Первый электродвигатель: История создания электродвигателя

Содержание

История создания электродвигателя

Электромеханика является относительно молодой, по историческим меркам, отраслью науки и техники.

1800, Вольта

Итальянский физик, химик и физиолог, Алессандро Вольта, первый в мире создал химический источник тока.

1820, Эрстед

Датский ученый, физик, Ханс Кристиан Эрстед, обнаружил на опыте отклоняющее действие тока на магнитную стрелку.

1821, Фарадей

Первый электродвигатель Фарадея, 1821 г.

Британский физик-экспериментатор и химик, Майкл Фарадей, опубликовал трактат «О некоторых новых электромагнитных движениях и о теории магнетизма», где описал, как заставить намагниченную стрелку непрерывно вращаться вокруг одного из магнитных полюсов. Эта конструкция впервые реализовала непрерывное преобразование электрической энергии в механическую. Принято считать ее первым электродвигателем в истории.

1822, Ампер

Французский физик, Андре Мари Ампер, открыл магнитный эффект соленоида (катушки с током), откуда следовала идея эквивалентности соленоида постоянному магниту.

Среди прочего Ампер предложил использовать железный сердечник, помещенный внутрь соленоида, для усиления магнитного поля. В 1820 году им был открыт закон Ампера.

1822, Барлоу

Английский физик и математик, Питер Барлоу, изобрел колесо Барлоу, по сути, униполярный электродвигатель.

1825, Араго

Французский физик и астроном, Доминик Франсуа Жан Араго, опубликовал опыт показывающий, что вращающийся медный диск заставляет вращаться магнитную стрелку, подвешенную над ним.

1825, Стёрджен

Британский физик, электротехник и изобретатель, Уильям Стёрджен, в 1825 изготовил первый электромагнит, который представлял из себя согнутый стержень из мягкого железа с обмоткой из толстой медной проволоки.

Вращающееся устройство Йедлика, 1827/28 гг.

1827, Йедлик

Венгерский физик и электротехник, Аньош Иштван Йедлик, изобрел первую в мире динамо-машину (генератор постоянного тока), однако практически не объявлял о своем изобретении до конца 1850-х годов.

1831, Фарадей

Английский физик, Майкл Фарадей, открыл электромагнитную индукцию, то есть явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него. Формулировка закона электромагнитной индукции.

1831, Генри

Американский физик, Джозеф Генри, независимо от Фарадея обнаружил взаимоиндукцию, но Фарадей раньше опубликовал свои результаты.

1832, Пикси

Генератор постоянного тока Пикси

Француз, Ипполит Пикси, сконструировал первый генератор переменного тока. Устройство состояло из двух катушек индуктивности с железным сердечником напротив которых располагался вращающийся магнит подковообразной формы, который приводился в движение вращением рычага. Позже для получения постоянного пульсирующего тока к этому устройству был добавлен коммутатор.

Электродвигатель Стёрджена
Strurgejn’s Annals of Electricity, 1836/37, vol. 1

1833, Стёрджен

Британский физик, Уильям Стёрджен, публично продемонстрировал электродвигатель на постоянном токе в Марте 1833 года в Аделаидской галерее практической науки в Лондоне. Данное изобретение считается первым электродвигателем, который можно было использовать.

1833, Ленц

В начале в электромеханике разграничивали магнито-электрические машины (электрические генераторы) и электро-магнитные машины (электрические двигатели). Российский физик (немецкого происхождения), Эмилий Христианович Ленц, опубликовал статью о законе взаимности магнито-электрических явлений, то есть о взаимозаменяемости электрического двигателя и генератора.

Май 1834, Якоби

Первый вращающийся электродвигатель. Якоби, 1834

Немецкий и русский физик, академик Императорской Санкт-Петербургской Академии Наук, Борис Семенович (Мориц Герман фон) Якоби, изобрел первый в мире электродвигатель с непосредственным вращением рабочего вала. Мощность двигателя составляла около 15 Вт, частота вращения ротора 80-120 оборотов в минуту. До этого изобретения существовали только устройства с возвратно-поступательным или качательным движением якоря.

1836 — 1837, Дэвенпорт

Проводя эксперименты с магнитами, американский кузнец и изобретатель, Томас Дэвенпорт, создает свой первый электромотор в июле 1834 года. В декабре этого же года он впервые продемонстрировал свое изобретение. В 1837 году Дэвенпорт получил первый патент (патент США №132) на электрическую машину.

1839, Якоби

Используя электродвигатель питающийся от 69 гальванических элементов Грове и развивающий 1 лошадиную силу, в 1839 г. Якоби построил лодку способную двигаться с 14 пассажирами по Неве против течения. Это было первое практическое применение электродвигателя.

1837 — 1842, Дэвидсон

Шотландский изобретатель, Роберт Дэвидсон, занимался разработкой электродвигателя с 1837 года. Он сделал несколько приводов для токарного станка и моделей транспортного средства. Дэвидсон изобрел первый электрический локомотив.

1856, Сименс

Немецкий инженер, изобретатель, ученый, промышленник, основатель фирмы Siemens, Вернер фон Сименс изобрел электрический генератор с двойным T-образным якорем. Он первый разместил обмотки в пазах.

1861-1864, Максвелл

Британский физик, математик и механик, Джеймс Клерк Максвелл, обобщил знания об электромагнетизме в четырех фундаментальных уравнениях. Вместе с выражением для силы Лоренца уравнения Максвелла образуют полную систему уравнений классической электродинамики.

1871-1873, Грамм

Бельгийский изобретатель, Зеноб Теофил Грамм, устранил недостаток электрических машин с двух-Т-образным якорем Сименса, который заключался в сильных пульсациях вырабатываемого тока и быстром перегреве. Грамм предложил конструкцию генератора с самовозбуждением, который имел кольцевой якорь.

1885, Феррарис

Итальянский физик и инженер, Галилео Феррарис, изобрел первый двухфазный асинхронный электродвигатель. Однако Феррарис думал, что такой двигатель не сможет иметь КПД выше 50%, поэтому он потерял интерес и не продолжал улучшать асинхронный электродвигатель. Считается, что Феррарис первым объяснил явление вращающегося магнитного поля.

1887, Тесла

Американец сербского происхождения, изобретатель, Никола Тесла, работая независимо от Феррариса, изобрел и запатентовал двухфазный асинхронный электродвигатель с явно выраженными полюсами статора (сосредоточенными обмотками). Тесла ошибачно считал что двухфазная система токов оптимальна с экономической точки зрения среди всех многофазных систем.

1889-1891, Доливо-Добровольский

Русский электротехник польского происхождения, Михаил Осипович Доливо-Добровольский, прочитав доклад Феррариса о вращающемся магнитном поле изобрел ротор в виде «беличьей клетки». Дальнейшая работа в этом направлении привела к разработке трехфазной системы переменных токов и трехфазного асинхронного электродвигателя, получившего широкое применение в промышленности и практически не изменившегося до нашего времени.

Широкое внедрение электромеханических устройств в России начинается после Октябрьской революции 1917 г., когда электрификация всей страны стала основой технической политики нового государства. Можно сказать, что XX век стал веком становления и широкого распространения электромеханики.

Выбор между двухфазной и трехфазной системой

Доливо-Добровольский справедливо считал, что увеличение числа фаз в двигателе улучшает распределение намагничивающей силы по окружности статора. Переход к трехфазной системы от двухфазной уже дает большой выигрыш в этом отношении. Дальнейшее увеличение числа фаз нецелесообразно, так как приводит к значительному увеличению расходов металла на провода.

Для Теслы же казалось очевидным, что чем меньше число фаз, тем меньше требуется проводов, и следовательно тем дешевле устройство электропередачи. При этом двухфазная система передачи требовала применения четырех проводов, что представлялось не желательным в сравнении с двух проводными системами постоянного или однофазного переменного токов. Поэтому Тесла предлагал применять трех проводную линию для двухфазной системы, делая один провод общим. Но это не сильно уменьшало количество затрачиваемого на систему металла, так как общий провод должен был быть большего сечения.

Таким образом трехфазная система токов предложенная Доливо-Добровольским была оптимальной для передачи энергии. Она практически сразу нашла широкое применение в промышленности и до наших дней является основной системой передачи электрической энергии во всем мире.

История создания первого электродвигателя — Экологические автомобили Экологические автомобили

Из истории электромобиля мы знаем, что первый электродвигатель появился раньше двигателя внутреннего сгорания. Как это было… Работы Андре-Мари Ампера, объединившие два разобщенных ранее явления — магнетизм и электричество, вдохновили другого гениального ученого — Майкла Фарадея. Открытия Ампера, Эрстеда и Араго побудили английского физика заняться вопросом о превращении магнитной и электрической энергии в механическую. В 1821 году поставленная задача была решена с помощью специального прибора, в котором было продемонстрировано явление непрерывного электромагнитного вращения.


После удачного эксперимента Фарадей поставил себе новую задачу о превращении магнетизма в электричество. Явление, составляющее основу современной электроэнергетики, было открыто английским ученым лишь через десять лет. Оно было названо электромагнитной индукцией. Спустя 3 года русский физик Эмилий Ленц, обобщив проделанные Фарадеем опыты, сформулировал новый фундаментальный закон, дававший возможность безошибочно определить направление индуцированного тока.

Так называемый принцип обратимости был доказан Ленцем не только теоретически, но и экспериментально: катушка, при ее вращении между полюсами магнита, генерировала электрический ток, обратная реакция заключалась в том, что катушка начинала вращаться, если в нее посылали ток. Исследование английского физика и опыты русского академика сыграли решающую роль в истории электродвигателя и развитии всего электромашиностроения в целом.

Первые попытки создания электродвигателя

Разработки теоретических предпосылок моментально дали толчок для создания первых электродвигателей и генераторов электрического тока. В 1824 году английский физик и математик Питер Барлоу с помощью прибора наглядно продемонстрировал возможность превращения электрической энергии в механическую. Колесо Барлоу представляло собой два горизонтально расположенных П-образных постоянных магнита, под которыми на одной оси размещены два медных зубчатых колеса. Когда через колеса проходил ток, они начинали вращаться в одном направлении.

При этом ученый заметил, что смена полярности контактов и полюсов магнитов изменяла и направлении вращения колес. По сути, Барлоу изобрел первый униполярный электродвигатель. Его опыт дал пищу для размышления другим изобретателям, и уже в 1831 году была представлена еще одна модель электродвигателя. На этот раз Д. Генри сделал попытку использовать для получения качательного движения отталкивание одноименных и притяжения разноименных магнитных полюсов.

Первый электродвигатель с возможностью практического применения

Модели, созданные Барлоу и Генри, представляли собой электрические устройства с качательными или возвратно-поступательными движениями малой удельной мощности, посему не имели практического применения, а о серийном производстве электромобилей даже и речи не могло быть. Первый электродвигатель с непосредственным вращением рабочего вала был создан в 1834 году физиком и академиком Борисом Якоби. Но стоит отметить, что впервые идею о создании более современного электродвигателя с вращательным движением высказал английский ученый В. Риччи еще в 1833 году. Был ли знаком Якоби с работой Риччи, неизвестно.

Двигатель Якоби состоял из двух групп электромагнитов. Попеременное изменение полярностей подвижных электромагнитов происходило путем специального коммутатора. Принцип этого устройства используется в некоторых современных электродвигателях. Мощность двигателя составляла всего 15 Вт, при частоте вращения ротора 80-120 об/мин.

В 1837 году Якоби обратился к Министру народного просвещения графу С. Уварову с предложением о практическом применении своего электродвигателя. О предложении русского академика было доложено Николаю I. Император дал добро на создание «Комиссии для производства опытов относительно приспособления электромагнитной силы к движению машин по способу Якоби».

Первый электродвигатель был далеко не совершенным и, конечно же, очень слабым. Так считал и сам академик, поэтому все средства выделенные комиссии были потрачены на усовершенствование электрической схемы. В 1838 году по Неве шел катер с 12 пассажирами, среди которых были физик Ленц, адмирал Крузенштерн и сам Якоби. Шлюпка крайне удивила гуляющих в тот день по набережной — никто из ее пассажиров не греб веслами.

Заменил гребцов электродвигатель мощностью 0.6 кВт, питаемый от 320 гальванических элементов. Испытания прошли весьма удачно, и сенсационная новость о первом практическом применении электродвигателя разлетелась по всему миру.

Видео: создание простейшего электродвигателя

9.1. Первые электродвигатели — Энергетика: история, настоящее и будущее

9.1. Первые электродвигатели

Нам уже известны способы преобразования механической энергии в электрическую. Но и энергию электрического тока можно преобразовать в энергию движения. Динамомашину, вырабатывающую электрический ток, называют первичной машиной, или генератором, а устройство, принимающее электрический ток и преобразующее его в механическую энергию, называют вторичной электрической машиной, или электродвигателем. При этом преобразование электрической энергии в механическую, как и обратное, происходит не непосредственно, а за счет явления электромагнетизма.

Уже опыты М. Фарадея, проведенные им ещё в 1821 году, можно считать наглядной иллюстрацией принципиальной возможности построения электродвигателя. Исследуя взаимодействие проводников с током и магнитом, он показал, что электрический ток вызывает вращение проводника вокруг магнита или вращение магнита вокруг проводника с током.

В 1833 г. английский ученый У. Риччи создал прибор, в котором магнитное поле образовывалось постоянным неподвижным магнитом. Между его полюсами на вертикальной оси помещался электромагнит. Взаимодействие полюсов постоянного магнита и электромагнита приводило к вращению электромагнита вокруг оси. Направление тока периодически изменялось коммутатором. Вследствие своей примитивной конструкции и незначительной мощности электродвигатель Риччи не мог получить практического применения.

Рис. 9.1. Автоматический прерыватель

 

Первые устройства для преобразования электрической энергии в механическую применялись главным образом для получения переменно-возвратного движения в так называемых электрических прерывателях. Основным элементом их является вибрирующий якорь, притягиваемый электромагнитом под действием электрического тока и возвращаемый назад за счет сжатия пружины при разрыве электрической цепи (рис. 9.1). Такие устройства получили достаточно широкое распространение в виде, например, электрических звонков. Но значительно более интересно было преобразовать электрическую энергию во вращательную. Наиболее просто этого можно достичь, прикрепив к вибрирующему якорю шатун, действующий на кривошип вала и производящий при помощи качаний вращательное движение. Примером такой простейшей конструкции может служить электродвигатель Грюэля (рис. 9.2).

Рис. 9.2. Электрический двигатель Грюэля

 

Увеличивая количество электромагнитов, можно получить значительно более плавное вращательное движение. Две системы электромагнитов первым применил русский ученый Б.С. Якоби, создавший в мае 1834 г. электрический двигатель (рис. 9.3) с вращательным движением якоря, который действовал на принципе притяжения и отталкивания между электромагнитами. В качестве источника питания электромагнитов использовалась батарея гальванических элементов, а для изменения полярности подвижных электромагнитов – коммутатор.

В ноябре 1834 года Якоби представил Парижской академии наук сообщение об этом устройстве. Известие об изобретении Якоби очень быстро распространилось. Сам автор широко демонстрировал свой электродвигатель и подвергал его опробованию для приведения во вращение различных механизмов. Он исходил из законов и представлений Ампера и Фарадея, дополненных собственными исследованиями, проведенными совместно с академиком Э. Ленцем в конце 1830-х годов. В процессе совершенствования двигателя Якоби объединил несколько электродвигателей в один агрегат, расположив неподвижные и вращающиеся магниты в одной плоскости, то есть пошел по пути механического соединения определенного числа элементарных машин. При этом увеличились размеры электродвигателя в вертикальном направлении, а это было удобно для создания опытной судовой установки. В 1838 году Якоби построил первый магнитоэлектрический двигатель, приводящий в движение на реке Неве против течения лодку с четырнадцатью человеками на борту.

Рис. 9.3. Электрический двигатель Якоби

Одна из петербургских газет 1839 года писала об испытаниях «электрического бота»: «… катер с двенадцатью человеками, движимый электромеханической силой (в 3/4 лошади), ходил несколько часов противу течения, при сильном противном ветре… Что бы ни было впоследствии, важный шаг уже сделан, и России принадлежит слава первого применения теории к практике». Испытания электродвигателя Якоби показали возможность практического применения электродвигателей, но в то же время обнаружили, что при питании их током от гальванических батарей (на боте Якоби вначале было установлено 320 гальванических элементов) механическая энергия получается очень дорогой. Произведенные опыты и теоретическое исследование привели Б.С. Якоби к очень важному выводу: применение электродвигателей находится в прямой зависимости от удешевления электроэнергии, то есть от создания генератора, более экономичного, чем гальванические батареи.

Все электрические двигатели постоянного тока, созданные позднее, были по существу лишь усовершенствованием электродвигателя Якоби.

В конце XIX – начале XX века изобретатели во многих странах пытались совершенствовать систему получения, передачи, превращения электричества в механическую работу и приспособить его для перемещения и поднятия грузов, освещения улиц и прочее. В Европе и Америке наибольшее распространение получили электродвигатели малой и средней мощности, используемые в основном для городского электротранспорта и легкой (например швейной и текстильной) промышленности.

 

Рис. 9.4. Отделение электродвигателей постоянного тока на заводе Шуккерта в Нюрнберге

 

Рис. 9.5. Электродвигатель постоянного тока производства «Немецких электрических заводов» в Ахене

Рис. 9.6. Мощный электродвигатель постоянного тока швейцарской фирмы «Эрликон»

На рис. 9.4 представлен общий вид цеха по производству электродвигателей постоянного тока на заводе Шуккерта в Нюрнберге. Такие электродвигатели в конце XIX века с развитием центральных электрических станций массово устанавливались на крупных заводах Европы и полностью вытеснили дорогой и ненадежный ременной или цепной привод. Лидером по производству электродвигателей постоянного тока в Германии были «Немецкие электрические заводы» в Ахене. Благодаря своей надежности и компактности эти электродвигатели получили большое распространение (рис. 9.5).

В сравнении с другими типами двигателей электродвигатель обладал столь важными преимуществами, что очень быстро стал устанавливаться везде, где только была возможна доставка электрического тока. Прежде всего он отличался легкостью установки, простотой ухода и относительной компактностью в сравнении с другими типами двигателей (например газомоторами) аналогичной мощности. Электродвигатели малой и средней мощности не требовали мощных фундаментов и могли устанавливаться прямо на полу или даже на стенных кронштейнах. Кроме того, при квалифицированном обслуживании эксплуатация их была практически безопасна.

В конце XIX века в Швейцарии серия электродвигателей средней и большой мощности производилась на фирме «Эрликон». При этом на электродвигателях мощностью до 100 л. с. применялся якорь Грамма, а на мощных – до 250 л.с. и более – многополюсный якорь (рис. 9.6). В Америке большое распространение получили электродвигатели небольшой мощности, например двигатели конструкции Франка Спрага (рис. 9.7).

Необходимо отметить, что в начале ХХ века история практического использования электрических двигателей не достигла еще и 15-летнего возраста, но темпы и массовость их применения были очень значительными. Этому способствовали интенсивное строительство центральных городских электрических станций и широко разветвленных распределительных электрических сетей, а также несомненные преимущества электродвигателей в сравнении с паровыми машинами и газомоторами равной мощности. Что касается ухода, то он ограничивался только смазкой подшипников и правильной установкой щеток. Кроме того, с развитием массового применения электрических двигателей центральные городские электрические станции, работавшие в основном в темное время суток для целей электрического освещения, получили возможность значительно более рационально использовать мощности своих генераторов, производя электрическую энергию в дневное время для питания многочисленных электродвигателей. Например, Берлинская центральная электростанция, первоначально созданная в 1884 г. для обеспечения электрического освещения, к концу 1892 г. снабжала электрической энергией 156 электродвигателей постоянного тока общей мощностью в 525 л.с. В следующем году станция снабжала электроэнергией уже 311 электродвигателей мощностью в 1070 л.с., а к 1898 г. общая мощность двигательной нагрузки составила уже 15400 л.с., или 11400 кВт, к которым нужно прибавить еще 2100 кВт двигательной нагрузки электрических железных дорог.

 

Рис. 9.7. Американский электродвигатель средней мощности конструкции Спрага

 

 Рис. 9.8. Типографский печатный станок с электрическим приводом

 

Рис. 9.9. Электродвигатели в машинном зале завода

 

 Рис. 9.10. Сушильная центрифуга с электрическим приводом

Рис. 9.11. Электрический центробежный насос с двигателем Кертинга

 

Рис. 9.12. Токарный станок с электроприводом

Приход ХХ века ознаменовался массовым использованием электропривода постоянного тока в различных отраслях промышленности. На рис. 9.8 показан типографский печатный станок с электрическим приводом, а на рис. 9.9 – общий вид машинного зала завода с установленными электрическими двигателями.

Одно из несомненных преимуществ использования электрических двигателей заключается в возможности повышения коэффициента полезного действия механизма при отказе от неэффективных и ненадежных ременных и цепных передач и переходе на прямой электрический привод.

Рис. 9.13. Электрический ворот

Рис. 9.14. Электрический лифт

Особенно значительным это преимущество становится при необходимости использования высокооборотного привода. На рис. 9.10 показана сушильная центрифуга с электрическим приводом производства «Немецких заводов» в Ахене, а на рис. 9.11 – электрический центробежный насос с двигателем Кертинга. Такая конструкция нашла широкое применение при разработке промышленных и пожарных помп, т.е. систем для перекачивания воды.

В промышленных и жилых зданиях широко использовались вентиляторы с электрическим приводом. Применение электроприводу нашлось и при производстве различных станков, машин и подъемных механизмов. На рис. 9.12 показан токарный станок с электроприводом, а на рис. 9.13 – электрический ворот, использовавшийся в различных подъемных приспособлениях, например в лифтах (рис. 9.14), или при устройстве транспортировочных механизмов (рис. 9.15). На рис. 9.16 показан общий вид портового крана грузоподъемностью 150 тонн с электроприводом.

Рис. 9.15. Загрузка корабля с помощью электрического транспортера

Рис. 9.16. Портовый кран грузоподъемностью 150 тонн с электроприводом

Из области домашнего применения можно отметить электроприводные швейную, сверлильную и даже зубоврачебную машины.

Кто первый изобрел электродвигатель


История создания первого электродвигателя

Из истории электромобиля мы знаем, что первый электродвигатель появился раньше двигателя внутреннего сгорания. Как это было… Работы Андре-Мари Ампера, объединившие два разобщенных ранее явления — магнетизм и электричество, вдохновили другого гениального ученого — Майкла Фарадея. Открытия Ампера, Эрстеда и Араго побудили английского физика заняться вопросом о превращении магнитной и электрической энергии в механическую. В 1821 году поставленная задача была решена с помощью специального прибора, в котором было продемонстрировано явление непрерывного электромагнитного вращения. После удачного эксперимента Фарадей поставил себе новую задачу о превращении магнетизма в электричество. Явление, составляющее основу современной электроэнергетики, было открыто английским ученым лишь через десять лет. Оно было названо электромагнитной индукцией. Спустя 3 года русский физик Эмилий Ленц, обобщив проделанные Фарадеем опыты, сформулировал новый фундаментальный закон, дававший возможность безошибочно определить направление индуцированного тока.

Так называемый принцип обратимости был доказан Ленцем не только теоретически, но и экспериментально: катушка, при ее вращении между полюсами магнита, генерировала электрический ток, обратная реакция заключалась в том, что катушка начинала вращаться, если в нее посылали ток. Исследование английского физика и опыты русского академика сыграли решающую роль в истории электродвигателя и развитии всего электромашиностроения в целом.

Первые попытки создания электродвигателя

Разработки теоретических предпосылок моментально дали толчок для создания первых электродвигателей и генераторов электрического тока. В 1824 году английский физик и математик Питер Барлоу с помощью прибора наглядно продемонстрировал возможность превращения электрической энергии в механическую. Колесо Барлоу представляло собой два горизонтально расположенных П-образных постоянных магнита, под которыми на одной оси размещены два медных зубчатых колеса. Когда через колеса проходил ток, они начинали вращаться в одном направлении.

При этом ученый заметил, что смена полярности контактов и полюсов магнитов изменяла и направлении вращения колес. По сути, Барлоу изобрел первый униполярный электродвигатель. Его опыт дал пищу для размышления другим изобретателям, и уже в 1831 году была представлена еще одна модель электродвигателя. На этот раз Д. Генри сделал попытку использовать для получения качательного движения отталкивание одноименных и притяжения разноименных магнитных полюсов.

Первый электродвигатель с возможностью практического применения

Модели, созданные Барлоу и Генри, представляли собой электрические устройства с качательными или возвратно-поступательными движениями малой удельной мощности, посему не имели практического применения, а о серийном производстве электромобилей даже и речи не могло быть. Первый электродвигатель с непосредственным вращением рабочего вала был создан в 1834 году физиком и академиком Борисом Якоби. Но стоит отметить, что впервые идею о создании более современного электродвигателя с вращательным движением высказал английский ученый В. Риччи еще в 1833 году. Был ли знаком Якоби с работой Риччи, неизвестно.

Двигатель Якоби состоял из двух групп электромагнитов. Попеременное изменение полярностей подвижных электромагнитов происходило путем специального коммутатора. Принцип этого устройства используется в некоторых современных электродвигателях. Мощность двигателя составляла всего 15 Вт, при частоте вращения ротора 80-120 об/мин.

В 1837 году Якоби обратился к Министру народного просвещения графу С. Уварову с предложением о практическом применении своего электродвигателя. О предложении русского академика было доложено Николаю I. Император дал добро на создание «Комиссии для производства опытов относительно приспособления электромагнитной силы к движению машин по способу Якоби».

Первый электродвигатель был далеко не совершенным и, конечно же, очень слабым. Так считал и сам академик, поэтому все средства выделенные комиссии были потрачены на усовершенствование электрической схемы. В 1838 году по Неве шел катер с 12 пассажирами, среди которых были физик Ленц, адмирал Крузенштерн и сам Якоби. Шлюпка крайне удивила гуляющих в тот день по набережной — никто из ее пассажиров не греб веслами.

Заменил гребцов электродвигатель мощностью 0. 6 кВт, питаемый от 320 гальванических элементов. Испытания прошли весьма удачно, и сенсационная новость о первом практическом применении электродвигателя разлетелась по всему миру.

Видео: создание простейшего электродвигателя

Система Стоп-Старт

Пробка — головная боль любого мегаполиса. Плюс ко всему — это источник загрязнения окружающей среды и дырка в кармане автолюбителя….

подробнее

Электродвигатель

Давайте подвесим между полюсами неподвижного магнита проволочную петлю, через которую пропустим электрический ток. Мы увидим, что петля начнет отклоняться в сторону, чтобы выйти из магнитного поля. Именно это явление положено в основу всех электродвигателей. Главными частями электродвигателя являются: ротор и статор. Статор является неподвижной частью электродвигателя, служит магнитопроводом, в котором образуется магнитное поле. Подвижной вращающейся частью электродвигателя является ротор, на нем помещены витки провода, по которому пропускают электрический ток. Двигатели, работающие от сети постоянного тока, являются двигателями постоянного тока. Двигатели, работающие от источника переменного тока, называются двигателями переменного тока. В результате проведенных экспериментов выдающийся английский физик Майкл Фарадей доказал, что при перемещении проводника в магнитном поле, можно создавать электрический ток индукционным методом. Так, в 1831 году было открыто явление электромагнитной индукции. Сразу же ученые и изобретатели нескольких стран взялись за разработку электродвигателя, пригодного для практики.

Первыми были созданы электродвигатели постоянного тока, так как источники постоянного тока (батарея и гальванические элементы) были изобретены раньше. В 1834 году русским ученым Б. С. Якоби был создан первый электродвигатель, который состоял из двух частей — неподвижной и вращающейся. Благодаря изобретению был открыт принцип непрерывного вращательного движения. Мощность электродвигателя равнялась 15 Вт, источником тока были гальванические батареи. Однако практического применения электродвигатель не имел. В 1838 году Б. С. Якоби создал первый электродвигатель постоянного тока пригодный для практических целей. Мощность была увеличена за счет соединенных на одной плоскости 40 двигателей. Двигатель использовали для привода гребного вала лодки. 13 сентября 1838 года двигатель был установлен на лодке, в которой находилось 12 пассажиров. Испытания прошли весьма успешно. За 7 часов лодка проделала путь в 7 км со скоростью 2 км/ч. В сентябре 1839 года на катер с 14 пассажирами был установлен двигатель усовершенствованной конструкции, большей мощности, скорость которого составляла 4 км/ч. Двигатель Якоби стал самым надежным и мощным из всех конструкций, созданных на тот момент. К 70-м годам XIX столетия электродвигатель был полностью усовершенствован и сохранился в таком виде до наших дней.

Со временем в электродвигателях стали использовать электромагниты вместо постоянных магнитов, что позволило существенно увеличить мощность. Принцип работы электродвигателя постоянного тока заключается в следующем: к обмотке электромагнита подводят электрический ток, в результате между его полюсами возникает магнитное поле. Виток провода размещен на роторе. Когда к витку провода через коллектор подводится электрический ток, он начинает вращаться вместе с ротором. Особенностью таких электродвигателей является возможность регулировать частоту вращения ротора. Микроэлектродвигатели используют в электробритвах, системах автоматического регулирования, кофемолках и других приборах быта. Мощные электродвигатели используют для привода подъемных кранов, прокатных станков, на электрофицированном транспорте.

В 1889 году замечательный русский инженер-электротехник М. О. Доливо-Добровольский создал систему трехфазного тока и создал первый трехфазный двигатель переменного тока. Основными частями двигателя переменного тока также являются ротор и статор. В отличие от двигателей постоянного тока они не имеют коллектора, ток на обмотки ротора поступает через контактные кольца. В некоторых двигателях отсутствуют выводы на обмотках для подключения к току, а замкнуты между собой. Внешне ротор был похож на колесо в беличьей клетке и получил название беличьего колеса. Конструкция такого ротора дала возможность уменьшить магнитное и электрическое сопротивление и повысить эффективность работы, без принципиальных изменений она сохранилась до сегодняшних дней. Двигатели переменного тока существуют синхронные и асинхронные. У синхронного двигателя частота вращения магнитного поля, производимая обмотками статора, синхронна с частотой вращения ротора. В асинхронных двигателях частота вращения ротора отстает от частоты вращения магнитного поля статора. Наиболее просты и надежны асинхронные двигатели. Они получили широкое распространение.

Электродвигатель. История создания.

Величайшим техническим достижением конца XIX века стало изобретение промышленного электродвигателя. Этот компактный, экономичный, удобный мотор вскоре сделался одним из важнейших элементов производства, вытеснив другие виды двигателей отовсюду, куда только можно было доставить электрический ток. Электрические двигатели появились еще во второй четверти XIX столетия, но прошло несколько десятилетий, прежде чем создались благоприятные условия для их повсеместного внедрения в производство.

Один из первых совершенных электродвигателей, работавших от батареи постоянного тока, создал в 1834 году русский электротехник Якоби. Этот двигатель имел две группы П-образных электромагнитов, из которых одна группа располагалась на неподвижной раме. Их полюсные наконечники были устроены асимметрично — удлинены в одну сторону. Вал двигателя представлял собой два параллельных латунных диска, соединенных четырьмя электромагнитами, поставленными на равном расстоянии один от другого. При вращении вала подвижные электромагниты проходили против полюсов неподвижных. У последних полярности шли попеременно: то положительная, то отрицательная. К электромагнитам вращающегося диска отходили проводники, укрепленные на валу машины. На вал двигателя был насажен коммутатор, который менял направление тока в движущихся электромагнитах в течение каждой четверти оборота вала. Обмотки всех электромагнитов неподвижной рамы были соединены последовательно и обтекались током батареи в одном направлении. Обмотки электромагнитов вращающегося диска были также соединены последовательно, но направление тока в них изменялось восемь раз за один оборот вала. Следовательно, полярность этих электромагнитов также менялась восемь раз за один оборот вала, и эти электромагниты поочередно притягивались и отталкивались электромагнитами неподвижной рамы.

Двигатель Якоби для своего времени был самым совершенным электротехническим устройством. В том же 1834 году подробное сообщение о принципах его работы было представлено Парижской Академии наук.

В 1838 году Якоби усовершенствовал свой электромотор и, установив его на гребном боте, с десятью спутниками совершил небольшое плавание по Неве со скоростью 4,5 км/ч. Источником тока ему служила мощная батарея гальванических элементов.

До тех пор, пока не был изобретен и внедрен в производство совершенный электрический генератор, электродвигатели не могли найти широкого применения, так как питать их от батареи было слишком дорого и невыгодно. Кроме того, в силу разных причин двигатели постоянного тока получили лишь ограниченное применение. Гораздо более важную роль играют в производстве электромоторы, работающие на переменном токе, к рассмотрению которых мы теперь переходим.

Для переменного тока необходима особая конструкция двигателя. Изобретатели не сразу смогли найти ее. Прежде всего была разработана модель так называемого синхронного двигателя переменного тока. Один из первых таких двигателей построил в 1841 году Чарльз Уитстон.

Его система обладала большими недостатками: кроме того, что синхронный двигатель требовал для своего запуска дополнительный разгонный двигатель, он имел и другой изъян — при перегрузке синхронность его хода нарушалась, магниты начинали тормозить вращение вала, и двигатель останавливался. Поэтому синхронные двигатели не получили широкого распространения. Подлинная революция в электротехнике произошла только после изобретения асинхронного двигателя. Подобное устройство в 1879 году изобрел Бейли.

 В 1888 г. итальянский физик Феррарис и югославский изобретатель Тесла (работавший в США) открыли явление вращающегося электромагнитного поля.

Изобретение Теслы знаменовало собой начало новой эры в электротехнике и вызвало к себе живейший интерес во всем мире. Уже в июне 1888 году фирма «Вестингауз Электрик Компани» купила у него за миллион долларов все патенты на двухфазную систему и предложила организовать на своих заводах выпуск асинхронных двигателей.

Вскоре индукционный двигатель Теслы был значительно переработан и усовершенствован русским электротехником Доливо-Добровольским. Первым важным новшеством, которое внес Доливо-Добровольский в асинхронный двигатель, было создание ротора с обмоткой «в виде беличьей клетки». Во всех ранних моделях асинхронных двигателей роторы были очень неудачными, и поэтому КПД этих моторов был ниже, чем у других типов электрических двигателей. Большое значение играл здесь материал, из которого изготавливался ротор, поскольку тот должен был удовлетворять сразу двум условиям: иметь малое электрическое сопротивление и иметь хорошую магнитную проницаемость. С точки зрения уменьшения электрического сопротивления лучшим конструктивным решением мог бы стать ротор в виде медного цилиндра. Но медь плохой проводник для магнитного потока статора и, КПД такого двигателя был очень низким. Если медный цилиндр заменяли стальным, то магнитный поток резко возрастал, но, поскольку электрическая проводимость стали меньше, чем меди, КПД опять был невысоким.

Доливо-Добровольский нашел выход из этого противоречия: он выполнил ротор в виде стального цилиндра, а в просверленные по периферии последнего каналы стал закладывать медные стержни. На лобовых частях ротора эти стержни электрически соединялись друг с другом. Решение Доливо-Добровольского оказалось наилучшим. После того как он получил в 1889 году патент на свой ротор, его устройство принципиально не менялось вплоть до настоящего времени.

Вслед за тем Доливо-Добровольский стал думать над конструкцией статора — неподвижной части двигателя. Доливо-Добровольский видел перед собой две задачи: повысить КПД двигателя и добиться большей равномерности его работы.

Свой первый трехфазный асинхронный двигатель Доливо-Добровольский построил зимой 1889 года. В качестве статора в нем был использован кольцевой якорь машины постоянного тока с 24-мя полузакрытыми пазами.

Учитывая ошибки Теслы, Доливо-Добровольский рассредоточил обмотки в пазах по всей окружности статора, что делало более благоприятным распределение магнитного поля. Ротор был цилиндрическим с обмотками «в виде беличьей клетки». Воздушный зазор между ротором и статором составлял всего 1 мм, что по тем временам было смелым решением, так как обычно зазор делали больше. Стержни «беличьей клетки» не имели никакой изоляции. В качестве источника трехфазного тока был использован стандартный генератор постоянного тока, перестроенный в трехфазный генератор так, как это было описано выше.

Впечатление, произведенное первым запуском двигателя на руководство АЭГ, было огромным. Для многих стало очевидно, что долгий тернистый путь создания промышленного электродвигателя наконец пройден до конца. По своим техническим показателям двигатели Доливо-Добровольского превосходили все существовавшие тогда электромоторы — обладая очень высоким КПД, они безотказно работали в любых режимах, были надежны и просты в обращении. Поэтому они сразу получили широкое распространение по всему миру. С этого времени началось быстрое внедрение электродвигателей во все сферы производства и повсеместная электрификация промышленности.

История появления электродвигателя — Двигатели автомобилей

В 21-ом веке электродвигатели имеют особое место в нашей жизни. Они находятся почти во всех технических агрегатах, которые мы видим каждый день, будь то пылесос, стиральная машина, система вентиляции. Это безусловно очень важное достижения прогресса, которое появилось в середине 19-го века, и было предвестником индустриальной эры.

Электродвигатель был создан в 1834 году Борисом Якоби, русским пионером электротехники, и после некоторых усовершенствований в 1838 году был установлен на лодке, которая могла с его помощью перемещаться по реке со скоростью около 4 км\ч. Но несмотря на это изобретение, электродвигатели не могли найти массового применения, до того момента, пока не был создан электрический генератор, поскольку осуществлять их питание от батареи было крайне неудобно. Первый двигатель переменного тока был сконструирован и создан Чарльзом Уитстоном в 1841 году. Началом применения переменного тока для электродвигателей принято считать 1889 год, когда инженер Доливо- Добровольский сконструировал первый трехфазный асинхронный двигатель. Первая линия трехфазного переменного тока была создана в 1891 году.  Результаты использования этой линии доказали физическую возможность применения трехфазного тока, для передачи больших объемов электроэнергии с высокими показателями КПД. К началу 20-го века появились прототипы основных электромашин.

Именно с того времени началось быстрое развитие электрификации промышленных предприятий и транспорта. Одновременно с этим появляются первые турбогенераторы. Это дает толчок к увеличению мощности генераторов. Для сравнения в 1900 году пиковая мощность генератора составляла 5кВт, а в 1920 году эта величина составляла 60 тысяч кВт. Создание водного охлаждения позволило создать турбогенераторы мощностью около 550 тысяч кВт.

На данный момент электродвигатели имеют следующие характеристики. Максимальная мощность. Она как принято в физике измеряется в Ваттах. Этот параметр зависит от конструкции, материала изготовления,  и технологии создания. Несколько двигателей имеющие одинаковую массу и размер могут иметь различную мощность исключительно из-за технологии производства. Как правило, именно этот параметр задает ценовую категорию для двигателя. Далее рассматривают номинальное напряжение и ток, а так же сопротивление обмотки, как вы знаете, эти параметры неизменно влияют друг на друга. При более низком сопротивлении, возрастает максимальное значение ампер. Третьей характеристикой являются номинальные обороты в минуту. Конструкция современного двигателя направлена на получение более высоких оборотов, или же наивысшего момента на валу. Следовательно, двигатель с большим диаметром имеет увеличенный высокий момент и уменьшенные обороты.

Большинство двигателей формируют два магнитных поля, переменное и неподвижное, при этом неподвижное производят постоянные магниты, в то время как переменное создается обмоткой. Неподвижное поле работает по базовым определениям механики, магнит имеет два полюса, северный и как положено южный, противоположные полюса имеют притяжение, одинаковые притягиваются и вследствие этого создается сила взаимодействия. Но для того, чтоб двигатель начал свое вращение требуется менять эти направления. Соответственно, в реальности вращение происходит из-за изменения этих параметров, полюс притягивается, полюс отталкивается. Таков основной принцип действия электродвигателя.

Электродвигатель. Изобретение Б.С. Якоби

«Я уже не говорю о крайней простоте магнитной машины с круговым беспрерывным движением, о конструктивных ее преимуществах и легкости превращения кругового вращения во всякое другое, какого требует данная рабочая машина. Я с самого начала был проникнут этими мыслями, еще когда я не представлял себе, каким образом мне удастся осуществить свою машину; я тогда имел в виду практическое ее применение, и задача представлялась мне настолько важной, что я не хотел тратить силы на выдумывание игрушек с возвратно-поступательным движением, которые удостоились бы чести быть поставленными в один ряд с электрическим звонком в отношении их эффекта.» (Б.С. Якоби)

          Первый электродвигатель, состоящий из неподвижной и вращающейся частей, был изобретен в 1834 г. физиком Борисом Семеновичем Якоби. Наиболее важным в его изобретении было открытие принципа беспрерывного вращательного движения. Двигатель состоял из коммутатора и двух дисков, на которых были закреплены 16 стержней из мягкого железа. Пока один из дисков делал оборот, коммутатор восемь раз менял полярность дисков. Инерция поддерживала вращение вала основного двигателя, вмонтированного в диск, и самого диска.

 

За секунду двигатель поднимал груз массой в 4-6 кг на высоту 30 см. Это соответствовало мощности около 15 Вт. Питание магнитов осуществлялось при помощи гальванической батареи. Двигатель совершал 80-20 об/мин, но для практического применения это было непригодно. Б.С. Якоби приступил к созданию электродвигателя для использования в транспортных средствах или на производстве.

         Ученым было сконструировано устройство, в котором на одной плоскости были соединены 40 двигателей. Таким образом, мощность была значительно увеличена. 

Первые испытания магнитоэлектрического двигателя состоялись 13 сентября 1838 г. в Санкт-Петербурге. Двигатель установили на лодке с 12 пассажирами на борту, лодка двигалась как по течению, так и против него, со скоростью, достигающей 2 км/ч. Движение продолжалось в течение семи часов, лодка преодолела расстояние в 7 км. На тот момент это были сенсационные результаты. 

Вскоре началась работа по созданию новой, более совершенной конструкции. Продолжение исследований одобрила и комиссия по оценке изобретения.  

В августе и сентябре 1839 г. состоялись испытания нового двигателя. На борту катера находилось 14 пассажиров. Была увеличена мощность, электродвигатель стал быстрее вращать гребные колеса, скорость катера достигала 4 км/ч. 

Известие об изобретении электродвигателя облетело весь мир. Двигатель Б.С. Якоби оказался самым мощным и надежным из всех существующих на тот момент моделей. Но в крупном судоходстве изобретение не нашло применения – не удалось найти соответствующего источника электрического тока для двигателя огромной мощности. 

В 1838 г. Якоби также предпринял попытку создать электровоз, установив двигатель на железнодорожную тележку. 

Заслуга Б.С. Якоби состоит в том, что он впервые рассмотрел применение электродвигателя с точки зрения инженера-практика, а при его создании воплотил три идеи, получившее дальнейшее развитие в электротехнике: вращательное движение якоря в электродвигателе, наличие коммутатора с трущимися контактами и  использование магнитов в подвижной и неподвижной частях электродвигателя.

Для чего нужен электродвигатель и чем они отличаются

Что из себя представляет электродвигатель

Говоря техническим языком, электродвигатель является элементом, который преобразует электричество в механическую энергию, что приводит в движение весь механизм. Поэтому двигатель и называют главным составляющим. Давайте же разберемся подробнее, для чего нужен электродвигатель, из чего он состоит и как работает.Первые модели были произведены еще в 19 ст. Но перед этим была четко сформулирована цель – получить механическую энергию для передвижения и других действий с помощью электричества.

Разберемся, из чего состоит электродвигатель. Главными элементами считаются статор – неподвижная часть (корпус) и ротор – подвижная часть механизма. Помимо этого, в состав двигателя входят еще десятки мелких деталей, таких как подшипники, обмотка из медной проволоки и так далее. На этой странице можно посмотреть все электрические характеристики электродвигателей.

Теперь давайте рассмотрим виды электрических двигателей. В основном они классифицируются по типу питания – это двигатели постоянного тока и переменного, и по принципу работы – синхронные и асинхронные. Двигатели постоянного тока так называются, так как работают от различных блоков питания, аккумуляторов и прочих батарей. Переменного, потому что соединяются напрямую с электрической сетью.

Синхронные механизмы имеют обмотки на роторе и подают на них напряжение для работы двигателя. Асинхронные – не имеют данных компонентов. Поэтому скорость вращения будет заметно медленнее, так отсутствует магнитное поле, созданного в статоре.

Как работает и что делает электродвигатель

Когда механизм соединяется с источником питания, на обмотке возникает магнитное поле, которое и вращает ротор в статоре. Это происходит по закону Ампера. Ведь создается отталкивающая сила, способная вращать вал и приводить в движение другие детали. Частота оборотов ротора напрямую зависит от частоты приходящего на витки электричества, а также от количества пар магнитных полюсов. Кстати, название данной разновидности пошло от того факта, что скорость вращения ротора различалась с частотой оборотов магнитного поля, то есть эти показатели были асинхронными.

Синхронные же двигатели немного отличаются строением ротора. В таком типе электродвигателей, ротор играет роль магнита, который и создает поле для вращения. Здесь магнитное поле статора и сам ротор вращаются с одинаковой частотой. Но есть один, очень значимый минус. Чтобы запустить синхронный электродвигатель, нужно воспользоваться помощью асинхронного. Ведь после простого подключения механизма к сети, ничего не произойдет.

К этому недостатку можно прибавить низкую скорость оборотов. К примеру, если взять асинхронный и синхронный двигатели и подключить их к источнику электричества одинакового напряжения, то первый тип будет вращаться заметно быстрее второго.

Где используют электродвигатели

Они имеют множество неоспоримых преимуществ и особенностей, что делают механизм уникальным и незаменимым. В современном мире данный тип двигателя широко используется практически во всех сферах жизнедеятельности человека. Приобрести электродвигатели можно в каталоге электродвигателей аир.

Применение электрических двигателей начинается от небольших игрушек, и заканчивается большими предприятиями и народными хозяйствами. С помощью этого механизма стало возможно поднимать и передвигать огромные предметы.

Если коротко резюмировать данную статью, то хочется еще раз подчеркнуть значимость таких двигателей в жизни человека. Без них, многие сферы просто не смогли бы нормально функционировать и развиваться. Поэтому нужно тщательно подходить к выбору электродвигателя, ведь его поломка чревата остановкой производства или другого важного процесса, что повлечет за собой материальные и нематериальные убытки. Быстро подобрать необходимый мотор помогут наши специалисты.


 Электродвигатель АИР характеристики
Тип двигателя  Р, кВт Номинальная частота вращения, об/мин кпд,* COS ф 1п/1н Мп/Мн Мmах/Мн 1н, А Масса, кг
АИР56А2 0,18 2840 68,0 0,78 5,0 2,2 2,2 0,52 3,4
АИР56В2 0,25 2840 68,0 0,698 5,0 2,2 2,2 0,52 3,9
АИР56А4 0,12 1390 63,0 0,66 5,0 2,1 2,2 0,44 3,4
АИР56В4 0,18 1390 64,0 0,68 5,0 2,1 2,2 0,65 3,9
АИР63А2 0,37 2840 72,0 0,86 5,0 2,2 2,2 0,91 4,7
АИР63В2 0,55 2840 75,0 0,85 5,0 2,2 2,3 1,31 5,5
АИР63А4 0,25 1390 68,0 0,67 5,0 2,1 2,2 0,83 4,7
АИР63В4 0,37 1390 68,0 0,7 5,0 2,1 2,2 1,18 5,6
АИР63А6 0,18 880 56,0 0,62 4,0 1,9 2 0,79 4,6
АИР63В6 0,25 880 59,0 0,62 4,0 1,9 2 1,04 5,4
АИР71А2 0,75 2840 75,0 0,83 6,1 2,2 2,3 1,77 8,7
АИР71В2 1,1 2840 76,2 0,84 6,9 2,2 2,3 2,6 10,5
АИР71А4 0,55 1390 71,0 0,75 5,2 2,4 2,3 1,57 8,4
АИР71В4 0,75 1390 73,0 0,76 6,0 2,3 2,3 2,05 10
АИР71А6 0,37 880 62,0 0,70 4,7 1,9 2,0 1,3 8,4
АИР71В6 0,55 880 65,0 0,72 4,7 1,9 2,1 1,8 10
АИР71А8 0,25 645 54,0 0,61 4,7  1,8 1,9 1,1 9
АИР71В8 0,25 645 54,0 0,61 4,7  1,8 1,9 1,1 9
АИР80А2 1,5 2850 78,5 0,84 7,0 2,2 2,3 3,46 13
АИР80А2ЖУ2 1,5 2850 78,5 0,84 7,0 2,2 2,3 3,46 13
АИР80В2 2,2 2855 81,0 0,85 7,0 2,2 2,3 4,85 15
АИР80В2ЖУ2 2,2 2855 81,0 0,85 7,0 2,2 2,3 4,85 15
АИР80А4 1,1 1390 76,2 0,77 6,0 2,3 2,3 2,85 14
АИР80В4 1,5 1400 78,5 0,78 6,0 2,3 2,3 3,72 16
АИР80А6 0,75 905 69,0 0,72 5,3 2,0 2,1 2,3 14
АИР80В6 1,1 905 72,0 0,73 5,5 2,0 2,1 3,2 16
АИР80А8 0,37 675 62,0 0,61 4,0 1,8 1,9 1,49 15
АИР80В8 0,55 680 63,0 0,61 4,0 1,8 2,0 2,17 18
АИР90L2 3,0 2860 82,6 0,87 7,5 2,2 2,3 6,34 17
АИР90L2ЖУ2 3,0 2860 82,6 0,87 7,5 2,2 2,3 6,34 17
АИР90L4 2,2 1410 80,0 0,81 7,0 2,3 2,3 5,1 17
АИР90L6 1,5 920 76,0 0,75 5,5 2,0 2,1 4,0 18
АИР90LA8 0,75 680 70,0 0,67 4,0 1,8 2,0 2,43 23
АИР90LB8 1,1 680 72,0 0,69 5,0 1,8 2,0 3,36 28
АИР100S2 4,0 2880 84,2 0,88 7,5 2,2 2,3 8,2 20,5
АИР100S2ЖУ2 4,0 2880 84,2 0,88 7,5 2,2 2,3 8,2 20,5
АИР100L2 5,5 2900 85,7 0,88 7,5 2,2 2,3 11,1 28
АИР100L2ЖУ2 5,5 2900 85,7 0,88 7,5 2,2 2,3 11,1 28
АИР100S4 3,0 1410 82,6 0,82 7,0 2,3 2,3 6,8 21
АИР100L4 4,0 1435 84,2 0,82 7,0 2,3 2,3 8,8 37
АИР100L6 2,2 935 79,0 0,76 6,5 2,0 2,1 5,6 33,5
АИР100L8 1,5 690 74,0 0,70 5,0 1,8 2,0 4,4 33,5
АИР112M2 7,5 2895 87,0 0,88 7,5 2,2 2,3 14,9 49
АИР112М2ЖУ2 7,5 2895 87,0 0,88 7,5 2,2 2,3 14,9 49
АИР112М4 5,5 1440 85,7 0,83 7,0 2,3 2,3 11,7 45
АИР112MA6 3,0 960 81,0 0,73 6,5 2,1 2,1 7,4 41
АИР112MB6 4,0 860 82,0 0,76 6,5 2,1 2,1 9,75 50
АИР112MA8 2,2 710 79,0 0,71 6,0 1,8 2,0 6,0 46
АИР112MB8 3,0 710 80,0 0,73 6,0 1,8 2,0 7,8 53
АИР132M2 11 2900 88,4 0,89 7,5 2,2 2,3 21,2 54
АИР132М2ЖУ2 11 2900 88,4 0,89 7,5 2,2 2,3 21,2 54
АИР132S4 7,5 1460 87,0 0,84 7,0 2,3 2,3 15,6 52
АИР132M4 11 1450 88,4 0,84 7,0 2,2 2,3 22,5 60
АИР132S6 5,5 960 84,0 0,77 6,5 2,1 2,1 12,9 56
АИР132M6 7,5 970 86,0 0,77 6,5 2,0 2,1 17,2 61
АИР132S8 4,0 720 81,0 0,73 6,0 1,9 2,0 10,3 70
АИР132M8 5,5 720 83,0 0,74 6,0 1,9 2,0 13,6 86
АИР160S2 15 2930 89,4 0,89 7,5 2,2 2,3 28,6 116
АИР160S2ЖУ2 15 2930 89,4 0,89 7,5 2,2 2,3 28,6 116
АИР160M2 18,5 2930 90,0 0,90 7,5 2,0 2,3 34,7 130
АИР160М2ЖУ2 18,5 2930 90,0 0,90 7,5 2,0 2,3 34,7 130
АИР160S4 15 1460 89,4 0,85 7,5 2,2 2,3 30,0 125
АИР160S4ЖУ2 15 1460 89,4 0,85 7,5 2,2 2,3 30,0 125
АИР160M4 18,5 1470 90,0 0,86 7,5 2,2 2,3 36,3 142
АИР160S6 11 970 87,5 0,78 6,5 2,0 2,1 24,5 125
АИР160M6 15 970 89,0 0,81 7,0 2,0 2,1 31,6 155
АИР160S8 7,5 720 85,5 0,75 6,0 1,9 2,0 17,8 125
АИР160M8 11 730 87,5 0,75 6,5 2,0 2,0 25,5 150
АИР180S2 22 2940 90,5 0,90 7,5 2,0 2,3 41,0 150
АИР180S2ЖУ2 22 2940 90,5 0,90 7,5 2,0 2,3 41,0 150
АИР180M2 30 2950 91,4 0,90 7,5 2,0 2,3 55,4 170
АИР180М2ЖУ2 30 2950 91,4 0,90 7,5 2,0 2,3 55,4 170
АИР180S4 22 1470 90,5 0,86 7,5 2,2 2,3 43,2 160
АИР180S4ЖУ2 22 1470 90,5 0,86 7,5 2,2 2,3 43,2 160
АИР180M4 30 1470 91,4 0,86 7,2 2,2 2,3 57,6 190
АИР180М4ЖУ2 30 1470 91,4 0,86 7,2 2,2 2,3 57,6 190
АИР180M6 18,5 980 90,0 0,81 7,0 2,1 2,1 38,6 160
АИР180M8 15 730 88,0 0,76 6,6 2,0 2,0 34,1 172
АИР200M2 37 2950 92,0 0,88 7,5 2,0 2,3 67,9 230
АИР200М2ЖУ2 37 2950 92,0 0,88 7,5 2,0 2,3 67,9 230
АИР200L2 45 2960 92,5 0,90 7,5 2,0 2,3 82,1 255
АИР200L2ЖУ2 45 2960 92,5 0,90 7,5 2,0 2,3 82,1 255
АИР200M4 37 1475 92,0 0,87 7,2 2,2 2,3 70,2 230
АИР200L4 45 1475 92,5 0,87 7,2 2,2 2,3 84,9 260
АИР200M6 22 980 90,0 0,83 7,0 2,0 2,1 44,7 195
АИР200L6 30 980 91,5 0,84 7,0 2,0 2,1 59,3 225
АИР200M8 18,5 730 90,0 0,76 6,6 1,9 2,0 41,1 210
АИР200L8 22 730 90,5 0,78 6,6 1,9 2,0 48,9 225
АИР225M2 55 2970 93,0 0,90 7,5 2,0 2,3 100 320
АИР225M4 55 1480 93,0 0,87 7,2 2,2 2,3 103 325
АИР225M6 37 980 92,0 0,86 7,0 2,1 2,1 71,0 360
АИР225M8 30 735 91,0 0,79 6,5 1,9 2,0 63 360
АИР250S2 75 2975 93,6 0,90 7,0 2,0 2,3 135 450
АИР250M2 90 2975 93,9 0,91 7,1 2,0 2,3 160 530
АИР250S4 75 1480 93,6 0,88 6,8 2,2 2,3 138,3 450
АИР250M4 90 1480 93,9 0,88 6,8 2,2 2,3 165,5 495
АИР250S6 45 980 92,5 0,86 7,0 2,1 2,0 86,0 465
АИР250M6 55 980 92,8 0,86 7,0 2,1 2,0 104 520
АИР250S8 37 740 91,5 0,79 6,6 1,9 2,0 78 465
АИР250M8 45 740 92,0 0,79 6,6 1,9 2,0 94 520
АИР280S2 110 2975 94,0 0,91 7,1 1,8 2,2 195 650
АИР280M2 132 2975 94,5 0,91 7,1 1,8 2,2 233 700
АИР280S4 110 1480 94,5 0,88 6,9 2,1 2,2 201 650
АИР280M4 132 1480 94,8 0,88 6,9 2,1 2,2 240 700
АИР280S6 75 985 93,5 0,86 6,7 2,0 2,0 142 690
АИР280M6 90 985 93,8 0,86 6,7 2,0 2,0 169 800
АИР280S8 55 740 92,8 0,81 6,6 1,8 2,0 111 690
АИР280M8 75 740 93,5 0,81 6,2 1,8 2,0 150 800
АИР315S2 160 2975 94,6 0,92 7,1 1,8 2,2 279 1170
АИР315M2 200 2975 94,8 0,92 7,1 1,8 2,2 248 1460
АИР315МВ2 250 2975 94,8 0,92 7,1 1,8 2,2 248 1460
АИР315S4 160 1480 94,9 0,89 6,9 2,1 2,2 288 1000
АИР315M4 200 1480 94,9 0,89 6,9 2,1 2,2 360 1200
АИР315S6 110 985 94,0 0,86 6,7 2,0 2,0 207 880
АИР315М(А)6 132 985 94,2 0,87 6,7 2,0 2,0 245 1050
АИР315MВ6 160 985 94,2 0,87 6,7 2,0 2,0 300 1200
АИР315S8 90 740 93,8 0,82 6,4 1,8 2,0 178 880
АИР315М(А)8 110 740 94,0 0,82 6,4 1,8 2,0 217 1050
АИР315MВ8 132 740 94,0 0,82 6,4 1,8 2,0 260 1200
АИР355S2 250 2980 95,5 0,92 6,5 1. 6 2,3 432,3 1700
АИР355M2 315 2980 95,6 0,92 7,1 1,6 2,2 544 1790
АИР355S4 250 1490 95,6 0,90 6,2 1,9 2,9 441 1700
АИР355M4 315 1480 95,6 0,90 6,9 2,1 2,2 556 1860
АИР355MА6 200 990 94,5 0,88 6,7 1,9 2,0 292 1550
АИР355S6 160 990 95,1 0,88 6,3 1,6 2,8 291 1550
АИР355МВ6 250 990 94,9 0,88 6,7 1,9 2,0 454,8 1934
АИР355L6 315 990 94,5 0,88 6,7 1,9 2,0 457 1700
АИР355S8 132 740 94,3 0,82 6,4 1,9 2,7 259,4 1800
АИР355MА8 160 740 93,7 0,82 6,4 1,8 2,0 261 2000
АИР355MВ8 200 740 94,2 0,82 6,4 1,8 2,0 315 2150
АИР355L8 132 740 94,5 0,82 6,4 1,8 2,0 387 2250

AK «Транснефть» — News Press

Асинхронный тяговый двигатель прошел приемочную комиссию АО «РЭД» приступило к выпуску электродвигателей с системой встроенного диагностического контроля

АО «РЭД» приступило к выпуску электродвигателей с системой встроенного диагностического контроля

АО «РУССКИЕ ЭЛЕКТРИЧЕСКИЕ ДВИГАТЕЛИ» получило сертификаты соответствия систем менеджмента международным стандартам

Акционерное общество «РУССКИЕ ЭЛЕКТРИЧЕСКИЕ ДВИГАТЕЛИ» (АО «РЭД») получило сертификаты соответствия систем менеджмента требованиям международных стандартов

Введен в промышленную эксплуатацию первый электродвигатель производства АО «РЭД»

АО «РУССКИЕ ЭЛЕКТРИЧЕСКИЕ ДВИГАТЕЛИ» (АО «РЭД») ввело в промышленную эксплуатацию первый электродвигатель собственного производства.

АО «РЭД» получило золотую награду конкурса SAP

АО «РЭД» получило золотую награду международного конкурса SAP Quality Awards 2019 в регионе СНГ в категории «Быстрый старт».

АО «РЭД» получило сертификаты на новые электрические двигатели

Акционерное общество «РУССКИЕ ЭЛЕКТРИЧЕСКИЕ ДВИГАТЕЛИ» (АО «РЭД») получило сертификаты соответствия планируемых к выпуску взрывозащищенных электродвигателей техническим требованиям Таможенного союза.

АО «РЭД» произвело отгрузку первого серийного электродвигателя

АО «РЭД» осуществило отгрузку первого произведенного на заводе вертикального асинхронного взрывозащищенного электродвигателя ADVA мощностью 2000 кВт для подпорного насосного агрегата, используемого для перекачки нефти по системе магистральных нефтепроводов. Электродвигатель был изготовлен в соответствии с утвержденным планом производства и успешно прошел комплекс приемочных испытаний.

ПАО «Транснефть» запустило завод по производству высоковольтных электродвигателей АО «РЭД» в г. Челябинске

Сегодня, 24 октября 2018 года в г. Челябинске состоялась торжественная церемония открытия завода Акционерного общества «РУССКИЕ ЭЛЕКТРИЧЕСКИЕ ДВИГАТЕЛИ» (АО «РЭД»), созданного в рамках проводимой ПАО «Транснефть» работы в области импортозамещения для организации в Российской Федерации производства высоковольтных электродвигателей.

Акционерное общество «РУССКИЕ ЭЛЕКТРИЧЕСКИЕ ДВИГАТЕЛИ» получило свидетельство на товарный знак

Федеральная служба по интеллектуальной собственности (Роспатент) выдала Акционерному обществу «РУССКИЕ ЭЛЕКТРИЧЕСКИЕ ДВИГАТЕЛИ» (АО «РЭД») свидетельство на товарный знак (№ 670675).

АО «РУССКИЕ ЭЛЕКТРИЧЕСКИЕ ДВИГАТЕЛИ» стало победителем конкурса «Строитель года — 2018»

АО «РУССКИЕ ЭЛЕКТРИЧЕСКИЕ ДВИГАТЕЛИ» названо победителем конкурса «Строитель года – 2018», в номинации «За лучший реализованный проект в сфере промышленного строительства». Конкурс организован Челябинским межрегиональным Союзом строителей.

ИСТОРИЯ ЭЛЕКТРОДВИГАТЕЛЬНОЙ ТЕХНОЛОГИИ: ПУТЕШЕСТВИЕ ВО ВРЕМЯ

С момента зарождения технологий темпы инноваций продолжали ускоряться. Новые изобретения и технологии облегчают нашу жизнь, но удивительно то, что технологии часто приводят к новым новаторским идеям и открытиям, облегчая проектирование и создание даже более новых технологий. Этот постоянно ускоряющийся цикл инноваций продолжает видоизменять и реконструировать мир, в котором мы живем, и это причина, по которой вы можете потягивать старомодный и наблюдать за Сайнфельдом, пока вы упакованы в металлическую трубу, мчащуюся по небу на высоте 30 000 футов над уровнем моря. Атлантический океан.

История технологии электродвигателей не стала исключением, следуя этой тенденции инноваций на протяжении последних 200 лет. Оглядываясь назад на изобретение первого электродвигателя в 1832 году, трудно представить, какое влияние электродвигатели уже оказали на нашу жизнь и другие технологии, и еще труднее представить себе следующие 200 лет инноваций. Пересказывая историю электродвигателя, мы станем свидетелями ускоряющегося цикла инноваций в реальных условиях и лучше поймем, что нас ждет в будущем.

Изобретение электродвигателя

Ганс Христиан Эрстед экспериментировал с электричеством в 1820 году, когда он заметил, что компас отклоняется, когда он подносит к нему наэлектризованный стержень. Он только что открыл электромагнетизм, и хотя он, несомненно, не осознавал влияния своего открытия, он просто привел в движение мяч для инноваций в технологии электродвигателей.

Вскоре ученые всего мира начали искать применение электромагнетизма для выработки электроэнергии. Уильяму Стерджену, английскому физику, приписывают изобретение первого электродвигателя постоянного тока в 1832 году. Его конструкция была первым электродвигателем, способным приводить в движение механизмы, однако он все еще был сильно ограничен своей низкой выходной мощностью.

Несколько лет спустя в США Томас Дэвенпорт и его жена Эмили Дэвенпорт получили первый патент на электродвигатель постоянного тока в 1837 году. Их конструкция была частичной адаптацией первого двигателя Sturgeon. К сожалению, несмотря на годы экспериментов, конструкция двигателя Давенпорта все еще страдала от тех же проблем с мощностью и эффективностью, с которыми сталкивалась оригинальная конструкция Sturgeon.

Запатентованный двигатель Томаса и Эмили Давенпорт

Тем не менее, самый впечатляющий ранний двигатель был построен русским по имени Мориц фон Якоби, чей электродвигатель установил мировой рекорд по механической мощности в 1834 году, включая двигатель Давенпорта. Якоби тоже не терял времени, внося свои усовершенствования, и только год спустя, в 1835 году, он продемонстрировал увеличенную мощность своего нового дизайна, переправив через реку 14 человек на лодке, приводимой в движение его мотором.

Первый практический двигатель постоянного тока

После первых демонстраций возможностей электродвигателей резко возрос интерес к технологии электродвигателей, вдохновив на создание сотен новых изобретений и открытий.И все же первое поколение электродвигателей прославили пресс-папье. Они были ужасно непрактичными, имели потери напряжения на обмотках, нестабильный ток питания и обычное искрение. В течение следующих 50 лет инженеры и физики работали над решением этих проблем путем оптимизации и изменения основных компонентов электродвигателя.

В период с 1835 по 1886 год в конструкцию ротора и якоря был внесен ряд улучшений в целях разработки первого «практичного» двигателя, при этом заметный вклад внесли итальянский физик Антонио Пачинотти и бельгийский инженер-электрик Зенобе Грамм.Однако только американскому изобретателю Фрэнку Джулиану Спрэгу приписывают изобретение первого «практичного» двигателя в 1886 году.

«Практичный» мотор Фрэнка Джулиана Спрага
Электродвигатель

Sprague исключил искрение, потерю напряжения на обмотках и мог подавать мощность с постоянной скоростью, что сделало его первым «практичным» электродвигателем постоянного тока, позволяющим более широкое применение электродвигателей. Конструкции двигателей Sprague были практически надежными и довольно мощными, но эффективность этих конструкций оставляла желать лучшего.Спраг будет использовать свои двигатели для разработки первой системы электрических тележек в следующем году в Ричмонде, штат Вирджиния, в 1887 году.

Первые генераторы и электрификация

В Европе, развивая свои ранние открытия и открытия других, Зеноб Грамм в 1871 году разработал свою машину Грамма. Его машина могла преобразовывать механическую энергию в непрерывный ток электрической энергии. Представляя свое изобретение на Всемирной выставке 1873 года в Вене, Грамм случайно обнаружил обратимость электродвигателей, когда он соединил два устройства постоянного тока на расстоянии 2 км друг от друга, одно из которых функционировало как двигатель, а другое — как генератор.

Открытие обратимости электродвигателя постоянного тока доказало, что электродвигатели можно использовать в качестве генераторов, преобразуя механическую работу в электрическую энергию, а также имея возможность возвращать неиспользованную энергию обратно источнику, что способствовало развитию первых электрических сетей.

К 1920-м годам страны всего мира начали разработку электрических сетей. Вскоре электричество начало проникать в повседневную жизнь: газовые фонари были заменены электрическими уличными фонарями, кондиционеры теперь охлаждали офисы и дома, а улицы крупных городов были заполнены системами электрических тележек.Электроэнергетика началась, и практичность электрических технологий ускорилась.

Передовая технология двигателей — воздушные зазоры, магниты и др.

В 1921 году для электродвигателей была представлена ​​революционная новая концепция конструкции, которая еще больше повысила их надежность и эффективность. Несмотря на то, что группа обслуживания двигателей в США была введена для предотвращения повреждений, вызванных трением между компонентами, было обнаружено, что небольшой воздушный зазор между ротором и статором также способствует прохождению электромагнитного потока в машинах постоянного тока, дополнительно повышая их эффективность.

Печатная плата статора блока управления двигателем постоянного тока с воздушным зазором
ECM с маркировкой

Износ щеточных двигателей постоянного тока будет оставаться проблемой даже после обнаружения воздушного зазора. В щеточных двигателях постоянного тока щетки должны контактировать с коммутаторами для передачи электрических сигналов; эрозия из-за этого постоянного трения приведет к их износу, иногда к перегреву при высоких нагрузках. Их надежность и проблемы с регулированием температуры не позволили широко использовать щеточные двигатели постоянного тока в приложениях с большой мощностью, таких как HVAC и электромобили.

Все изменилось с изобретением бесщеточного коммутатора. Хотя бесщеточные двигатели с постоянными магнитами были открыты в 1962 году, они стали широко использоваться только в 1982 году, когда стали доступны редкоземельные металлы. С помощью постоянных магнитов бесщеточные двигатели постоянного тока могут быть более мощными и эффективными, чем любой щеточный двигатель, при этом обеспечивая превосходное качество движения.

Конечно, открытие бесщеточного двигателя постоянного тока не остановило инноваций, и в конце 80-х пара ученых Джерри Генко и Норман Смит запатентовали двигатель со статором на печатной плате. Их конструкция электрически и механически соединяла статор с печатной платой, чтобы снизить производственные и материальные затраты, связанные с двигателями BLDC с постоянными магнитами.

Современные моторные технологии

Бесщеточные двигатели постоянного тока сегодня на световые годы опережают старые троллейные двигатели 19 века, но их конструкция далека от совершенства. Обычные двигатели BLDC, подобные тем, которые были разработаны в 80-х годах, являются наиболее популярными типами двигателей на рынке сегодня, и их популярность продолжает расти вместе со спросом на углеродно-нейтральные продукты и доступные системы кондиционирования воздуха.Потребность в решениях с еще более высокой выходной мощностью в меньшем корпусе, меньшим воздействием на окружающую среду и жизнеспособным процессом массового производства будет продолжать расти.

Создавая на основе 200-летних открытий, команда ECM пересмотрела идею Дженко и Смита, рассматривая ее с точки зрения 21 века. За счет встраивания протравленных медью проводников в многослойную печатную плату для формирования статора, который работает вместе с постоянными магнитами, запатентованная технология ECM устраняет необходимость в обмотке проводов и слоях железа, используемых в обычных двигателях и генераторах.

Запатентованная печатная плата статора и двигателя ECM
Использование в

ECM статора на печатной плате в конструкции постоянного магнита с постоянным магнитом позволяет им разрабатывать невероятно тонкие и легкие двигатели, которые используют до 80% меньше сырья. Кроме того, используя свой революционно новый дизайн, команда ECM создала программное обеспечение для проектирования PrintStator, которое автоматически создает уникальные конструкции статора печатных плат и включает все запатентованные конструктивные особенности ECM. PrintStator оптимизирует геометрию и толщину меди в статорах печатных плат, чтобы создать машину с превосходной плотностью крутящего момента и энергоэффективностью.

Покомпонентное изображение запатентованной конструкции электродвигателя статора на печатной плате контроллера ЭСУД

В 2015 году был запущен PrintStator, который использовался в качестве прототипа решения для среднего привода электрического велосипеда. На основе дискретных входов PrintStator автоматически сгенерировал уникальный дизайн статора печатной платы вместе со связанным файлом Gerber, указав подробные характеристики сборки, повсеместно используемые производителями печатных плат для печати проекта. К концу 2019 года компания ECM собрала 10 патентов, касающихся конструкции и программного обеспечения PCB Stator BLDC.PrintStator был использован для успешной интеграции платформы PCB Stator в электромобильность, HVACR, робототехнику, военную, морскую и медицинскую промышленность.

Конструкция двигателя статора печатной платы

ECM решает многие проблемы, с которыми сталкивались электродвигатели с момента их изобретения в 1832 году, значительно улучшая надежность, эффективность и удельную мощность двигателя, но также решая проблемы современных технологий, включая устойчивость, технологичность, размер и вес. Использование статоров на печатной плате в двигателях BLDC, безусловно, является следующим этапом эволюции технологии электродвигателей, но, как мы видим из прошлого, оно не будет последним.

________________
Приложение

[1] https://edisontechcenter.org/electricmotors.html#:~:text=History%20and%20Inventors%3A,motion%20devices%20 using%20electromagnetic%20fields. — Ранняя история электродвигателей и изобретатели
[2] https://shodhganga.inflibnet.ac.in/bitstream/10603/50968/4/chapter%201.pdf — Первые бесщеточные двигатели постоянного тока
[3] https: // patents.justia.com/inventor/robert-e-lordo (Патенты на двигатели BLDC) — Патенты на двигатели BLDC с постоянными магнитами
[4] https: // www.eti.kit.edu/english/1382.php (источник изображения и информации о первых двигателях Jacobi)
[5] http://www.bera.org/articles/sprague.html (изображение двигателя Sprague)
[6] https : //www.hemmings.com/stories/2020/01/31/why-thomas-and-emily-davenport-shouldnt-get-credit-for-inventing-the-electric-vehicle (Изображение двигателя Davenport)

Давенпорт Мотор — 1834 — MagLab

Каким бы странным это ни казалось сегодня, когда Томас Давенпорт еще в 1830-х годах продавал один из первых электродвигателей, никто не покупал.

Некоторые изобретения настолько опередили свое время, что никто не ценит их до тех пор, пока жизнь их изобретателей не закончится. Сегодня, например, электродвигатели, которые преобразуют электрическую энергию в механическую, приводят в действие наши автомобили и бытовую технику, такую ​​как холодильники, вентиляторы, стиральные и сушильные машины. Но было время, когда мотор был не более чем диковинкой.

В начале 1800-х годов Майкл Фарадей и небольшое количество других ученых построили машины, демонстрирующие основные принципы работы электродвигателя.Кузнец из Вермонта по имени Томас Дэвенпорт, маловероятный пионер в зарождающейся области электромагнетизма, был одним из первых, кто попытался заработать на этом изобретении. Попытка материально разорила его. Когда он умер в 1851 году, его мечта о локомотивах и больших машинах, работающих на электричестве, все еще не осуществилась.

Давенпорт впервые заинтересовался электричеством и магнетизмом, когда услышал о машине на основе магнита, построенной Джозефом Генри и используемой для разделения железной руды. Интерес Давенпорта был настолько возбужден, что он проехал около 25 миль до завода по производству железа Краун-Пойнт, чтобы своими глазами увидеть машину.Все еще неудовлетворенный, он проехал более чем в три раза большее расстояние в надежде встретить изобретателя машины, но к тому времени, когда он добрался до Олбани, штат Нью-Йорк, Генри переехал, чтобы преподавать в Принстонском университете в Нью-Джерси. Решив, Давенпорт ненадолго вернулся в свой дом, прежде чем отправиться обратно в Краун-Пойнт. Там он и его брат обменяли свою лошадь и продали много другого имущества, чтобы собрать средства на покупку электромагнита Генри.

Как только он принес магнит домой, Давенпорт принялся изучать, как он был сделан.Он разобрал устройство, а его жена записала его результаты. Давенпорт использовал эту информацию для создания собственных электромагнитов, с которыми вскоре начал проводить эксперименты. Чтобы обеспечить изоляцию проволочных обмоток новых магнитов, миссис Давенпорт пожертвовала шелком своего свадебного платья. Батарея типа Вольта обеспечивала электричество. Во время экспериментов в 1834 году Томас Давенпорт разработал то, что мы сегодня знаем как двигатель постоянного тока, в комплекте с щеткой и коммутатором. Осознав потенциал своего изобретения, Давенпорт использовал его для питания небольшой модели поезда и некоторых машин в своей мастерской.

Давенпорт хотел запатентовать свой двигатель, но первоначально Патентное ведомство США отклонило его заявку. Никому раньше не выдавали патентов на электрическое устройство, и правительственные учреждения не облегчили ему задачу. Он решил попробовать еще раз после того, как получил рекомендательные письма от профессоров и ученых, которые видели его моторные демонстрации. На этот раз пожар в офисе уничтожил его заявление, письма и модель, которые он прислал. Только 25 февраля 1837 года Давенпорт наконец получил свой долгожданный патент.

Даже имея патент, Давенпорт не смог заработать на своем двигателе много денег. У него были проблемы с партнерскими отношениями, которые он сформировал, а расходы и непостоянное электроснабжение от имеющихся в то время батарей означало, что двигатели были менее практичными, чем проверенный паровой двигатель. Финансово разоренный, Давенпорт в конце концов покинул лабораторию, которую он основал в Нью-Йорке, и вернулся в Вермонт с планом написания книги о своем видении электродвигателя. Он умер до того, как книга была завершена, и даже не подозревал, какое влияние его работа однажды окажет на людей во всем мире.

электродвигатель | Британника

Самый простой тип асинхронного двигателя показан на рисунке в разрезе. Трехфазный набор обмоток статора вставлен в пазы в железе статора. Эти обмотки могут быть подключены по схеме «звезда», обычно без внешнего подключения к нейтральной точке, или по схеме «треугольник». Ротор состоит из цилиндрического стального сердечника с проводниками, размещенными в пазах по всей поверхности. В наиболее обычном виде эти проводники ротора соединены вместе на каждом конце ротора токопроводящим концевым кольцом.

Принцип работы асинхронного двигателя можно разработать, сначала предположив, что обмотки статора подключены к трехфазному источнику питания и что набор из трех синусоидальных токов, показанных на рисунке, протекает в обмотках статора. На этом рисунке показано влияние этих токов на создание магнитного поля через воздушный зазор машины в течение шести мгновений цикла. Для простоты показана только центральная токопроводящая петля для каждой фазной обмотки. В момент t 1 на чертеже ток в фазе a является максимально положительным, тогда как ток в фазах b и c составляет половину отрицательного значения.Результатом является магнитное поле с приблизительно синусоидальным распределением вокруг воздушного зазора с максимальным значением наружу вверху и максимальным значением внутрь внизу. В момент времени t 2 на рисунке (т. Е. Одна шестая цикла позже), ток в фазе c является максимально отрицательным, в то время как в фазе b и фазе a составляет половину значения положительный. Результатом, как показано на рисунке для t 2 , снова является синусоидально распределенное магнитное поле, но повернутое на 60 ° против часовой стрелки. Исследование распределения тока для t 3 , t 4 , t 5 и t 6 показывает, что магнитное поле продолжает вращаться с течением времени. Поле совершает один оборот за один цикл токов статора. Таким образом, совокупный эффект трех равных синусоидальных токов, равномерно смещенных во времени и текущих в трех обмотках статора, равномерно смещенных в угловом положении, должен создать вращающееся магнитное поле постоянной величины и механической угловой скорости, которая зависит от частоты электроснабжение.

Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишись сейчас

Вращательное движение магнитного поля относительно проводников ротора вызывает индуцирование напряжения в каждом из них, пропорциональное величине и скорости поля относительно проводников. Поскольку проводники ротора закорочены вместе на каждом конце, в результате в этих проводниках будут протекать токи. В простейшем режиме работы эти токи будут примерно равны индуцированному напряжению, деленному на сопротивление проводника.На этом рисунке показана диаграмма токов ротора за момент времени t 1 рисунка. Видно, что токи приблизительно синусоидально распределены по периферии ротора и расположены так, чтобы создавать вращающий момент против часовой стрелки на роторе (то есть вращающий момент в том же направлении, что и вращение поля). Этот крутящий момент ускоряет ротор и вращает механическую нагрузку. По мере увеличения скорости вращения ротора его скорость относительно скорости вращающегося поля уменьшается.Таким образом, индуцированное напряжение уменьшается, что приводит к пропорциональному уменьшению тока в проводнике ротора и крутящего момента. Скорость ротора достигает постоянного значения, когда крутящий момент, создаваемый токами ротора, равен крутящему моменту, необходимому на этой скорости для нагрузки, при отсутствии избыточного крутящего момента, доступного для ускорения объединенной инерции нагрузки и двигателя.

Вращающееся поле и токи, которые оно создает в короткозамкнутых проводниках ротора.

Encyclopædia Britannica, Inc.

Механическая выходная мощность должна обеспечиваться входной электрической мощностью. Первоначальных токов статора, показанных на рисунке, достаточно для создания вращающегося магнитного поля. Чтобы поддерживать это вращающееся поле при наличии токов ротора, показанных на рисунке, необходимо, чтобы обмотки статора несли дополнительную составляющую синусоидального тока такой величины и фазы, чтобы нейтрализовать влияние магнитного поля, которое в противном случае могло бы возникнуть. токами ротора на рисунке.Полный ток статора в каждой фазной обмотке складывается из синусоидальной составляющей, создающей магнитное поле, и другой синусоиды, опережающей первую на четверть цикла, или 90 °, для обеспечения необходимой электроэнергии. Вторая, или силовая, составляющая тока находится в фазе с напряжением, приложенным к статору, в то время как первая, или намагничивающая, составляющая отстает от приложенного напряжения на четверть цикла или 90 °. При номинальной нагрузке эта намагничивающая составляющая обычно находится в диапазоне 0.От 4 до 0,6 величины силовой составляющей.

Большинство трехфазных асинхронных двигателей работают с обмотками статора, подключенными непосредственно к трехфазному источнику питания постоянного напряжения и постоянной частоты. Типичное напряжение питания находится в диапазоне от 230 вольт между фазами для двигателей относительно небольшой мощности (например, от 0,5 до 50 киловатт) до примерно 15 киловольт между фазами для двигателей большой мощности до примерно 10 мегаватт.

За исключением небольшого падения напряжения на сопротивлении обмотки статора, напряжение питания согласуется со скоростью изменения магнитного потока в статоре машины во времени.Таким образом, при питании с постоянной частотой и постоянным напряжением величина вращающегося магнитного поля остается постоянной, а крутящий момент примерно пропорционален силовой составляющей тока питания.

В асинхронном двигателе, показанном на предыдущих рисунках, магнитное поле совершает один оборот за каждый цикл частоты питания. Для источника с частотой 60 Гц скорость поля составляет 60 оборотов в секунду или 3600 оборотов в минуту. Скорость ротора меньше скорости поля на величину, достаточную для того, чтобы индуцировать необходимое напряжение в проводниках ротора для создания тока ротора, необходимого для крутящего момента нагрузки.При полной нагрузке скорость обычно на 0,5–5 процентов ниже скорости поля (часто называемая синхронной скоростью), причем более высокий процент применяется к двигателям меньшего размера. Эта разница в скорости часто называется скольжением.

Другие синхронные скорости могут быть получены с источником постоянной частоты, построив машину с большим количеством пар магнитных полюсов, в отличие от двухполюсной конструкции, показанной на рисунке. Возможные значения скорости магнитного поля в оборотах в минуту: 120 f / p , где f — частота в герцах (циклов в секунду), а p — количество полюсов (которое должно быть четное число).Данный железный каркас может быть намотан для любого из нескольких возможных количеств пар полюсов с помощью катушек, охватывающих угол приблизительно (360/ p ) °. Крутящий момент, доступный от рамы машины, останется неизменным, поскольку он пропорционален произведению магнитного поля и допустимого тока катушки. Таким образом, номинальная мощность рамы, являющаяся произведением крутящего момента и скорости, будет примерно обратно пропорциональна количеству пар полюсов. Наиболее распространенные синхронные скорости для двигателей с частотой 60 Гц — 1800 и 1200 оборотов в минуту.

Изобретение электродвигателя и электрогенератора

Изобретение электродвигателя
Эксперимент Майкла Фарадея с униполярным электродвигателем 1821 года

В 1800 году Алессандро Вольта изобрел электрическую батарею — Voltaic Pile.

В 1820 году Ганс Кристиан Эрстед обнаружил, что магнитная стрелка (компас) отклоняется, когда помещается рядом с проводом, по которому течет ток, и это означает, что электрический ток создает магнитное поле. Это была первая демонстрация механического движения, вызванного электрическим током.

http: //www-spof.gsfc.nasa.gov …
https: //nationalmaglab.org …
http: //www.youtube.com …

Майкл Фарадей был впечатлен открытиями Эрстеда, и в результате преобразование электрической энергии в механическую энергию с помощью электромагнитных средств было впервые продемонстрировано им в 1821 году. По сути, свободно висящий провод погружали в лужу с ртутью, в которой оставался постоянный был помещен магнит.Когда через провод протекает ток, провод вращается вокруг магнита, показывая, что ток вызывает круговое магнитное поле вокруг провода, которое взаимодействует с магнитным полем постоянного магнита, и возникающая в результате сила, действующая на провод, раскручивает его.

Этот примитивный мотор не имеет практического применения и служит в основном для демонстрационных целей на школьных уроках физики. Ядовитую ртуть иногда заменяют рассолом (соленой водой). Использование проводящей жидкости (ртуть, рассол) возникает из-за необходимости обеспечить свободное движение провода и замкнуть электрическую цепь (алюминиевая фольга или любой прочный провод могут служить той же цели).

Демонстрации мотора Фарадея:
https: //nationalmaglab.org …
http: //www.youtube.com …

Это простое преобразование электричества во вращательное движение можно также продемонстрировать с помощью неодимового дискового магнита, шурупа для гипсокартона, щелочного элемента батареи, провода и элемента батареи, соединенных последовательно. Винт и магнит крутятся.

Демонстраций:
http: //www.youtube.com …
http: // www.youtube.com …

Двигатели, которые работают в соответствии с принципами, описанными выше, называются униполярными двигателями в отличие от современных более эффективных двигателей постоянного тока, в которых используется коммутатор для изменения направления потока тока для поддержания непрерывного вращения. Униполярный двигатель может производить непрерывное вращение без необходимости реверсирования тока. Поскольку для работы двигателя требуется одна и та же электрическая полярность, греческое слово homos = то же самое, используемое в сочетании с «полярностью», создает термин униполярный.

Правая сторона в основном такая же, как описано выше (свободный провод обведен вокруг неподвижного магнита). Затем Фарадей изменил установку на противоположный, на этот раз с помощью фиксированного провода и болтающегося стержневого магнита, который вращался вокруг фиксированного провода при подаче тока. Принцип снова тот же — свободная часть обводится вокруг неподвижной части. Здесь использование ртути позволило, помимо проводимости, магниту свободно плавать. Учтите, что магнит должен быть изготовлен из проводящего материала, чтобы замкнуть электрическую цепь.

Изобретение Фарадея, хотя и примитивное, было первым шагом в развитии электродвигателя.

Колесо Барлоу, самый ранний вид униполярного двигателя, основанный на открытиях Эрстеда и Фарадея, был построен англичанином Питером Барлоу в 1822 году.

Колесо Барлоу — схема 1842 г.

Электрический ток проходит через ступицу колеса, обод которого погружен в небольшую ртутную ванну.Взаимодействие тока с магнитным полем U-магнита заставляет колесо вращаться. Зубчатое колесо заменяет свободную проволоку (наконечники) в эксперименте Фарадея. Хотя оригинальное колесо, представленное Барлоу, было зубчатым, оно также будет работать с гладким круглым металлическим диском, обычно сделанным из проводящего материала, такого как медь. Вы можете попробовать сравнить эффективность двух конструкций.

Демонстрация колеса Барлоу:
https: //nationalmaglab.org …
http: // www.youtube.com …
http: //physics.kenyon.edu …

Изобретение электрического генератора

В то время как униполярный двигатель преобразует электрическую энергию в механическую энергию, униполярный генератор делает обратное: преобразует механическую энергию в электричество путем обратного действия. Если в вышеупомянутых экспериментах с электродвигателем Фарадея электрический ток, проходящий через свободный провод, заставлял его вращаться вокруг постоянного магнита, то движущийся провод через магнитное поле (перпендикулярное ему) будет создавать напряжение на проводе, и если цепь замкнут и ток.

Короче говоря, в присутствии электромагнитного поля ток может перемещать провод, а движение провода может генерировать ток.

Генератор диска Фарадея с 1831 г.

Этот обратный принцип (закон индукции Фарадея) был открыт в 1831 году Майклом Фарадеем и фактически открыл принцип действия электромагнитных генераторов. Фарадей построил первый электромагнитный генератор, названный диском Фарадея, тип униполярного генератора, используя медный диск (вместо провода), вращающийся между полюсами подковообразного магнита. Когда диск вращался ручкой, устройство создавало небольшое постоянное напряжение между его ступицей и ободом.

Согласно закону Фарадея генерируемое напряжение пропорционально скорости изменения магнитного потока, и практический смысл состоит в том, что чем быстрее вы вращаете диск, тем выше будет генерируемое напряжение.
https: //en.wikipedia.org …

Продвинутое предложение проекта: продемонстрировать и объяснить парадокс Фарадея:
http://maxwellsociety.net…

Ссылки:
Изобретение электродвигателя. 1800–1854.
. Разработка электродвигателя.
. Моделирование и имитация простого униполярного электродвигателя типа Фарадея.
. Некоторые простые демонстрационные эксперименты с использованием униполярных электродвигателей.

Книги & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp

История электродвигателей

Вы не задумывались, где бы мы были без электродвигателей? Сегодня вы можете найти их повсюду, от наших автомобилей до зубных щеток. Электродвигатели также используются для производства продуктов, которые делают возможной нашу современную жизнь. Поскольку электродвигатели так важны сегодня, давайте изучим их историю и посмотрим, как мы к этому пришли.


Блог по теме: Управление повышением температуры в панелях управления электродвигателями

Ранняя история

Первый пригодный для использования электродвигатель постоянного тока был построен Морицем фон Якоби в мае 1834 года.Позже Якоби построил лодку, приводимую в движение его электродвигателем, которая перевезла 14 человек через широкую реку. С этим реальным применением электромеханической энергии наступила эпоха электродвигателей.

Работа над электродвигателями продолжалась на протяжении многих лет, и к 1887 году в Ричмонде, штат Вирджиния, уже эксплуатировалась первая тележка с приводом от электродвигателя. Вскоре после этого были разработаны другие применения электродвигателей, и в 1892 году электрические лифты можно было найти в зданиях и других сооружениях.

Индустриальный век

Вскоре после этого электродвигатели нашли применение в промышленности. До этого времени промышленные процессы приводились в движение ремнями или валами, которые распределяли движение за счет сжатого воздуха, пара или гидравлического давления.

Настройка процесса или его изменение может оказаться трудоемким и длительным процессом для налаживания распределения мощности. Это было дорого и медленно.

Электродвигатели изменили это.Внезапно каждая рабочая станция или процесс могут иметь свой собственный источник движения, вдали от распределенных ремней и валов. Это значительно упростило производственный процесс, позволяя создавать оборудование, которое могло бы полностью использовать доступное пространство.

Промышленная революция

Эта недавно обретенная возможность автономного оборудования позволила цехам нанять больше людей для средней фабрики. Это также было безопаснее, поскольку отпала необходимость в распределении через ремни и валы. Завод больше не был лабиринтом опасной механической системы распределения энергии.

Вскоре для двигателей были разработаны электрические системы управления. Эта возможность точного управления позволяла специализированному оборудованию выполнять работу, которая в прошлом была трудной или невозможной. Машины были усовершенствованы, чтобы воспользоваться этой возможностью, и вскоре на рынке появился новый класс продукции.

Благодаря электродвигателю у нас появилось больше рабочих мест, лучшее оборудование и новые процессы, которые создали новые продукты и рынки.Наступила промышленная революция.

Приложения повсюду

В те ранние годы электродвигатели не ограничивались только промышленностью. Вскоре они стали использоваться на мельницах, заменив животную и гидравлическую энергию. Многие установки для перекачивания воды перешли на электродвигатели.

В транспортном секторе электромотор стал предпочтительной силой. Вскоре корабли и локомотивы заменили паровую энергию на электродвигатели, и они никогда не оглядывались назад. Электродвигатели были везде.

Электродвигатели и сегодня встречаются повсюду. По оценкам Министерства энергетики, половина энергосистемы страны используется для питания электродвигателя.

Дальнейшее усовершенствование двигателей переменного и постоянного тока

Из своего скромного начала, электродвигатель постоянного тока превратился в сверхмощное устройство, которое обладает огромным пусковым крутящим моментом в эффективном корпусе. Двигатели постоянного тока также используются в высокоскоростных приложениях.

За последние 30 лет технология управления двигателями переменного тока претерпела значительные изменения.Сегодня эти точные контроллеры дали двигателям переменного тока новую жизнь, поскольку они могут значительно повысить их эффективность и выходную мощность.

Технология все еще находится в стадии разработки, и будущее электромоторов выглядит радужным, поскольку мы переводим наши личные автомобили с двигателей, работающих на ископаемом топливе, на чистые двигатели с электрическим приводом.

Современные электродвигатели далеки от своего скромного начала, но мы обязаны своим существованием тем пионерам, которые заложили основу для всего, что произошло с тех пор.Электродвигатели завтрашнего дня и их приложения наверняка будут такими же захватывающими, как и все, что было до этого. Но ясно одно — в нашем будущем будут электродвигатели.

История Porsche начинается электрически

Фердинанд Порше, впоследствии основатель одноименной компании, был очарован электричеством еще в подростковом возрасте. Еще в 1893 году 18-летний юноша установил в родительском доме систему электрического освещения. В том же году Porsche присоединился к Vereinigte Elektrizitäts-AG Белы Эггер в Вене.Проработав там четыре года, он прошел путь от механика до начальника отдела испытаний. Первые автомобили, которые он спроектировал, также имели электрические приводы — так что история Porsche начинается с электрического привода.

В 1898 году Фердинанд Порше сконструировал Egger-Lohner C. 2 Phaeton. Автомобиль был оснащен восьмиугольным электродвигателем, и с мощностью от трех до пяти л.с. он достиг максимальной скорости 25 км / ч. В 1899 году Порше присоединился к производителю вагонов в Вене, k.u.k. Hofwagenfabrik Ludwig Lohner & Co.

Там он разработал электродвигатель ступицы колеса. В 1900 году первый электромобиль Lohner-Porsche с этой инновацией был представлен на выставке Expo в Париже. С 2 x 2,5 л.с. он достиг максимальной скорости 37 км / ч. Причина, по которой Лонер предложил автомобиль с электродвигателем, сегодня так же актуальна, как и тогда, особенно в связи с эпохой массовой автомобилизации: воздух был «безжалостно испорчен большим количеством используемых бензиновых двигателей».

Также в 1900 году Porsche разработал первый в мире функциональный гибридный автомобиль, «Semper Vivus» (латинское «всегда живое»).Технология, продаваемая как система Lohner-Porsche, также нашла применение не только в области электромобилей. Компания Porsche расширила ассортимент автомобиля, не используя аккумулятор в качестве источника энергии, а вместо этого применив двигатель внутреннего сгорания для приведения в действие генератора и, таким образом, снабжения ступицы колеса электрической энергией. Год спустя родилась готовая к производству версия под названием Lohner-Porsche «Mixte».

Однако Lohner-Porsche также продемонстрировал, почему электрическая мобильность терпела неудачу на протяжении десятилетий: несмотря на скромную выходную мощность, автомобиль весил почти две тонны.Отсутствие инфраструктуры и небольшая дальность действия надолго положили конец электромобильности.

Эта идея возродилась более 100 лет спустя: с разработкой литий-ионных аккумуляторов, подходящих для использования в транспортных средствах, и еще более строгими законодательными требованиями по выбросам загрязняющих веществ и углекислого газа, основное внимание снова было обращено на системы электропривода. Выпустив в 2010 году Cayenne S Hybrid, Porsche проложила путь электромобильности в компании. Panamera S Hybrid стал первым параллельным полноприводным гибридом в классе автомобилей повышенной комфортности, самым экономичным Porsche на сегодняшний день с расходом топлива 6 баллов.8 л / 100 км (NEDC), несмотря на мощность 380 л. с. Также в 2011 году Porsche протестировал три полностью электрические модели Boxster E.

Panamera и Cayenne Turbo S E-Hybrid: топ-модели с двумя сердечками

Panamera и Cayenne Turbo S E-Hybrid

Готовый к производству 918 Spyder был представлен в 2013 году (см. Ниже).Два года спустя Panamera S E-Hybrid снова занял лидирующую позицию в этом сегменте в качестве первого в мире подключаемого гибрида — теперь с 306 кВт (416 л.с.) и чисто электрическим запасом хода 36 км. Во втором поколении Panamera компания Porsche применила электрические характеристики во всех вариантах моделей: стратегия повышения мощности, адаптированная для суперкара 918 Spyder, позволила добиться производительности, типичной для спортивных автомобилей, но в сочетании с высокой эффективностью — как в модели мощностью 340 кВт (462 кВт)). PS) Panamera 4 E-Hybrid и в топовой модели Panamera Turbo S E-Hybrid.

Третье поколение подключаемого гибридного привода Porsche, Turbo S E-Hybrid, теперь используется в топовых версиях Panamera и Cayenne. Они сочетают в себе исключительную производительность с максимальной эффективностью: четырехлитровый двигатель V8 и электродвигатель вырабатывают мощность системы 500 кВт (680 л.с.; Panamera Turbo S E-Hybrid: расход топлива в смешанном цикле 3,3 л / 100 км; выбросы CO 2 74 г / км; расход электроэнергии (смешанный) 16,0 кВтч / 100 км; Cayenne Turbo S E-Hybrid: смешанный расход 3.9 — 3,7 л / 100 км; CO 2 выбросы 90 — 85 г / км; расход электроэнергии (комбинированный) 19,6 — 18,7 кВтч / 100 км). Эти модели являются самыми спортивными автомобилями в своих сегментах, но не несмотря на их гибридный привод.

Быстрая электрика — от гоночной трассы к дороге

Не только конкуренция за клиентов, но и конкуренция на гоночной трассе прочно укоренились в генах Porsche. И с самого начала спорт был движущей силой этой серии.

Забег на 50 километров прошел в рамках Берлинского автосалона еще в 1899 году. Первое место занял электромобиль Lohner-Porsche. В следующем году Фердинанд Порше сконструировал первый в мире полноприводный легковой автомобиль — гоночный электромобиль La Toujours Contente («Всегда удовлетворенный»). Каждый из четырехколесных моторов имел выходную мощность 14 л.с. Уменьшенный до двух двигателей одинаковой выходной мощности, Porsche удалось побить рекорд Земмеринга на другом гоночном электромобиле со средней скоростью 40 км / ч.4 км / ч на протяжении десяти километров с максимальной скоростью 60 км / ч.

В 1902 году Porsche выиграл ралли Exelberg с гибридным автомобилем Lohner-Porsche Mixte. А в 1905 году гоночный автомобиль Lohner-Porsche с аккумуляторным питанием мощностью 2 x 30 л.с. достиг скорости более 130 км / ч.

911 GT3 R Hybrid: первый гоночный автомобиль с частично электрическим приводом

Даже в наше время для Porsche было совершенно логично осуществить электрификацию трансмиссии на гоночной трассе на очень раннем этапе.Вот почему Porsche отправил 911 GT3 R Hybrid на Нюрбургринг в 2010 году как первый гоночный автомобиль с частично электрическим приводом. Гоночный автомобиль был оснащен 4,0-литровым шестицилиндровым двигателем мощностью 353 кВт, поддерживаемым двумя электродвигателями мощностью 60 кВт каждый на передней оси. Уже тогда Porsche остановил свой выбор на синхронных двигателях с постоянным возбуждением. При торможении два электродвигателя действовали как генераторы и заряжали маховик-аккумулятор восстановленной кинетической энергией. В качестве мобильной испытательной лаборатории эта технологическая платформа предоставила важные результаты для гибридных технологий в дорожных спортивных автомобилях, например, в отношении управления большими потоками электроэнергии и энергии.

918 Spyder: бить рекорды на Нюрбургринге, Нордшляйфе

В 2013 году эти результаты были полезны для мощного 918 Spyder, который побил предыдущий рекорд серийных автомобилей на Северной петле с временем круга 6:57 минут. Инновационная подключаемая гибридная система высокопроизводительного спортивного автомобиля также опиралась на три двигателя: высокооборотный атмосферный двигатель V8 рабочим объемом 4,6 литра мощностью 447 кВт, а два электрических блока спереди и сзади. оси вместе выдавали 210 кВт.В результате мощность системы составляет 652 кВт (887 л.с.). Максимальный крутящий момент системы был добавлен к крутящему моменту, эквивалентному коленчатому валу, равному 1280 Нм. Литий-ионный аккумулятор емкостью 6,8 кВтч накапливал восстановленную энергию торможения и позволял проехать только на электричестве до 31 километра. Porsche 918 Spyder показал в среднем от 3,1 до 3,0 л / 100 км согласно NEDC.

919 Гибрид: Победитель серии в гонках на выносливость

919 Hybrid также впервые сошел с конвейера в 2013 году.Porsche решил снова начать с прототипа LMP1 в 2014 году на «24 часах Ле-Мана» и на чемпионате мира по гонкам на выносливость. В 2015 году Porsche одержал первую из трех подряд побед в Ле-Мане. В конце 2017 года компания завершила эту главу своей истории автоспорта шестью чемпионскими титулами.

919 Hybrid — самый сложный гоночный автомобиль, который Porsche спроектировал и построил на сегодняшний день. Многие компоненты и концепции, благодаря которым он зарекомендовал себя как самый успешный прототип класса 1, нашли свое применение в дорожных транспортных средствах, таких как Panamera Turbo S E-Hybrid.

Пионер технологий: 800 вольт — гены гоночного спорта

Дальнейшие разработки проекта 919 Hybrid будут готовы к серийному производству в ближайшем будущем, в то время как другие смотрят еще дальше. Они также проложили путь для нового Taycan — с техническими элементами, которые прошли боевое крещение в Ле-Мане. В частности, это относится к новаторской 800-вольтовой технологии. Это одно из самых смелых фундаментальных решений инновационной концепции гоночного автомобиля.Уровень напряжения определяет фундаментальные условия для всей электрической трансмиссии: от батареи до компоновки электроники и электродвигателей, до производительности процесса зарядки.

Соответствующие компоненты отсутствовали на рынке, когда была разработана 800-вольтовая технология для 919 Hybrid. Porsche проделал новаторскую работу и разработал ее самостоятельно. Высокая конкуренция со стороны автоспорта постоянно подталкивает инженеров к пределам возможностей.Что касается гибридного управления, прототипы Ле-Мана также продвинулись в регионы, ранее считавшиеся недостижимыми. Таким образом, 919 Hybrid в качестве испытательной лаборатории проложил путь к уровню напряжения будущих гибридных и электрических систем трансмиссии.

Электро-синхронный двигатель с постоянным возбуждением 919 Hybrid также прошел боевое крещение Ле-Мана. Он приводит в движение переднюю ось и восстанавливает кинетическую энергию в качестве генератора во время фаз торможения. Электродвигатель аналогичен двум модулям, которые вместе обеспечивают мощность более 441 кВт в Taycan.И в отличие от современных электроприводов, они также обеспечивают полную мощность для многократных ускорений за короткие промежутки времени — точно так же, как трансмиссия 919 Hybrid на полных 24-часовых гоночных дистанциях. Это так же важно для использования на гоночной трассе, как и для спортивного вождения по проселочным дорогам и превосходных характеристик на автомагистралях.

Porsche 99X Электрический

Первый полностью электрический гоночный автомобиль от Porsche теперь также готов к работе. Начиная с сезона 2019/20, Porsche будет участвовать в чемпионате ABB FIA Formula E с новой трансмиссией.Здесь также тесное взаимодействие гонок и разработки серий обеспечивает плавную обратную связь.

Дополнительное содержание

Спортивные автомобили, дизайн которых был переработан с учетом экологических требований. Первый полностью электрический спортивный автомобиль Taycan знаменует начало новой эры для Porsche, поскольку компания систематически расширяет ассортимент своей продукции в области электромобильности. Обзор.

Электродвигатель

— Энциклопедия Нового Света

Вращающееся магнитное поле как сумма магнитных векторов от трех фазных катушек

Электродвигатель преобразует электрическую энергию в кинетическую.Обратную задачу — преобразование кинетической энергии в электрическую — выполняет генератор или динамо-машина. Во многих случаях два устройства различаются только своим применением и незначительными деталями конструкции, а в некоторых приложениях используется одно устройство для выполнения обеих ролей. Например, тяговые двигатели, используемые на локомотивах, часто выполняют обе задачи, если локомотив оборудован динамическими тормозами.

Большинство электродвигателей работают за счет электромагнетизма, но также существуют двигатели, основанные на других электромеханических явлениях, таких как электростатические силы и пьезоэлектрический эффект.Фундаментальный принцип, на котором основаны электромагнитные двигатели, заключается в том, что на любой токоведущий провод, находящийся внутри магнитного поля, действует механическая сила. Сила описывается законом силы Лоренца и перпендикулярна как проводу, так и магнитному полю.

Большинство магнитных двигателей являются вращающимися, но существуют и линейные двигатели. В роторном двигателе вращающаяся часть (обычно внутри) называется ротором, а неподвижная часть — статором. Ротор вращается, потому что провода и магнитное поле расположены так, что вокруг оси ротора создается крутящий момент.Двигатель содержит электромагниты, намотанные на раму. Хотя эту раму часто называют арматурой, этот термин часто используют ошибочно. Правильно, якорь — это та часть двигателя, на которую подается входное напряжение. В зависимости от конструкции машины якорь может служить как ротор, так и статор.

Двигатели постоянного тока

Электродвигатели различных типоразмеров. Ротор от маленького мотора постоянного тока 3В. Этот двигатель имеет 3 катушки, и коммутатор можно увидеть на ближнем конце.

Один из первых электромагнитных роторных двигателей был изобретен Майклом Фарадеем в 1821 году и состоял из свободно висящего провода, погруженного в бассейн с ртутью. Постоянный магнит был помещен в середину ртутной ванны. Когда через провод пропускался ток, он вращался вокруг магнита, показывая, что ток порождал круговое магнитное поле вокруг провода. Этот двигатель часто демонстрируется на школьных уроках физики, но иногда вместо токсичной ртути используется рассол (соленая вода).Это простейшая форма класса электродвигателей, называемых униполярными двигателями. Более поздняя доработка — Колесо Барлоу.

В другой ранней конструкции электродвигателя использовался поршень возвратно-поступательного действия внутри переключаемого соленоида; концептуально его можно рассматривать как электромагнитную версию двухтактного двигателя внутреннего сгорания. Томас Давенпорт построил небольшой электродвигатель постоянного тока в 1834 году, используя его для управления игрушечным поездом по круговой дороге. Он получил на него патент в 1837 году.

Современный двигатель постоянного тока был изобретен случайно в 1873 году, когда Зеноб Грамм соединил вращающуюся динамо-машину со вторым аналогичным устройством, приведя его в действие как двигатель.Машина Грамма была первым промышленно полезным электродвигателем; более ранние изобретения использовались в качестве игрушек или лабораторных диковинок.

Классический двигатель постоянного тока имеет вращающийся якорь в виде электромагнита. Поворотный переключатель, называемый коммутатором, меняет направление электрического тока дважды за цикл, чтобы он протекал через якорь, так что полюса электромагнита толкают и притягивают постоянные магниты на внешней стороне двигателя. Когда полюса электромагнита якоря проходят через полюса постоянных магнитов, коммутатор меняет полярность электромагнита якоря.В этот момент переключения полярности импульс поддерживает классический двигатель в нужном направлении. (См. Диаграммы ниже.)

  • Вращение двигателя постоянного тока
  • Простой электродвигатель постоянного тока. Когда катушка запитана, вокруг якоря создается магнитное поле. Левая сторона якоря отодвигается от левого магнита и тянется вправо, вызывая вращение.

  • Якорь продолжает вращаться.

  • Когда якорь выравнивается по горизонтали, коммутатор меняет направление тока через катушку на противоположное, изменяя направление магнитного поля.Затем процесс повторяется.

Электродвигатель постоянного тока с возбуждением от возбуждения

Постоянные магниты на внешней стороне (статоре) двигателя постоянного тока могут быть заменены электромагнитами. Изменяя ток возбуждения, можно изменять соотношение скорость / крутящий момент двигателя. Обычно обмотка возбуждения размещается последовательно (последовательно намотанная), с обмоткой якоря для получения низкоскоростного двигателя с высоким крутящим моментом, параллельно (параллельная обмотка) с якорем для получения высокоскоростного двигателя с низким крутящим моментом, или имеют обмотку частично параллельно, а частично последовательно (составная обмотка) для баланса, который обеспечивает стабильную скорость в диапазоне нагрузок. Раздельное возбуждение. также является обычным, с фиксированным напряжением поля, скорость регулируется изменением напряжения якоря. Дальнейшее уменьшение тока возбуждения возможно для получения даже более высокой скорости, но, соответственно, более низкого крутящего момента, что называется режимом «слабого поля».

Теория

Если вал двигателя постоянного тока вращается под действием внешней силы, двигатель будет действовать как генератор и производить электродвижущую силу (ЭДС). Это напряжение также генерируется при нормальной работе двигателя.Вращение двигателя создает напряжение, известное как противо-ЭДС (CEMF) или противо-ЭДС, поскольку оно противодействует приложенному напряжению на двигателе. Следовательно, падение напряжения на двигателе состоит из падения напряжения из-за этой CEMF и паразитного падения напряжения, возникающего из-за внутреннего сопротивления обмоток якоря.

Поскольку CEMF пропорциональна скорости двигателя, при первом запуске или полном останове электродвигателя CEMF отсутствует. Следовательно, ток через якорь намного выше.Этот высокий ток создаст сильное магнитное поле, которое запустит вращение двигателя. По мере вращения двигателя CEMF увеличивается до тех пор, пока не сравняется с приложенным напряжением за вычетом паразитного падения напряжения. В этот момент через двигатель будет протекать меньший ток.

Регулировка скорости

Обычно скорость вращения двигателя постоянного тока пропорциональна приложенному к нему напряжению, а крутящий момент пропорционален току. Регулировка скорости может быть достигнута с помощью регулируемых выводов аккумуляторной батареи, переменного напряжения питания, резисторов или электронного управления.Направление двигателя постоянного тока с обмоткой возбуждения можно изменить, поменяв местами подключения возбуждения или якоря, но не то и другое вместе. Обычно это делается с помощью специального набора контакторов (контакторов направления).

Эффективное напряжение можно изменять, вставляя последовательный резистор или используя переключающее устройство с электронным управлением, состоящее из тиристоров, транзисторов или, ранее, ртутных дуговых выпрямителей. В цепи, известной как прерыватель, среднее напряжение, приложенное к двигателю, изменяется путем очень быстрого переключения напряжения питания.Поскольку отношение «включено» к «выключено» изменяется для изменения среднего приложенного напряжения, скорость двигателя изменяется. Процент времени включения, умноженный на напряжение питания, дает среднее напряжение, приложенное к двигателю.

Поскольку двигатель постоянного тока с последовательной обмоткой развивает максимальный крутящий момент на низкой скорости, он часто используется в тяговых устройствах, таких как электровозы и трамваи. Другое применение — стартеры для бензиновых и небольших дизельных двигателей. Серийные двигатели никогда не должны использоваться в приложениях, где привод может выйти из строя (например, ременные передачи).По мере ускорения двигателя ток якоря (и, следовательно, возбуждения) уменьшается. Уменьшение поля заставляет двигатель ускоряться (см. «Слабое поле» в последнем разделе), пока он не разрушит себя. Это также может быть проблемой для железнодорожных двигателей в случае потери сцепления, поскольку, если быстро не взять под контроль двигатели, они могут развивать скорость намного выше, чем при нормальных обстоятельствах. Это может вызвать проблемы не только для самих двигателей и шестерен, но и из-за разницы в скорости между рельсами и колесами, это также может вызвать серьезные повреждения рельсов и ступеней колес, поскольку они быстро нагреваются и охлаждаются.Ослабление поля используется в некоторых электронных элементах управления для увеличения максимальной скорости электромобиля. В простейшей форме используется контактор и резистор ослабления поля, электронное управление контролирует ток двигателя и подключает резистор ослабления поля в цепь, когда ток двигателя уменьшается ниже заданного значения (это будет, когда двигатель работает на полной расчетной скорости). Как только резистор включен в цепь, двигатель увеличит скорость выше своей нормальной скорости при номинальном напряжении. Когда ток двигателя увеличивается, система управления отключает резистор и становится доступным крутящий момент на низкой скорости.

Одним из интересных методов управления скоростью двигателя постоянного тока является управление Уорда-Леонарда. Это метод управления двигателем постоянного тока (обычно с шунтирующей или составной обмоткой) и был разработан как метод обеспечения двигателя с регулируемой скоростью от источника переменного тока (переменного тока), хотя он не лишен своих преимуществ в схемах постоянного тока. Источник переменного тока используется для привода двигателя переменного тока, обычно асинхронного двигателя, который приводит в действие генератор постоянного тока или динамо-машину. Выход постоянного тока из якоря напрямую подключен к якорю двигателя постоянного тока (обычно идентичной конструкции).Шунтирующие обмотки возбуждения обеих машин постоянного тока возбуждаются через переменный резистор от якоря генератора. Этот переменный резистор обеспечивает исключительно хорошее управление скоростью от состояния покоя до полной скорости и постоянный крутящий момент. Этим методом управления был метод de facto от его разработки до тех пор, пока он не был заменен твердотельными тиристорными системами. Она нашла применение практически в любой среде, где требовалось хорошее управление скоростью, от пассажирских лифтов до обмотки головок больших шахтных карьеров и даже промышленного технологического оборудования и электрических кранов.Его основным недостатком было то, что для реализации схемы требовалось три машины (пять в очень больших установках, поскольку машины постоянного тока часто дублировались и управлялись тандемным переменным резистором). Во многих случаях установка двигатель-генератор часто оставалась постоянно работающей, чтобы избежать задержек, которые в противном случае были бы вызваны ее запуском по мере необходимости. Есть множество устаревших установок Ward-Leonard, которые все еще используются.

Универсальные двигатели

Вариантом обмотки Двигатель постоянного тока является универсальный двигатель . Название происходит от того факта, что он может использовать переменный ток (переменный ток) или постоянный ток, хотя на практике они почти всегда используются с источниками переменного тока. Принцип заключается в том, что в полевом двигателе постоянного тока с обмоткой ток в поле и в якоре (и, следовательно, в результирующих магнитных полях) будет чередоваться (обратная полярность) в одно и то же время, и, следовательно, генерируемая механическая сила всегда в одном и том же направлении. . На практике двигатель должен быть специально спроектирован для работы с переменным током (необходимо учитывать импеданс, а также пульсирующую силу), и получаемый в результате двигатель, как правило, менее эффективен, чем эквивалентный чистый двигатель DC .При работе на нормальных частотах линии электропередачи максимальная мощность универсальных двигателей ограничена, а двигатели мощностью более одного киловатта встречаются редко. Но универсальные двигатели также составляют основу традиционного железнодорожного тягового двигателя. В этом приложении для поддержания высокого электрического КПД они работали от очень низкочастотных источников переменного тока с частотой 25 Гц и 16 2 / 3 Гц. Поскольку это универсальные двигатели, локомотивы, использующие эту конструкцию, также обычно могли работать от третьего рельса с питанием от постоянного тока.

Преимущество универсального двигателя заключается в том, что источники питания переменного тока могут использоваться на двигателях, которые имеют типичные характеристики двигателей постоянного тока, в частности, высокий пусковой момент и очень компактную конструкцию, если используются высокие скорости вращения. Отрицательный аспект — проблемы с обслуживанием и коротким сроком службы, вызванные коммутатором. В результате такие двигатели обычно используются в устройствах переменного тока, таких как миксеры для пищевых продуктов и электроинструменты, которые используются только с перерывами. Непрерывное управление скоростью универсального двигателя, работающего от переменного тока, очень легко достигается с помощью тиристорной схемы, в то время как ступенчатое регулирование скорости может быть выполнено с помощью нескольких отводов на катушке возбуждения.Бытовые блендеры, рекламирующие много скоростей, часто сочетают в себе катушку возбуждения с несколькими ответвлениями и диод, который можно вставить последовательно с двигателем (в результате чего двигатель работает на полуволновом постоянном токе с 0,707 среднеквадратичного напряжения линии питания переменного тока).

В отличие от двигателей переменного тока, универсальные двигатели могут легко превысить один оборот за цикл сетевого тока. Это делает их полезными для таких приборов, как блендеры, пылесосы и фены, где требуется высокая скорость работы. Моторы многих пылесосов и триммеров для сорняков превышают 10 000 об / мин, Dremel и другие подобные миниатюрные шлифовальные машины часто превышают 30 000 об / мин.Теоретический универсальный двигатель, которому разрешено работать без механической нагрузки, будет превышать скорость, что может привести к его повреждению. В реальной жизни, однако, различное трение подшипников, «парусность» якоря и нагрузка любого встроенного охлаждающего вентилятора — все это предотвращает превышение скорости.

Из-за очень низкой стоимости полупроводниковых выпрямителей в некоторых приложениях, где раньше использовался универсальный двигатель, теперь используется чистый двигатель постоянного тока, обычно с полем постоянного магнита. Это особенно верно, если полупроводниковая схема также используется для регулирования скорости.

Преимущества универсального двигателя и распределения переменного тока сделали установку низкочастотной системы распределения тягового тока экономичной для некоторых железнодорожных сооружений. На достаточно низких частотах характеристики двигателя примерно такие же, как если бы двигатель работал от постоянного тока.

Двигатели переменного тока

В 1882 году Никола Тесла определил принцип вращающегося магнитного поля и впервые применил вращающееся силовое поле для работы машин.Он использовал этот принцип для разработки уникального двухфазного асинхронного двигателя в 1883 году. В 1885 году Галилео Феррарис независимо исследовал эту концепцию. В 1888 году Феррарис опубликовал свое исследование в докладе Королевской академии наук в Турине.

Появление двигателя Теслы с 1888 года и далее положило начало так называемой Второй промышленной революции, сделав возможным эффективное производство и распределение электроэнергии на большие расстояния с использованием системы передачи переменного тока, также изобретенной Тесла (1888 г.).До изобретения вращающегося магнитного поля двигатели работали, непрерывно пропуская проводник через постоянное магнитное поле (как в униполярных двигателях).

Тесла предположил, что коммутаторы из машины могут быть удалены, и устройство может работать во вращающемся силовом поле. Его учитель профессор Пошель заявил, что это было бы похоже на создание вечного двигателя. [1] Tesla позже получит патент США 0416194 (PDF), Electric Motor (декабрь 1889 г.), который напоминает двигатель, изображенный на многих фотографиях Теслы.Этим классическим электромагнитным двигателем переменного тока был асинхронный двигатель .

Энергия статора Энергия ротора Всего поставлено энергии Развиваемая мощность
10 90 100 900
50 50 100 2500

В асинхронном двигателе , поле и якорь в идеале имели равные напряженности поля, а сердечники поля и якоря были одинакового размера.Полная энергия, потребляемая для работы устройства, равнялась сумме энергии, затраченной на якорь и катушки возбуждения. [2] Мощность, развиваемая при работе устройства, равна произведению энергии, затрачиваемой в катушках якоря и возбуждения. [3]

Михаил Осипович Доливо-Добровольский позже изобрел трехфазный «клеть-ротор» в 1890 году. Успешная коммерческая многофазная система генерации и передачи на большие расстояния была спроектирована Алмерианом Декером в Mill Creek No.1 [4] в Редлендс, Калифорния. [5]

Детали и типы

Типичный двигатель переменного тока состоит из двух частей:

  1. Внешний неподвижный статор с катушками, на которые подается переменный ток для создания вращающегося магнитного поля, и;
  2. Внутренний ротор, прикрепленный к выходному валу, которому крутящий момент создается вращающимся полем.

В зависимости от типа используемого ротора существует два основных типа двигателей переменного тока:

  • Синхронный двигатель, который вращается точно с частотой питающей сети или долей частоты питающей сети, и;
  • Асинхронный двигатель, который вращается немного медленнее и обычно (хотя и не всегда) имеет форму двигателя с короткозамкнутым ротором.

Трехфазные асинхронные двигатели переменного тока

Трехфазные асинхронные двигатели переменного тока мощностью 1 л.с. (746 Вт) и 25 Вт с небольшими двигателями от проигрывателя компакт-дисков, игрушек и привода считывателя компакт-дисков и DVD-дисков.

Там, где имеется многофазный источник питания, обычно используется трехфазный (или многофазный) асинхронный двигатель переменного тока, особенно для двигателей большей мощности. Разность фаз между тремя фазами многофазного источника питания создает вращающееся электромагнитное поле в двигателе.

Благодаря электромагнитной индукции вращающееся магнитное поле индуцирует ток в проводниках в роторе, который, в свою очередь, создает уравновешивающее магнитное поле, которое заставляет ротор вращаться в направлении вращения поля.Ротор всегда должен вращаться медленнее, чем вращающееся магнитное поле, создаваемое многофазным источником питания; в противном случае в роторе не будет создаваться уравновешивающее поле.

Асинхронные двигатели являются рабочими лошадками промышленности, и двигатели мощностью до 500 кВт (670 лошадиных сил) производятся в строго стандартизированных размерах корпуса, что делает их практически полностью взаимозаменяемыми между производителями (хотя стандартные размеры в Европе и Северной Америке различаются). Очень большие синхронные двигатели могут иметь выходную мощность в десятки тысяч кВт для трубопроводных компрессоров, приводов в аэродинамической трубе и наземных преобразовательных систем.

В асинхронных двигателях используются два типа роторов.

Роторы с короткозамкнутым ротором: В большинстве двигателей переменного тока используется ротор с короткозамкнутым ротором, который можно найти практически во всех бытовых и легких промышленных двигателях переменного тока. Беличья клетка получила свое название от своей формы — кольца на обоих концах ротора, с стержнями, соединяющими кольца по длине ротора. Обычно это литой алюминий или медь, залитые между железными пластинами ротора, и обычно видны только концевые кольца.Подавляющее большинство токов ротора будет проходить через стержни, а не через ламинаты с более высоким сопротивлением и обычно покрытые лаком. Очень низкие напряжения при очень высоких токах типичны для шин и концевых колец; В высокоэффективных двигателях часто используется литая медь для уменьшения сопротивления ротора.

В работе двигатель с короткозамкнутым ротором можно рассматривать как трансформатор с вращающейся вторичной обмоткой — когда ротор не вращается синхронно с магнитным полем, индуцируются большие токи ротора; большие токи ротора намагничивают ротор и взаимодействуют с магнитными полями статора, чтобы синхронизировать ротор с полем статора.Двигатель с короткозамкнутым ротором без нагрузки на синхронной скорости будет потреблять электроэнергию только для поддержания скорости ротора с учетом потерь на трение и сопротивление; по мере увеличения механической нагрузки будет увеличиваться и электрическая нагрузка — электрическая нагрузка по своей природе связана с механической нагрузкой. Это похоже на трансформатор, где электрическая нагрузка первичной обмотки связана с электрической нагрузкой вторичной обмотки.

Вот почему, например, двигатель вентилятора с короткозамкнутым ротором может приглушать свет в доме при запуске, но не приглушает свет, когда его вентиляторный ремень (и, следовательно, механическая нагрузка) снимается.Кроме того, остановившийся двигатель с короткозамкнутым ротором (перегруженный или с заклинившим валом) будет потреблять ток, ограниченный только сопротивлением цепи, при попытке запуска. Если что-то еще не ограничивает ток (или не отключает его полностью), вероятным результатом является перегрев и разрушение изоляции обмотки.

Практически каждая стиральная машина, посудомоечная машина, отдельный вентилятор, проигрыватель и т. Д. Использует какой-либо вариант двигателя с короткозамкнутым ротором.

Ротор с обмоткой: Альтернативная конструкция, называемая ротором с обмоткой, используется, когда требуется регулировка скорости.В этом случае ротор имеет такое же количество полюсов, что и статор, а обмотки выполнены из проволоки, соединенной с контактными кольцами на валу. Угольные щетки подключают контактные кольца к внешнему контроллеру, например, к переменному резистору, который позволяет изменять скорость скольжения двигателя. В некоторых мощных приводах с регулируемой скоростью вращения ротора энергия частоты скольжения улавливается, выпрямляется и возвращается в источник питания через инвертор.

По сравнению с роторами с короткозамкнутым ротором, двигатели с фазным ротором дороги и требуют обслуживания контактных колец и щеток, но они были стандартной формой для регулирования скорости до появления компактных силовых электронных устройств.Транзисторные инверторы с частотно-регулируемым приводом теперь можно использовать для управления скоростью, а двигатели с фазным ротором становятся все реже. (Транзисторные инверторные приводы также позволяют использовать более эффективные трехфазные двигатели, когда доступен только однофазный сетевой ток, но это никогда не используется в бытовых приборах, поскольку может вызывать электрические помехи и из-за высоких требований к мощности.)

Используются несколько способов запуска многофазного двигателя. Там, где допустимы большой пусковой ток и высокий пусковой момент, двигатель можно запустить через линию, подав полное линейное напряжение на клеммы (Direct-on-line, DOL).Если необходимо ограничить пусковой пусковой ток (если мощность двигателя больше, чем у источника питания при коротком замыкании), используется пуск с пониженным напряжением с использованием последовательных катушек индуктивности, автотрансформатора, тиристоров или других устройств. Иногда используется метод пуска со звезды на треугольник, когда катушки двигателя сначала соединяются звездой для ускорения нагрузки, а затем переключаются на треугольник, когда нагрузка достигает скорости. Этот метод более распространен в Европе, чем в Северной Америке.Транзисторные приводы могут напрямую изменять приложенное напряжение в зависимости от пусковых характеристик двигателя и нагрузки.

Этот тип двигателя становится все более распространенным в тяговых приложениях, таких как локомотивы, где он известен как асинхронный тяговый двигатель.

Скорость в этом типе двигателя традиционно изменялась за счет наличия дополнительных наборов катушек или полюсов в двигателе, которые можно включать и выключать для изменения скорости вращения магнитного поля. Однако развитие силовой электроники означает, что частота источника питания теперь также может быть изменена, чтобы обеспечить более плавное управление скоростью двигателя.

Трехфазные синхронные двигатели переменного тока

Если соединения с обмотками ротора трехфазного двигателя сняты на контактных кольцах и подают отдельный ток возбуждения для создания непрерывного магнитного поля (или если ротор состоит из постоянного магнита), результат называется синхронным. двигатель, потому что ротор будет вращаться синхронно с вращающимся магнитным полем, создаваемым многофазным источником питания.

Синхронный двигатель также может использоваться как генератор переменного тока.

В настоящее время синхронные двигатели часто приводятся в действие транзисторными преобразователями частоты. Это значительно облегчает запуск массивного ротора большого синхронного двигателя. Они также могут запускаться как асинхронные двигатели с использованием обмотки с короткозамкнутым ротором, которая имеет общий ротор: как только двигатель достигает синхронной скорости, в обмотке с короткозамкнутым ротором не индуцируется ток, поэтому он мало влияет на синхронную работу двигателя. , помимо стабилизации скорости двигателя при изменении нагрузки.

Синхронные двигатели иногда используются в качестве тяговых двигателей.

Двухфазные серводвигатели переменного тока

Типичный двухфазный серводвигатель переменного тока имеет короткозамкнутый ротор и поле, состоящее из двух обмоток: 1) главной обмотки постоянного напряжения (AC) и 2) обмотки управляющего напряжения (AC) в квадратуре с основная обмотка так, чтобы создавать вращающееся магнитное поле. Электрическое сопротивление ротора намеренно повышено, чтобы кривая скорость-крутящий момент была достаточно линейной.Двухфазные серводвигатели по своей сути являются высокоскоростными устройствами с низким крутящим моментом, которые в значительной степени приспособлены для управления нагрузкой.

Однофазные асинхронные двигатели переменного тока

Трехфазные двигатели по своей природе создают вращающееся магнитное поле. Однако, когда доступна только однофазная мощность, вращающееся магнитное поле должно создаваться другими способами. Обычно используются несколько методов.

Обычным однофазным электродвигателем является электродвигатель с расщепленными полюсами, который используется в устройствах, требующих низкого крутящего момента, таких как электрические вентиляторы или другие небольшие бытовые приборы.В этом двигателе небольшие одновитковые медные «затеняющие катушки» создают движущееся магнитное поле. Часть каждого полюса окружена медной катушкой или лентой; индуцированный ток в перемычке противодействует изменению потока через катушку (закон Ленца), так что максимальная напряженность поля перемещается через поверхность полюса в каждом цикле, создавая необходимое вращающееся магнитное поле.

Другой распространенный однофазный двигатель переменного тока — это асинхронный двигатель с расщепленной фазой , обычно используемый в основных бытовых приборах, таких как стиральные машины и сушилки для одежды.По сравнению с двигателями с экранированными полюсами эти двигатели, как правило, могут обеспечивать гораздо больший пусковой крутящий момент за счет использования специальной пусковой обмотки в сочетании с центробежным переключателем.

В электродвигателях с расщепленной фазой пусковая обмотка спроектирована с более высоким сопротивлением, чем рабочая обмотка. Это создает цепь LR, которая немного сдвигает фазу тока в пусковой обмотке. Когда двигатель запускается, пусковая обмотка подключается к источнику питания через набор подпружиненных контактов, на которые нажимает еще не вращающийся центробежный переключатель.

Фаза магнитного поля в этой пусковой обмотке смещена по сравнению с фазой сетевого питания, что позволяет создать движущееся магнитное поле, которое запускает двигатель. Когда двигатель достигает скорости, близкой к расчетной, срабатывает центробежный переключатель, размыкая контакты и отсоединяя пусковую обмотку от источника питания. Тогда двигатель работает только на ходовой обмотке. Пусковую обмотку необходимо отключить, так как это приведет к увеличению потерь в двигателе.

В конденсаторном пусковом двигателе , пусковой конденсатор вставлен последовательно с пусковой обмоткой, создавая LC-цепь, способную к гораздо большему фазовому сдвигу (и, следовательно, гораздо большему пусковому крутящему моменту). Конденсатор, естественно, увеличивает стоимость таких двигателей.

Другой вариант — двигатель с постоянным разделенным конденсатором (PSC) (также известный как конденсаторный двигатель запуска и работы). Этот двигатель работает аналогично двигателю с конденсаторным пуском, описанному выше, но здесь нет переключателя центробежного пуска, а вторая обмотка постоянно подключена к источнику питания.Двигатели PSC часто используются в кондиционерах, вентиляторах и воздуходувках, а также в других случаях, когда требуется регулируемая скорость.

Отталкивающие двигатели — это однофазные двигатели переменного тока с фазным ротором, аналогичные универсальным двигателям. В отталкивающем двигателе щетки якоря закорочены вместе, а не соединены последовательно с полем. Было изготовлено несколько типов отталкивающих двигателей, но наиболее часто использовался асинхронный двигатель с отталкивающим пуском (RS-IR).Двигатель RS-IR оснащен центробежным переключателем, который замыкает все сегменты коммутатора, так что двигатель работает как асинхронный после разгона до полной скорости. Двигатели RS-IR используются для обеспечения высокого пускового момента на ампер в условиях низких рабочих температур и плохого регулирования напряжения источника. По состоянию на 2006 год продано немного отталкивающих двигателей любого типа.

Однофазные синхронные двигатели переменного тока

Небольшие однофазные двигатели переменного тока также могут быть спроектированы с намагниченными роторами (или несколькими вариантами этой идеи).Роторы в этих двигателях не требуют индуцированного тока, поэтому они не скользят назад против частоты сети. Вместо этого они вращаются синхронно с частотой сети. Из-за высокой точности скорости такие двигатели обычно используются для питания механических часов, проигрывателей виниловых дисков и ленточных накопителей; раньше они также широко использовались в приборах точного времени, таких как ленточные самописцы или механизмы привода телескопов. Синхронный двигатель с расщепленными полюсами — это одна из версий.

Моментные двигатели

Моментный двигатель — это особый вид асинхронного двигателя, который может работать неограниченное время при остановке (с заблокированным от вращения ротором) без повреждений.В этом режиме двигатель будет прикладывать постоянный крутящий момент к нагрузке (отсюда и название). Обычное применение моментного двигателя — это двигатели подающей и приемной катушек в ленточном накопителе. В этом приложении, приводимые в действие низким напряжением, характеристики этих двигателей позволяют приложить к ленте относительно постоянное легкое натяжение независимо от того, протягивает ли ведущую ленту мимо головок ленты. Управляемые более высоким напряжением (и, следовательно, обеспечивающие более высокий крутящий момент), моментные двигатели также могут работать в режиме быстрой перемотки вперед и назад, не требуя каких-либо дополнительных механизмов, таких как шестерни или муфты.В компьютерном мире моментные двигатели используются с рулевыми колесами с обратной связью по усилию.

Шаговые двигатели

По конструкции тесно связаны с трехфазными синхронными двигателями переменного тока шаговые двигатели, в которых внутренний ротор, содержащий постоянные магниты или большой железный сердечник с выступающими полюсами, управляется набором внешних магнитов, которые переключаются электронно. Шаговый двигатель также можно рассматривать как нечто среднее между электродвигателем постоянного тока и соленоидом. Поскольку каждая катушка поочередно получает питание, ротор выравнивается с магнитным полем, создаваемым обмоткой возбуждения под напряжением.В отличие от синхронного двигателя, при его применении двигатель не может вращаться непрерывно; вместо этого он «шагает» от одного положения к другому, когда обмотки возбуждения последовательно включаются и отключаются. В зависимости от последовательности ротор может вращаться вперед или назад.

Двигатель с постоянными магнитами

Двигатель с постоянными магнитами аналогичен обычному двигателю постоянного тока, за исключением того факта, что обмотка возбуждения заменена постоянными магнитами. Таким образом, двигатель будет действовать как двигатель постоянного тока с постоянным возбуждением (двигатель постоянного тока с независимым возбуждением).

Эти двигатели обычно имеют небольшую мощность, до нескольких лошадиных сил. Они используются в небольших приборах, транспортных средствах с батарейным питанием, в медицинских целях, в другом медицинском оборудовании, таком как рентгеновские аппараты. Эти двигатели также используются в игрушках и в автомобилях в качестве вспомогательных двигателей для регулировки сиденья, электрических стеклоподъемников, люка в крыше, регулировки зеркал, электродвигателей нагнетателя, вентиляторов охлаждения двигателя и т.п.

Последняя разработка — двигатели ПСМ для электромобилей.- Высокая эффективность — Минимальный фиксирующий момент и крутящий момент неровности поверхности — Небольшая занимаемая площадь, компактные размеры — Малый вес источник [3]

Бесщеточные двигатели постоянного тока

Многие ограничения классического коллекторного двигателя постоянного тока связаны с необходимостью прижимания щеток к коммутатору. Это создает трение. На более высоких скоростях щеткам становится все труднее поддерживать контакт. Щетки могут отскакивать от неровностей на поверхности коллектора, создавая искры.Это ограничивает максимальную скорость машины. Плотность тока на единицу площади щеток ограничивает мощность двигателя. Неидеальный электрический контакт также вызывает электрические помехи. Щетки со временем изнашиваются и требуют замены, а сам коллектор подлежит износу и техническому обслуживанию. Сборка коммутатора на большой машине — дорогостоящий элемент, требующий точной сборки многих деталей.

Эти проблемы устранены в бесщеточном двигателе. В этом двигателе механический «вращающийся переключатель» или узел коммутатора / щеточного устройства заменен внешним электронным переключателем, синхронизированным с положением ротора.Бесщеточные двигатели обычно имеют КПД 85-90 процентов, тогда как двигатели постоянного тока с щеткой обычно имеют КПД 75-80 процентов.

На полпути между обычными двигателями постоянного тока и шаговыми двигателями лежит область бесщеточных двигателей постоянного тока. Построенные аналогично шаговым двигателям, они часто используют внешний ротор с постоянным магнитом , три фазы приводных катушек, одно или несколько устройств на эффекте Холла для определения положения ротора и соответствующую приводную электронику. В специализированном классе контроллеров бесщеточных двигателей постоянного тока для определения положения и скорости используется обратная связь по ЭДС через основные фазовые соединения вместо датчиков Холла.Эти двигатели широко используются в электрических радиоуправляемых транспортных средствах и упоминаются моделистами как двигатели outrunner (поскольку магниты находятся снаружи).

Бесщеточные двигатели постоянного тока обычно используются там, где требуется точное управление скоростью, в дисководах компьютеров или в видеомагнитофонах, шпинделях в приводах компакт-дисков, компакт-дисков (и т. Д.), А также в механизмах офисных изделий, таких как вентиляторы, лазерные принтеры и копировальные аппараты. . У них есть несколько преимуществ перед обычными моторами:

  • По сравнению с вентиляторами переменного тока, использующими двигатели с экранированными полюсами, они очень эффективны и работают намного холоднее, чем эквивалентные двигатели переменного тока.Такой холодный режим работы приводит к значительному увеличению срока службы подшипников вентилятора.
  • Без изнашиваемого коммутатора срок службы бесщеточного двигателя постоянного тока может быть значительно больше по сравнению с двигателем постоянного тока с щетками и коммутатором. Коммутация также имеет тенденцию вызывать большое количество электрических и радиочастотных помех; без коммутатора или щеток бесщеточный двигатель может использоваться в электрически чувствительных устройствах, таких как звуковое оборудование или компьютеры.
  • Те же устройства на эффекте Холла, которые обеспечивают коммутацию, могут также обеспечивать удобный сигнал тахометра для приложений с замкнутым контуром (сервоуправлением).В вентиляторах сигнал тахометра может использоваться для получения сигнала «вентилятор исправен».
  • Двигатель можно легко синхронизировать с внутренними или внешними часами, что позволяет точно регулировать скорость.
  • Бесщеточные двигатели не имеют шансов на искрение, в отличие от щеточных двигателей, что делает их более подходящими для сред с летучими химическими веществами и топливом.

Современные бесщеточные двигатели постоянного тока имеют мощность от долей ватта до многих киловатт. В электромобилях используются более мощные бесщеточные двигатели мощностью до 100 кВт.Они также находят значительное применение в высокопроизводительных электрических моделях самолетов.

Двигатели постоянного тока без сердечника

Ничто в конструкции любого из описанных выше двигателей не требует, чтобы железные (стальные) части ротора действительно вращались; крутящий момент действует только на обмотки электромагнитов. Этим фактом пользуется бесщеточный электродвигатель постоянного тока , специализированная форма щеточного электродвигателя постоянного тока. Эти двигатели, оптимизированные для быстрого разгона, имеют ротор без железного сердечника.Ротор может иметь форму заполненного обмоткой цилиндра внутри магнитов статора, корзины, окружающей магниты статора, или плоского блина (возможно, сформированного на печатной монтажной плате), проходящего между верхним и нижним магнитами статора. Обмотки обычно стабилизируются путем пропитки эпоксидной смолой.

Поскольку ротор намного легче по весу (массе), чем обычный ротор, сформированный из медных обмоток на стальных пластинах, ротор может ускоряться намного быстрее, часто достигая механической постоянной времени менее 1 мс.Это особенно верно, если в обмотках используется алюминий, а не более тяжелая медь. Но поскольку в роторе нет металлической массы, которая могла бы служить радиатором, даже небольшие двигатели без сердечника часто должны охлаждаться принудительным воздухом.

Эти двигатели обычно использовались для привода приводов магнитных лентопротяжных устройств и до сих пор широко используются в высокопроизводительных системах с сервоуправлением.

Двигатели линейные

Линейный двигатель — это, по сути, электродвигатель, который был «раскручен» так, что вместо создания крутящего момента (вращения) он создает линейную силу по всей своей длине, создавая бегущее электромагнитное поле.

Линейные двигатели чаще всего представляют собой асинхронные двигатели или шаговые двигатели. Вы можете найти линейный двигатель в поезде на магнитной подушке (Transrapid), где поезд «летит» над землей.

Электродвигатель двойного питания

Электродвигатели с двойным питанием или Электромашины с двойным питанием включают в себя два набора многофазных обмоток с независимым питанием, которые активно участвуют в процессе преобразования энергии (т. скорость от субсинхронной до сверхсинхронной.В результате электродвигатели с двойной подачей питания представляют собой синхронные машины с эффективным диапазоном скорости с постоянным крутящим моментом, который в два раза превышает синхронную скорость для данной частоты возбуждения. Это вдвое больше диапазона скоростей с постоянным крутящим моментом, чем у электрических машин с одиночным питанием, в которых используется одна активная обмотка. Теоретически этот атрибут имеет привлекательные последствия по стоимости, размеру и эффективности по сравнению с электрическими машинами с однополярным питанием, но двигатели с двойным питанием трудно реализовать на практике.

Электромашины с двойным питанием и бесщеточным ротором с двойным питанием, бесщеточные электрические машины с двойным питанием и так называемые бесщеточные электрические машины с двойным питанием — единственные примеры синхронных электрических машин с двойным питанием.

Электродвигатель с однополярным питанием

Электродвигатели с однополярным питанием или Электромашины с однополярным питанием включают в себя одну многофазную обмотку, которая активно участвует в процессе преобразования энергии (т. Е. С однополярным питанием). Электромашины с однополярным питанием работают либо по индукционным (т. Е. Асинхронным), либо по синхронным принципам. Комплект активной обмотки может управляться электроникой для оптимальной производительности. Индукционные машины демонстрируют пусковой момент и могут работать как автономные машины, но синхронные машины должны иметь вспомогательные средства для запуска и практической работы, такие как электронный контроллер.

Асинхронные двигатели (т. Е. С короткозамкнутым ротором или с фазным ротором), синхронные двигатели (т. Е. С возбуждением от поля, двигатели с постоянными магнитами или бесщеточные двигатели постоянного тока, реактивные двигатели и т. Д.), Которые обсуждаются на этой странице, являются примеры двигателей с однополярным питанием. Безусловно, двигатели с однополярным питанием — это преимущественно устанавливаемые типы двигателей.

Двигатель с двумя механическими портами

Электродвигатели с двумя механическими портами (или электродвигатели DMP) считаются новой концепцией электродвигателей.Точнее, электродвигатели DMP — это на самом деле два электродвигателя (или генератора), занимающие один и тот же корпус. Каждый двигатель работает по традиционным принципам электродвигателя. Электрические порты, которые могут включать в себя электронную опору электродвигателей, связаны с одним электрическим портом, в то время как два механических порта (вала) доступны снаружи. Теоретически ожидается, что физическая интеграция двух двигателей в один увеличит удельную мощность за счет эффективного использования неиспользуемого в противном случае магнитного сердечника.Механика интеграции, например, для двух механических валов, может быть довольно экзотической.

Наномотор с нанотрубками

Исследователи из Калифорнийского университета в Беркли разработали подшипники вращения на основе многослойных углеродных нанотрубок. Прикрепив золотую пластину (с размерами порядка 100 нм) к внешней оболочке подвешенной многослойной углеродной нанотрубки (например, вложенных углеродных цилиндров), они могут электростатически вращать внешнюю оболочку относительно внутреннего ядра.Эти подшипники очень прочные; Устройства колебались тысячи раз без признаков износа. Работа была сделана на месте в SEM. Эти наноэлектромеханические системы (НЭМС) являются следующим шагом в миниатюризации, которая в будущем может найти свое применение в коммерческих целях.

На этом рендере можно увидеть процесс и технологию.

Пускатели электродвигатели

Противо-ЭДС помогает сопротивлению якоря ограничивать ток через якорь. При первом подаче питания на двигатель якорь не вращается.В этот момент противоэдс равна нулю, и единственным фактором, ограничивающим ток якоря, является сопротивление якоря. Обычно сопротивление якоря двигателя меньше одного Ом; поэтому ток через якорь при подаче питания будет очень большим. Этот ток может вызвать чрезмерное падение напряжения, что повлияет на другое оборудование в цепи. Или просто отключите устройства защиты от перегрузки.

  • Следовательно, возникает необходимость в дополнительном сопротивлении, включенном последовательно с якорем, для ограничения тока до тех пор, пока вращение двигателя не может создать противоэдс.По мере увеличения вращения двигателя сопротивление постепенно снижается.

Стартер трехточечный

Входящая мощность обозначается как L1 и L2. Компоненты, обозначенные пунктирными линиями, образуют трехточечный стартер. Как следует из названия, есть только три соединения с пускателем. Подключения к якорю обозначены как A1 и A2. Концы катушки возбуждения (возбуждения) обозначены как F1. и F2. Для управления скоростью полевой реостат соединен последовательно с шунтирующим полем.Одна сторона линии соединена с рычагом стартера (на схеме обозначена стрелкой). Рычаг подпружинен, поэтому он вернется в положение «Выкл.», Которое не удерживалось в любом другом положении.

  • На первом этапе плеча полное линейное напряжение прикладывается к полю шунта. Поскольку полевой реостат обычно устанавливается на минимальное сопротивление, скорость двигателя не будет чрезмерной; кроме того, двигатель будет развивать большой пусковой крутящий момент.
  • Стартер также соединяет электромагнит последовательно с шунтирующим полем.Он будет удерживать рычаг в положении, когда рычаг соприкасается с магнитом.
  • Между тем это напряжение подается на шунтирующее поле, а пусковое сопротивление ограничивает прохождение тока к якорю.
  • По мере того, как двигатель набирает скорость, нарастает противо-ЭДС, рычаг медленно перемещается в положение короткого замыкания.

Стартер четырехпозиционный

Четырехточечный стартер устраняет недостаток трехточечного стартера. В дополнение к тем же трем точкам, которые использовались с трехточечным стартером, другая сторона линии, L1, является четвертой точкой, подведенной к стартеру.Когда рычаг перемещается из положения «Выкл.», Катушка удерживающего магнита подключается к линии. Удерживающий магнит и пусковые резисторы работают так же, как и в трехпозиционном пускателе.

  • Возможность случайного размыкания цепи возбуждения весьма мала. Четырехточечный пускатель обеспечивает защиту двигателя от обесточивания. В случае сбоя питания двигатель отключается от сети.

См. Также

Компоненты:

  • Центробежный переключатель
  • Коммутатор (электрический)
  • Контактное кольцо

Ученые и инженеры:

Приложения:

  • Пила настольная
  • Электромобиль
  • Коррекция коэффициента мощности

Другое:

  • Электротехника
  • Электроэлемент
  • Электрогенератор
  • Список тем по электронике
  • Список технологий
  • Теорема о максимальной мощности
  • Мотор-генератор
  • Контроллер мотора
  • Способ движения
  • Электроэнергия однофазная
  • Хронология развития двигателей и двигателестроения

Примечания

  1. ↑ Tesla’s Early Years PBS.org .
  2. ↑ Патент США 0416194, «Электродвигатель», декабрь 1889 г.
  3. ↑ Патент США 0416194, «Электродвигатель», декабрь 1889 г.
  4. ↑ [1] electrichistory.com .
  5. ↑ [2] redlandsweb.com .

Список литературы

  • Бедфорд Б. Д., Р. Г. Хофт и др. 1964. Принципы инверторных цепей. Нью-Йорк: John Wiley & Sons, Inc. ISBN 0471061344. (Для управления скоростью двигателя с регулируемой частотой используются схемы инвертора)
  • Чиассон, Джон Н.2005. Моделирование и высокопроизводительное управление электрическими машинами. , Нью-Йорк, Нью-Йорк: Wiley-IEEE Press. ISBN 047168449X.
  • Fink, Donald G .; Бити, Х. Уэйн (1978). Стандартный справочник для инженеров-электриков, одиннадцатое издание. Нью-Йорк, Нью-Йорк: Макгроу-Хилл. ISBN 007020974X.
  • Фицджеральд, А. Э., Чарльз Кингсли младший, Стивен Д. Уманс. 2002. Электрические машины. Колумбус, Огайо: McGraw-Hill Science / Engineering / Math. ISBN 0073660094.
  • Хьюстон, Эдвин Дж.; Артур Кеннелли, (1902) Последние типы динамо-электрических машин. , авторское право — American Technical Book Company 1897, Нью-Йорк, Нью-Йорк: P.F. Кольер и сыновья. ASIN: B000874XH6
  • Купхальдт, Тони Р. Уроки электрических цепей — Том II. 2000-2006. Глава 13 ДВИГАТЕЛИ ПЕРЕМЕННОГО ТОКА. дата обращения 11 апреля 2006 г.
  • Пелли Б. Р. (1971). Тиристорные преобразователи с фазовым управлением и циклоконвертеры. Хобокен, Нью-Джерси: John Wiley & Sons. ISBN 0471677906
  • Шейнфилд Д.Дж. (2001). Промышленная электроника для инженеров, химиков и техников. Норвич, Нью-Йорк: Издательство Уильяма Эндрю. ISBN 0815514670.
  • Смит, А.О. Переменного и постоянного тока электродвигателей. [4]. accessdate 11-04-2006

Внешние ссылки

Все ссылки получены 18 сентября 2017 г.

кредитов

New World Encyclopedia Писатели и редакторы переписали и завершили статью Wikipedia в соответствии со стандартами New World Encyclopedia .Эта статья соответствует условиям лицензии Creative Commons CC-by-sa 3.0 (CC-by-sa), которая может использоваться и распространяться с указанием авторства. Кредит предоставляется в соответствии с условиями этой лицензии, которая может ссылаться как на участников New World Encyclopedia, и на самоотверженных добровольцев Фонда Викимедиа. Чтобы процитировать эту статью, щелкните здесь, чтобы просмотреть список допустимых форматов цитирования. История более ранних публикаций википедистов доступна исследователям здесь:

История этой статьи с момента ее импорта в New World Encyclopedia :

Примечание. Некоторые ограничения могут применяться к использованию отдельных изображений, на которые распространяется отдельная лицензия.

.

Добавить комментарий

Ваш адрес email не будет опубликован.