования по различным аспектам использования технологии биотоплива на транспорте, включая экономику производства, усовершенствования конструкции двигателей и отношение потребителей (Xu and Boeing, 2013).Сегодня биотопливо представляет собой важную тему в международном политическом и исследовательском дискурсе, учитывая значительную роль, которую они, как ожидается, будут играть в удовлетворении будущего глобального спроса на энергию и в сокращении углеродного следа при производстве энергии.

Как работают автомобильные двигатели?

Бензиновый двигатель

Бензиновый двигатель — это двигатель внутреннего сгорания. Бензиновый двигатель имеет 4 основных такта, включая впуск, сжатие, сгорание и выпуск.Бензин легко смешивается с воздухом, поэтому сгорает при небольшой искре. В результате бензиновый двигатель имеет свечу зажигания для воспламенения топливовоздушной смеси. Вот как работают четыре такта бензинового двигателя.

1. Всасывание

Впускной клапан открывается, и топливно-воздушная смесь всасывается в цилиндр.

2. Сжатие

Впускной клапан закрывается, и топливно-воздушная смесь сжимается поршнем.

3. Сжигание

На этом этапе смесь воздуха и топлива взрывается, и мощность, создаваемая взрывом, заставляет поршень опускаться.

4. Выхлоп

Сгоревшие газы в баллоне отводятся через вентиль.

Дизельный двигатель

Работа дизельного двигателя аналогична работе бензинового двигателя, но они немного отличаются в том, как они воспламеняют топливно-воздушную смесь.В бензиновых двигателях воздух и топливо предварительно смешиваются перед всасыванием в цилиндр. С другой стороны, дизельные двигатели используют топливные форсунки для распыления топлива в цилиндр. Поскольку у дизельных двигателей нет свечей зажигания, они должны иметь более высокую степень сжатия, чтобы смесь воздуха и топлива была достаточно сжатой для воспламенения.

Электрический и гибридный автомобиль

Электромобили не имеют двигателя внутреннего сгорания, но вместо этого у них есть электродвигатель, поскольку они работают на электричестве.Аккумуляторная батарея внутри автомобиля хранит электроэнергию и питает электродвигатель. Аккумулятор заряжается путем подключения к зарядной станции.

Напротив, гибридные автомобили используют как двигатель внутреннего сгорания, так и электродвигатель. Таким образом, две разные системы работают в гармонии, приводя в движение автомобили. Батареи в гибридных автомобилях не нужно подключать, поскольку их заряжает двигатель внутреннего сгорания.

Краткая история двигателя внутреннего сгорания — _ памятует

18 апреля 2019 г.

Можно было ходить пешком, верхом на лошади или путешествовать в экипаже — после изобретения колеса возможности для путешествий по суше стали недоступны человечеству. развивалась 4000 лет.Это не изменилось до появления новаторов и изобретателей в конце 19 века. После того, как железная дорога позволила перевозить большое количество людей и товаров в отличном стиле, именно двигатель внутреннего сгорания коренным образом изменил индивидуальную мобильность. Наша краткая история двигателя внутреннего сгорания связана с рассказом о том, как он был изобретен, как он стал использоваться в первых автомобилях и что было сделано для снижения рисков, связанных с этой инновацией в области высокоскоростной мобильной связи.

Однажды в августе 1888 года жители Вислоха, Брухзаля и Дурлаха имели все основания удивляться: трехколесная повозка, напоминавшая нечто среднее между конной повозкой и велосипедом, катилась по улицам их городов. . За исключением того, что лошадей поблизости не было. И трое пассажиров, женщина и двое молодых людей, похоже, не крутили педали. Транспортное средство, по-видимому, двигалось на собственном ходу, управляемом рукояткой, которую женщина держала.Женщину звали Берта Бенц, подростками — ее сыновья Ричард и Ойген, а транспортным средством — запатентованный Бенц автомобиль № 3.

Карл Бенц, муж Берты, запатентовал первую версию автомобиля еще в 1886 году и представил автомобиль широкой публике в июле того же года во время тест-драйва в Мангейме. «Не может быть никаких сомнений в том, что этот моторизованный велосипед скоро обретет множество друзей», — таково было эйфорическое заявление Neue Badische Landeszeitung 4 июня 1886 года.И все же первоначальные попытки найти покупателей, готовых вложить деньги в этот «бензиновый вагон», не увенчались успехом, а экономический успех оказался недостижимым. Чтобы оживить упавшее настроение мужа и убедить современников в практичности нового транспортного средства, Берта Бенц решила провести тщательный тест-драйв, хотя и не предупредив заранее своего колеблющегося мужа. Утром она и ее сыновья выехали на 104-километровую дорогу из Мангейма в свой родной город Пфорцхайм, куда они благополучно доехали через 12 часов 57 минут.

Эта поездка считается первой поездкой на дальние расстояния в истории автомобилестроения и по сей день отмечается как «Маршрут памяти Берты Бенц». Насколько велико было в то время рекламное воздействие, все еще остается предметом споров среди исследователей. Одно можно сказать наверняка: после этого запатентованный автомобиль Benz начал свой медленный, но верный путь в гору к коммерческому успеху. К 1893 году было продано 69 автомобилей, в основном в США, Англии и особенно во Франции, где благодаря хорошим дорогам первые автолюбители не были так сильно потрясены.На рубеже веков компания Benz & Cie. Уже поставила 1709 экземпляров своих автомобилей. Количество сотрудников превысило 430 человек, что в десять раз больше.

Как работают автомобильные двигатели? — Сейчас по всей стране

Несмотря на относительно простое управление, автомобили на самом деле являются очень сложными машинами. Для работы автомобилям нужно топливо, но что на самом деле с ним делает двигатель?

В общем, стандартный двигатель внутреннего сгорания — который сегодня имеет большинство транспортных средств, работающих на топливе, — использует воздух в сочетании с бензином для выработки энергии.[1] Конечно, все становится сложнее.

Компоненты двигателя

Прежде чем углубляться в то, как работает двигатель автомобиля, он поможет изучить его основную анатомию (что также важно, если вам нужно выполнить какое-либо техническое обслуживание автомобиля). Взгляните на схему двигателя автомобиля ниже, затем просмотрите список основных компонентов двигателя и их функции:

  • Блок двигателя: Блок двигателя, как правило, изготовлен из железа или алюминия, в нем находится большинство деталей, обеспечивающих работу двигателя, включая цилиндры, поршни, коленчатый вал и распределительный вал.[2] (Если вы открываете капот, на блоке двигателя обычно устанавливается генератор переменного тока.)
  • Головка блока цилиндров: В головку блока цилиндров входят компоненты, управляющие потоком всасываемого воздуха и выхлопных газов, такие как клапаны и распределительные валы. [2]
  • Коленчатый вал: Коленчатый вал преобразует движение поршней вверх и вниз в соответствующее круговое движение. Он прикреплен к поршням через шатун [2].
  • Шатуны: Шатун прикрепляет коленчатый вал к поршням.Он вращается на каждом конце, что дает ему возможность перемещаться вместе с обоими компонентами. [3]
  • Поршни: Поршни движутся вверх и вниз внутри цилиндра, передавая энергию коленчатому валу, который, в свою очередь, приводит транспортное средство в движение. Поршневые кольца, расположенные внутри поршней, помогают герметизировать края цилиндра и уменьшают трение во время движения. [2], [3]
  • Свечи зажигания: Свечи зажигания вызывают возгорание, создавая искру, воспламеняющую поступающую смесь воздуха и топлива.[3]
  • Топливные форсунки : Топливные форсунки снабжают двигатель топливом. В процессе он превращает топливо в крошечные, похожие на туман частицы, так что его легче сжечь двигателем. [4]
  • Клапаны: В двигателе есть два типа клапанов: впускные и выпускные. Первый пропускает воздух и газ в двигатель; последний выпускает выхлопные газы. [3]
  • Распределительный вал: Распределительный вал контролирует открытие и закрытие клапанов.Для этого он преобразует круговое движение коленчатого вала в движение вверх и вниз, которое открывает и закрывает клапаны. [2]
  • Ремень или цепь привода ГРМ: Ремень или цепь привода ГРМ проходят между распределительным валом и коленчатым валом, чтобы гарантировать синхронную работу. [2]

Процесс четырехтактного двигателя

Большинство двигателей внутреннего сгорания работают по четырехступенчатому циклу. Эти шаги формально называются ходами по отношению к четырем движениям, которые поршень совершает для завершения каждого цикла.Такты происходят в следующем порядке: впуск, сжатие, сгорание, выпуск.

При каждом такте поршень движется вверх или вниз в цилиндре, перемещаясь вместе с впуском воздуха и топлива или выпуском выхлопных газов. Вот обзор того, как работает этот процесс [1]:

1. Ход всасывания

Во время такта впуска поршень смещается вниз, а впускной клапан открывается, пропуская поток бензина и воздуха. Как только поршень достигает основания цилиндра, клапаны закрываются, герметизируя бензиново-воздушную смесь.(Стоит отметить, что в некоторых современных автомобилях бензин впрыскивается позже во время такта сжатия.)

2. Ход сжатия

В этот момент поршень движется назад вверх, чтобы сжимать газ и воздух к верхней части цилиндра. Выталкивание этой смеси в более ограниченное пространство подготавливает ее к воспламенению в такте сгорания.

3. Ход горения

Также известный как рабочий ход, ход сгорания — это то, что действительно создает мощность вашего двигателя и заставляет автомобиль двигаться.Здесь свеча зажигания загорается, чтобы зажечь газ. Возникающее тепло и расширяющийся газ заставляют поршень опускаться обратно в цилиндр.

4. Ход выпуска

Когда поршень достигает дна цилиндра, выпускной клапан открывается, так что поршень может откачивать отработанные газы из двигателя. Оттуда газы попадают в выхлопную систему и покидают автомобиль. Наконец, выпускной клапан закрывается, и четырехтактный цикл повторяется.

Различные типы автомобильных двигателей

Хотя все двигатели внутреннего сгорания обычно работают одинаково, существует несколько различных типов двигателей.При обсуждении двигателей, которые чаще всего используются в личных транспортных средствах, различия в основном связаны с расположением цилиндров. Например, цилиндры рядных двигателей расположены прямо, в то время как в двигателях V-образного типа цилиндры разделены на две группы и образуют V-образную форму. Другие двигатели будут регулировать определенную механику — например, фазу газораспределения или количество воздуха, добавляемого в четырехтактный цикл — для повышения эффективности или мощности. [1]

Знание того, как работает автомобильный двигатель, может оказаться полезным, когда пришло время покупать следующий автомобиль, особенно если вы получаете его от частного лица, а не от дилера.Узнайте, как купить машину у частного продавца.

[1] «Вот как работает двигатель вашего автомобиля» (17 апреля 2019 г.)

[2] «Car Engine Parts» (по состоянию на 24 сентября 2020 г.)

[3] «Как работают автомобильные двигатели» (по состоянию на 24 сентября 2020 г.)

[4] «Как работают системы впрыска топлива» (по состоянию на 24 сентября 2020 г.)

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *