Подача воздуха в двигатель – Система подачи воздуха в двигатель: бензиновый и дизельный мотор

Содержание

Турбонаддув. Подача дополнительного воздуха в цилиндры двигателя

Мощность, развиваемая двигателем, зависит от количества воздуха и смешанного с ним топлива, которое может быть подано в двигатель. Если нужно увеличить мощность дви­гателя, следует увеличить как количество подаваемого воздуха, так и топлива. Подача большего количества топлива не даст эффекта до тех пор, пока не появится достаточное для его сгорания количество воздуха, иначе образуется избыток несгоревшего топлива, что приводит к перегреву двигателя и повышенной токсичности отработавших газов.

Увеличение мощности двигателя может быть достигнуто путем увеличения либо его рабочего объема, либо частоты вращения коленчатого вала. Увеличение рабочего объема увеличивает вес, размеры двигателя и, в конечном итоге, его стоимость. Увеличение частоты вращения коленчатого вала проблематично из-за возникающих при этом технических проблем, особенно для двигателей с большим рабочим объемом.

Технически приемлемым решением проблемы увеличения мощности является использование нагнетателя (компрессора).

Это означает, что подающийся в двигатель воздух сжимают перед его впуском в камеру сгорания.

Другими словами, компрессор обеспечивает подачу необходимого количества воздуха, достаточного для полного сгорания увеличенной дозы топлива. Следовательно, при прежнем рабочем объеме и той же частоте вращения коленчатого вала мы получаем большую мощность.

Основные системы наддува. Их работа

Существует две основные системы наддува:

  • с механическим приводом
  • «турбо» (использующие энергию отработавших газов)

Кроме того, существуют также комбинированные системы, например, турбокомпаундная.

Системы наддува двигателей

Рис. Системы наддува двигателей:
1 ­– нагнетательное колесо; 2 – привод компрессора; 3 – коленчатый вал; 4 – приводное колесо

В случае компрессора с механическим приводом необходимое давление воздуха получают благодаря механической связи между коленчатым валом двигателя и нагнетательным колесом или компрессором. В турбоком­прессоре давление воздуха получают благодаря вращению турбины потоком отработавших газов.

Турбокомпрессор состоит из двух турбин, состоящих из нагнетательного колеса 2 и приводного 9, связанных между собой при помощи вала. Вал установлен на двух опорах 11 и 12, на которые постоянно подается масло, охлаждающее и смазывающее опоры.

Обе турбины вращаются в одном направле­нии и с одинаковой скоростью. Выходящие из цилиндров двигателя отработавшие газы имеют высокую температуру и давление. Они разгоняются до большой скорости (около 10 000 об/мин) и вступают в контакт с лопатками приводного колеса 9, и преобразует их кинетическую энергию в механическую энергию вращения (крутящий момент). С такой же скорость вращается и нагнетательное колесо турбины 2, которое подает сжатый воздух к двигателю. Нагнетательное колесо 2 выполнено таким образом, что уже при небольшом потоке отработавших газов достигается достаточное давление нагнетаемого воздуха. В режиме полной нагрузки двигателя достигается максимальное избыточное давление (1,1…1,6 кгс/см2) при частоте вращения коленчатого вала около 2000 об/мин и поддерживается постоянным при дальнейшем наборе частоты вращения вплоть до максимальной.

Турбокомпрессор

Рис. Турбокомпрессор:

1 – трубопровод для подачи сжатого воздуха от турбины к диафрагме; 2 – нагнетательное колесо турбины; 3 – корпус нагнетательного колеса; 4 – промежуточный корпус; 5 – сбрасывающий клапан; 6 – диафрагма; 7 – пружина; 8 – диафрагменная камера; 9 – приводное колесо; 10 – корпус турбонагнетателя; 11,12 – опоры; А – подача воздуха от воздушного фильтра; B – подача воздуха к впускным клапаном; C – обводной канал сбрасывающего клапана для ограничения давления нагнетания; D – подача отработавших газов от двигателя; E – подача отработавших газов к выпускной системе; H – подача смазки; J – отвод смазки; K – подача сжатого воздуха для открытия сбрасывающего клапана

Между двигателем и турбокомпрессором существует связь только через поток отработавших газов. Частота вращения турбин напрямую не зависит от частоты вращения коленчатого вала двигателя и характери­зуется некоторой инерционностью, т.е. сначала увеличивается подача топлива, увеличивается энергия потока отработавших газов, а затем уже увеличивается частота вращения турбины и давление нагнетания, и в цилиндры двигателя поступает еще больше воздуха, что дает возможность увеличить подачу топлива. Этим объясняется повышенная дымность отработавших газов дизельных двигателей с наддувом.

Для предотвращения повышения давления больше необходимого при высоких частотах вращения предусмотрено специальное устройство состоящее из сбрасывающего клапана 5 и диафрагмы 6 с пружиной. Полость перед диафрагмой связана с давлением потока входящего воздуха через трубопровод 1. При увеличении давления, которое происходит с ростом частоты вращении коленчатого вала, диафрагма прогибается сжимая пружины и сбрасывающий клапан открывается. Отработавшие газы при этом проходят через дополнительный обводной канал С, что уменьшает частоту вращения приводного колеса турбины, а значит и нагнетательного колеса. Давление наддува при этом становится постоянным.

Для двигателей, работающих в широком диапазоне частот вращения коленчатого вала (к примеру, в легковом автомобиле), высокое давление наддува желательно даже на низких частотах. Именно поэтому будущее принадлежит турбокомпрессорам с регулируемым давлением. Небольшой диаметр современных турбин и специальные сечения газовых каналов способствуют уменьшению инерционности, т.е. турбина очень быстро разгоняется, и давление воздуха очень быстро достигает требуемого значения.

Для удовлетворения постоянно возрастающих требований, которые сегодня предъявляются к автомобильной технике в области расхода топлива, токсичности отработавших газов и уровня шума, разрабатываются электронные системы управлением наддувом, одна из которых представлена на рисунке.

На первом этапе, на основании определенного числа параметров, таких как температура охлаждающей жидкости, масла, впускаемого воздуха и отработавших газов, анализируется состояние двигателя. Измеряются также частота вращения коленчатого вала, положение педали акселератора и другие параметры. Все эти данные анализируются электронным блоком управления и используются для определения идеального в данных условиях давления наддува для двигателя.

На втором этапе это значение давления передается на исполнительные устройства, которые регулируют давление во впускной системе. При определении этого давления учитываются также критические условия работы двигателя, в частности, детонация. Аку­стические датчики позволяют распознать самовоспламенение, насколько малым бы оно ни было. Давление наддува в этом случае понижается. Эта операция повторяется до тех пор, пока детонация не исчезнет. Когда детонация прекращается, давление наддува снова возрастает до первоначального значения. Электронный блок управления также определяет идеальное давление наддува в случае повторяющейся детонации, во­зникающей, например, из-за использования низкокачественного топлива.

Электромагнитный клапан получает электрический сигнал, который определяет время его открывания, и работает, соответственно, как регулятор давления наддува.

Таким образом, на мембрану воздействует не все давление над­дува, а только его большая или меньшая часть, которая зависит от положения электромагнитного клапана.

При нажатой педали акселератора электронный блок управления подает команду на закрытие клапана, и все отработавшие газы направляются в турбину, из-за чего давление наддува возрастает и двигатель развивает зна­чительную мощность, что делает возможным резкое ускорение автомобиля. Как только желаемая скорость движения достигнута сбрасывающий клапан открывается, и давление наддува становится обычным.

Электронное управление турбонаддувом

Рис. Электронное управление турбонаддувом:
1 ­– информация о температуре всасываемого сжатого воздуха; 2 — информация о режиме работы двигателя; 3 — информация о температуре охлаждающей жидкости; 4 — информация о давлении во впускном трубопроводе: 5 — информация от датчика детонации; 6 –датчик детонации; 7 – двигатель; 8 – воздух, находящийся под давлением; 9 – заслонка моторного тормоза; 10 – электромагнитный клапан; 11 – воздушный фильтр; 12 — нагнетательное колесо; 13 – приводное колесо; 14 – сбрасывающий клапан; 15 – электронный блок управления

Волновой нагнетатель воздуха Comprex

Вариантом системы наддува для двигателей легковых автомобилей является волновой нагнетатель воздуха, известный также под названием Comprex. Приводимый от двигателя через зубчатый ремень 2, разделенный на секции ротор 7 вращается в цилиндрическом корпусе, имеющем с торцов щелевые окна для прохода свежего воздуха и выхода отработавших газов. Система окон и полостей выполнена особым образом, что позволяет волны давления потока 5 отработавших газов преобразовывать в повышенное давление потока 1 свежего воздуха.

Волновой нагнетатель

Рис. Волновой нагнетатель:
1 – поток свежего воздуха под высоким давлением; 2 – зубчатый ремень; 3 – поток свежего воздуха под низким давлением; 4 – поршень двигателя; 5 – поток отработавших газов под высоким давлением; 6 – поток отработавших газов низкого давлением; 7 – ротор; 8 – щелевые окна

Существенным достоинством волнового нагнетателя является непосредственный газодинамический энергообмен между отработавшими газами и свежим воздухом без участия каких-либо промежуточных механизмов. Такой энергообмен происходит со звуковой и сверхзвуковой скоростью. Волновой обменник, как и механический нагнета­тель, автоматически реагирует на изменения нагрузки изменением давления наддува. При постоянном передаточном отноше­нии между двигателем и волновым нагнетателем энергооб­мен оптимален только для одного рабочего режима. Для устране­ния этого недостатка на торцах корпуса имеется ряд воздуш­ных «карманов» раз­ной формы и размера, благодаря которым диапазон оптималь­ной работы нагнетате­ля расширяется. Кро­ме того, это позволяет достичь благоприят­ного протекания кри­вой крутящего момен­та, чего невозможно осуществить с помо­щью других методов наддува.

Волновой, нагнета­тель, по сравнению с другими способами наддува, требует мно­го места для ремен­ной передачи и систе­мы трубопроводов. Это усложняет возможность его установки в условиях огра­ниченного объема подкапотного про­странства автомобиля.

Нагнетатель с изменяемой геометрией турбины для дизельных двигателей

Для дизельных двигателей находит применение нагнетатель с изменяемой геометрией турбины, позволяющий ограничивать поток отработавших газов через турбину при высокой частоте вращения коленчатого вала двигателя.

Турбонагнетатель с изменяющейся геометрией турбины

Рис. Турбонагнетатель с изменяющейся геометрией турбины:
а – положение направляющих лопаток при высокой скорости потока отработавших газов; б – положение направляющих лопаток при низкой скорости потока отработавших газов; 1 – крыльчатка турбины; 2 – управляющее кольцо; 3 – подвижные направляющие лопатки соплового аппарата; 4 – управляющий рычаг; 5 – управляющий пневматический цилиндр; 6 – поток отработавших газов

Подвижные направляющие лопатки 3 соплового аппарата изменяют попе­речное сечение каналов, через которые отработавшие газы устремляются на крыльчатку турбины. Этим они согласовывают возникаю­щее в турбине давление газа с требуе­мым давлением наддува. При низкой на­грузке на двигатель подвижные лопатки открывают небольшое поперечное сече­ние каналов так, что увеличивается про­тиводавление отработавших газов. Поток газов развивает в турбине высокую скорость, обеспечи­вая высокую частоту вращения вала на­гнетателя. При этом поток отработавших газов дейст­вует на более удаленную от оси вала об­ласть лопаток крыльчатки турбины. Та­ким образом, возникает большее плечо силы, которое дополнительно увеличи­вает крутящий момент. При высокой на­грузке направляющие лопатки открыва­ют большее поперечное сечение кана­лов, что уменьшает скорость течения потока отработавших газов. Вследствие этого турбо­нагнетатель при равном количестве отработавших газов меньше ускоряется и работает с мень­шей частотой при большем количестве газов. Этим способом ограничивается давление наддува. Поворотом управляющего кольца 2 изменяется угол направления лопаток, которые устанавливаются на желаемый угол либо непосредственно отдельным управляющим рычагом 4, укрепленным на лопатках, либо поворотными кулачка­ми. Поворот кольца осуществляется при помощи управляющего пневматического цилиндра 5 под действием разрежения или давления воздуха либо, как вариант, при помощи электродвигателя с обрат­ной связью по положению лопаток (дат­чик положения). Нагнетатель с из­меняемой геометрией в положении покоя открыт и поэтому безопасен, т. е. при от­казе управления ни он сам, ни двигатель не повреждаются. Происходит лишь по­теря производительности на низких час­тотах вращения коленчатого вала.

ustroistvo-avtomobilya.ru

Система подачи дополнительного воздуха | Системы снижения токсичности автомобиля

Токсичные продукты неполного сгорания топлива в цилиндрах двигателя на отдельных режимах его работы можно нейтрализовать в выпускном трубопроводе путем дожигания с помощью подачи дополнительного воздуха. Система подачи дополнительного воздуха обеспечивает снижение выброса токсичных веществ с ОГ после пуска холодного двигателя. При прогреве двигателя ОГ содержат повышенное количество несгоревших углеводородов. Непрогретый нейтрализатор не способен их переработать, так как его температура еще не достигла рабочих значений. Подача дополнительного воздуха в выпускной трубопровод как можно ближе к тарелке выпускного клапана обогащает ОГ кислородом. В результате этого создаются условия для дожигания их несгоревших компонентов. Выделяющееся при этом тепло ускоряет разогрев нейтрализатора до рабочих температур.

Подача дополнительного воздуха является дополнительной мерой снижения токсичности ОГ и входит в комплекс общих мер снижения токсичности ОГ.

Схема системы подачи дополнительного воздуха показана на рисунке.

Схема системы подачи дополнительного воздуха

Рис. Схема системы подачи дополнительного воздуха:
1 – блок управления двигателем; 2 – измеритель массового расхода воздуха с датчиком температуры воздуха на впуске в двигатель; 3 – датчик температуры охлаждающей жидкости; 4 – датчик частоты вращения коленчатого вала; 5 – реле насоса дополнительного воздуха; 6 – клапан управления подачей дополнительного воздуха; 7 – насос дополнительного воздуха; 8 – комбинированный клапан; 9 – подача дополнительного воздуха; 10 – нейтрализатор; 11 – датчик кислорода, устанавливаемый перед нейтрализатором; 12 – выпуск отработавших газов; 13 – датчик кислорода, устанавливаемый после нейтрализатора

Основными входными сигналами, поступающими на блок управления двигателем являются:

  • сигналы датчиков кислорода установленных после нейтрализатора 13 (сигналы датчиков 11, установленных перед нейтрализаторами, используются только для диагностики системы)
  • температура охлаждающей жидкости
  • сигналы измерителя массового расхода воздуха, соответствующие нагрузке двигателя

В соответствии с поступающими на вход сигналами, блок управления двигателем вырабатывают команды на включение насоса дополнительного воздуха 7 через реле 5 и открытие электромагнитного клапана управления подачей дополнительного воздуха 6. Распространяющееся через клапан управления разрежение приводит в действие комбинированный клапан 8, через который производится кратковременная подача подаваемого насосом воздуха в поток отработавших газов за выпускными клапанами. Помимо этого комбинированные клапаны предотвращают проникновение горячих ОГ в насосы дополнительного воздуха.

Система подачи дополнительного воздуха отключается при увеличении нагрузки двигателя.

ustroistvo-avtomobilya.ru

Системы питания дизельных двигателей

ВМТ – верхняя мертвая точка
ГБЦ – головка блока цилиндров
КШМ – кривошипно-шатунный механизм
ТНВД – топливный насос высокого давления

Отличие бензинового и дизельного двигателей

На современных автомобилях могут устанавливаться бензиновые и дизельные двигатели. Раньше дизельные двигатели в основном применялись на грузовиках большой грузоподъемности и на тракторах. При их работе можно было наблюдать клубы черного дыма, которые вырывались из выхлопной трубы. Двигатель издавал довольно громкий звук, сопровождающийся стуком. Повышенный шум и вибрации были основными недостатками дизелей. Поэтому такие моторы не устанавливали на легковые автомобили. Современные дизельные двигатели по многим показателям способны конкурировать с бензиновыми моторами. По некоторым характеристикам дизеля серьезно превосходят бензиновые двигатели.

По конструкции бензиновые и дизельные двигатели почти одинаковы. Основное отличие дизеля от бензинового мотора – это использование более прочных материалов при изготовлении его деталей. Это необходимо потому, что дизельный двигатель во время работы испытывает более сильные нагрузки в отличие от своего бензинового собрата. Для повышения прочности некоторые детали изготавливают более массивными, что увеличивает вес мотора.

На дизельном двигателе степень сжатия несколько выше, чем на бензиновом. Поэтому блок цилиндров на дизеле выше, чем на аналогичном бензиновом моторе. С увеличением высоты блока цилиндров увеличивается высота кривошипа коленчатого вала и длина шатунов, что так же сказывается на утяжелении двигателя. Самым главным конструктивным отличием является система питания. На дизеле она кардинально отличается от системы питания бензинового мотора.

На бензиновом моторе топливовоздушная смесь готовится посредством смешивания паров бензина и воздуха. После этого смесь сжимается поршнем в цилиндре при его движении вверх, в ВМТ на свечу зажигания подается электрический ток, искра воспламеняет топливовоздушную смесь, и происходит рабочий ход. Во время работы бензинового двигателя для регулирования мощности нужно изменять количество топлива и количество воздуха, которые подаются для приготовления топливовоздушной смеси. При этом их пропорции должны строго соблюдаться. При недостатке или переизбытке одного из компонентов невозможна нормальная работа двигателя.

Для регулирования подачи воздуха в бензиновом двигателе во впускном воздушном тракте устанавливается дроссельная заслонка (на некоторых моторах подача регулируется другим способом). Подача топлива на современных бензиновых двигателях регулируется электронным блоком управления посредством увеличения или уменьшения времени открытия топливных форсунок. В результате чего изменяется количество топлива, которое впрыскивается за это время.

В дизельный двигатель топливо и воздух подаются раздельно. В воздушном тракте дроссельной заслонки нет (но иногда используется для аварийного отключения подачи воздуха). Чем больше подать воздуха в цилиндр, тем лучше и полнее произойдет сгорание дизтоплива. Топливо в дизельный двигатель подается через форсунки. Смешивания воздуха и топлива как такового не происходит. Воздух необходим для поддержания горения дизтоплива. Как же происходит воспламенение в дизеле? А вот тут самое интересное.

По каким-то причинам во многих источниках этот вопрос затрагивается поверхностно или раскрывается не достаточно точно, а в некоторых случаях не совсем верно. Простому обывателю не так просто понять, что же происходит в процессе воспламенения топлива в дизеле. Некоторые люди пишут, что топливо в дизеле воспламеняется от его сжатия. Если налить на поршень дизтоплива и вращать дизель стартером, в цилиндре воздух в такте сжатия начнет сжиматься и давить на эту «лужицу», но топливо никогда не загорится в цилиндре, хоть весь день крутите. Некоторые люди пишут, что топливо воспламеняется от сжатия воздуха в цилиндре. Пример выше… При таких условиях дизтопливо никогда не воспламенится.

В дизельном двигателе во время такта сжатия воздух в цилиндре разогревается до высокой температуры. Это происходит во время его работы или при запуске в идеальных условиях при плюсовой температуре окружающего воздуха. Некоторые ссылаются именно на высокую температуру сжатого воздуха в цилиндре. Что именно из-за высокой температуры сжатого воздуха дизтопливо самовоспламеняется. В этом есть доля правды, но процесс не раскрыт полностью. Попробуем разобраться в этом более подробно.

Дизтопливо, распыленное форсункой на мелкие частички в дизельном двигателе, воспламеняется в результате его нагрева от трения об сжатый воздух. Чем мельче частички топлива при его распылении, тем больше точек трения и, соответственно, легче воспламенение. Если же в цилиндр под большим давлением подать струю дизтоплива, воспламенения не произойдет, ибо точек трения очень мало. Разогретый воздух в цилиндре способствует лучшему воспламенению дизтоплива за счет более быстрого разогрева частичек топлива от трения. Но нужно понимать, что воспламенение происходит именно от трения. Для примера вспомните спичку и как её поджигают. Оказывается, все просто, достаточно вспомнить физические процессы, которые известны из школьного курса физики.

Плотность воздуха в цилиндре так же влияет на процесс воспламенения. Чем плотнее среда, которая образуется в такте сжатия, тем сильнее происходит трение. Если впрыснуть дозу дизтоплива в объем воздуха с атмосферным давлением, и, соответственно, с недостаточной плотностью, воспламенения не произойдет. И не произойдет воспламенения, если впрыснуть дизтопливо в бензиновый мотор. Степень сжатия в бензиновом моторе ниже, чем в дизеле. Существует некий порог, ниже которого дизтопливо не способно воспламеняться. Поэтому в дизелях степень сжатия выше по отношению к бензиновым моторам.

Системы подачи воздуха

Система питания дизельного двигателя включает в себя систему подачи воздуха и систему подачи топлива в двигатель. В зависимости от способа подачи воздуха в двигатель различают атмосферные дизеля и турбодизеля. В атмосферных моторах воздух поступает в цилиндры посредством всасывания во время такта впуска, то есть за счет естественного разряжения. В турбодизелях используется нагнетатель воздуха, в основном это турбокомпрессор, работающий от выхлопных газов.

На одном валу находится две крыльчатки. За счет выхода выхлопных газов одна из крыльчаток раскручивается и через общий вал вращение передаётся на вторую крыльчатку, которая создает поток воздуха и нагнетает его во впускной тракт двигателя. Так как во время прохождения горячих выхлопных газов через турбину нагнетаемый воздух может нагреваться, между турбиной и впускным коллектором иногда устанавливают интеркулер. Это теплообменник, который позволяет охладить нагнетаемый в двигатель воздух, что еще больше увеличивает его объем. Перед использованием воздух на любом двигателе очищается системой очистки. Это фильтры разных видов и конструкций.

Турбодизеля обладают большей мощностью в отличие от атмосферных моторов. За счет большего объема воздуха, который нагнетается в цилиндры, происходит более полное и быстрое сгорание топлива. Это способствует снижению расхода топлива и повышению мощности мотора. Так же снижается токсичность выхлопных газов. Так как скорость сгорания топлива в турбированном моторе выше, это позволяет увеличить максимальные обороты вращения двигателя, что положительно сказывается на его характеристиках.

Есть и несколько минусов при использовании турбин на дизелях. Сам турбокомпрессор подвергается воздействию высоких температур от выхлопных газов. Что требует использовать дорогостоящие термостойкие материалы при изготовлении турбины. На некоторых моделях дизелей турбина охлаждается жидкостью из основной системы охлаждения двигателя. Во время работы вал турбины раскручивается до нескольких десятков тысяч оборотов в минуту. Для увеличения срока службы пары трения используют износостойкие материалы, способные выдерживать огромные скорости вращения. Узлы вращения вала турбины обычно смазывают моторным маслом из общей системы смазки двигателя, что предъявляет серьезные требования к качеству моторных масел.

При использовании турбокомпрессора на двигателе его ресурс несколько сокращается по отношению к атмосферному двигателю. Это происходит из-за повышения нагрузок на основные механизмы двигателя. Так же повышается стоимость двигателя в целом. Этому способствует высокая стоимость самого турбокомпрессора, конструктивное усложнение систем охлаждения и смазки двигателя и увеличению воздушных трубопроводов. Несмотря на свои недостатки из-за большей экономичности и мощности турбодизеля все чаще устанавливаются на автомобили.

Камера сгорания

В зависимости от вида камеры сгорания различают камеры раздельного типа и камеры нераздельного типа. Раздельная камера сгорания представляет собой дополнительную камеру небольшого объема, которая соединяется каналом с верхней частью цилиндра. Эта камера обычно находится в полости ГБЦ. Топливо через форсунку впрыскивается именно в эту, так называемую, предкамеру. В момент воспламенения топлива продукты горения распространяются по соединительному каналу в цилиндр и давят на поршень.

Основным плюсом таких моторов является мягкость работы. То есть во время работы такого двигателя почти не слышен характерный «дизельный стук». Это обусловлено тем, что взрывная волна при воспламенении топлива образуется внутри предкамеры и не воздействует непосредственно на поршень. На таких моторах в распылителях форсунок было, как правило, одно отверстие, что упрощало и удешевляло их изготовление. Но были и минусы в такой конструкции. Это сложность изготовления самой предкамеры и её рубашки охлаждения.

Моторы с раздельными камерами сгорания обладали довольно высоким расходом топлива.
Двигатели с нераздельными камерами сгорания получили большее распространение. Такие моторы чаще называют двигатели с непосредственным впрыском. То есть на них топливо впрыскивается непосредственно в цилиндр в надпоршневое пространство. Камера сгорания может быть выполнена в днище поршня, в полости ГБЦ или частично там и там. По геометрической форме камеры сгорания могут быть разные. В некоторой степени это зависит от формы факела распыла топлива форсункой. Некоторые формы камеры сгорания способствуют образованию завихрений внутри цилиндра, что улучшает сгорание топлива.

Двигатели с непосредственным впрыском обладают рядом преимуществ по отношению к моторам с раздельными камерами сгорания. Самый главный показатель – это экономичность. Нераздельная камера сгорания имеет компактную форму, поэтому обладает малыми тепловыми потерями при работе двигателя. Это позволяет мотору быстрее выходить на рабочий тепловой режим и соответственно меньше тратить топлива. При нераздельной камере сгорания уменьшается высота ГБЦ и сложность её изготовления. Одним из минусов таких моторов является высокие ударные нагрузки, которые действуют на КШМ.

При использовании в форсунках распылителей с несколькими отверстиями малого диаметра удалось обеспечить более плавное горение топлива. Что послужило снижению ударных нагрузок, действующих на КШМ. Но производство таких форсунок довольно трудоемко и предъявляет к себе высокую точность изготовления, что сказывается на их стоимости. Тем не менее, именно моторы с непосредственным впрыском получили большое распространение в современном автомобилестроении. Такие моторы постоянно модернизируются и получают новые технологии, в частности по повышению прочности материалов КШМ.

Системы подачи топлива

На дорогах всего мира можно встретить автомобили с различными по конструкции системами подачи топлива. Некоторые из них устарели морально и физически. Эти системы не отвечают экологическим нормам по содержанию вредных выбросов в выхлопных газах. Тем не менее, такие автомобили выполняют свои функции. Существует несколько видов систем подачи топлива в дизельный двигатель.

Топливо из бака подается к ТНВД подкачивающим насосом. В подающем топливопроводе устанавливаются фильтры очистки топлива. Как правило, это двухступенчатая система очистки. На первом этапе топливо очищается от крупных примесей в виде мелких камешков, металлических обломков и так далее. Второй этап – это фильтр тонкой очистки, который улавливает все остальное, в том числе и воду. От ТНВД топливо подается к форсункам через трубки, которые способны выдерживать высокое давление.

ТНВД могут быть рядными и распределительными. Иногда встречаются V- образные, они схожи по конструкции с рядными насосами. Так же существуют так называемые магистральные насосы, о них чуть ниже… Рядные ТНВД могут иметь несколько плунжеров, которые создают давление топлива для индивидуальной форсунки. Насосы работают от вращения, имеют привод от двигателя, и вращение строго синхронизировано с положением поршней в ВМТ. Во время работы каждый плунжер обеспечивает повышение давления в подающей магистрали в нужный момент для каждого цилиндра двигателя. Форсунка имеет запорную иглу в распылителе, которая открывается от возросшего давления топлива. После открытия и впрыска топлива, давление в магистрали падает, и игла запирает отверстия распылителя. Все довольно просто устроено и работает механически.

Для увеличения подачи топлива в плунжере увеличивается давление, что увеличивает время впрыска топлива, а в итоге и его количество. Чтобы увеличить давление в плунжере насоса имеется специальная зубчатая рейка, которая при линейном перемещении поворачивает специальные втулки плунжеров относительно вертикальной оси. Тем самым отсечка происходит позже, в итоге повышается давление в топливной магистрали. Рейка соединяется с педалью газа механически или электроприводом. Такие ТНВД также имеют механический регулятор холостых оборотов и регулятор опережения момента впрыска топлива, который необходим при увеличении оборотов двигателя.

Насосы такого типа смазываются моторным маслом из общей системы смазки двигателя, поэтому могут работать на топливе низкого качества.

Системы питания топливом такого типа очень надежны. Они хорошо зарекомендовали себя за многолетнее применение и до сих пор могут применяться на дизелях. Но такие системы не обладают потенциалом в дальнейшем развитии. Для более мягкой работы дизеля и повышения экономичности следует повысить давление впрыска топлива. На таких системах повышать давление неограниченно нет возможности. Во время работы в определенный момент происходит резонанс в трубопроводах высокого давления. Поэтому увеличение давления может привести к разрушению трубок. Так же есть зависимость производительности насоса от оборотов работы двигателя, что негативно сказывается на тонкости распыления топлива в этом режиме.

Распределительный насос отличается от рядного насоса количеством плунжерных секций. Такие насосы могут иметь одну или несколько плунжеров, но их количество может не соответствовать количеству цилиндров двигателя, на которые они устанавливаются. Подача топлива распределяется специальным механизмом. В нужный момент топливо под высоким давлением подается на нужную форсунку в соответствии с тактом работы двигателя. Форсунки при этом могут использоваться такой же конструкции, которая описана выше. Насосы такого типа компактнее рядных насосов, поэтому чаще применяются на легковых дизелях. Механизм распределения подачи топлива довольно точно работает, что увеличивает мягкость работы двигателя. В отличие от рядных насосов производительность распределительных почти не зависит от оборотов двигателя.

Но есть в таких насосах и недостаток. Все детали внутри насоса смазываются дизтопливом, которое он подает к форсункам. Точность изготовления прецизионных пар довольно высока. Поэтому качество топлива влияет на долговечность работы насосов такого типа. При недостаточной смазке ускоряется износ деталей, а присутствие влаги в топливе достаточно серьезно уменьшает его ресурс.

Существуют системы, в которых насос высокого давления и форсунка объединены в один элемент. Что исключает применение трубопроводов высокого давления. Подкачивающий насос подает топливо сразу на насос-форсунку. На каждый цилиндр устанавливается индивидуальная насос-форсунка. В таких системах давление впрыска топлива может достигать нескольких сотен МПа, что увеличивает экономичность и уменьшает содержание вредных выбросов в выхлопных газах. Насос-форсунка приводится в работу от кулачков распределительного вала, что упрощает конструкцию двигателя в целом. Современные топливные системы такого типа, а существуют они довольно давно, имеют ряд новшеств.

Например, на некоторых двигателях с такой системой впрыск топлива разделен на несколько фаз. То есть топливо впрыскивается не одной порцией, а несколькими. Каждая из порций может отличаться по объему, что позволяет контролировать процесс сгорания топлива. В результате воспламенение происходит более мягко, снижая ударные нагрузки на КШМ, а токсичность выхлопных газов снижается за счет более полного сгорания топлива в цилиндрах. Минусом же являются высокая стоимость насос-форсунки и необходимость использовать топливо высокого качества.

Еще одна система питания топливом на дизельном моторе – это система Common Rail. В переводе с английского означает общая магистраль. На легковых двигателях разные бренды называют эту систему по-своему, но принцип работы у них схож. В роли общей магистрали выступает топливная рампа, в которой накапливается энергия давления. Из топливной рампы топливо подается на форсунки, открывающиеся электрическим импульсом. Чем-то напоминает топливную рампу бензинового мотора, но в дизеле давление в рампе составляет несколько сотен МПа. Такое давление создает магистральный насос высокого давления. Электрический импульс подается в нужный момент из блока управления двигателем.

Во время запуска двигателя магистральный насос начинает качать топливо и создается высокое давление в топливной рампе. На рампе расположен датчик давления, который измеряет давление топлива в ней. Блок управления считывает показания с этого датчика, и только при достижении определенного давления он подает импульс на открытие форсунок. Происходит запуск дизеля и дальнейшая его работа. Во время работы двигателя насос постоянно поддерживает высокое давление в топливной рампе, поэтому обороты двигателя не влияют на давление впрыска топлива, рампа выступает в роли накопителя. Электронный блок управления позволяет контролировать угол опережения впрыска и поддерживает обороты холостого хода мотора, что упрощает конструкцию насоса в отличие от ТНВД рядного типа.

Высокое давление впрыска позволяет добиться наилучшего распыления топлива и уменьшить его расход до феноменально малых показателей, сохраняя при этом высокую мощность двигателя. Легковой дизель объемом в 3 литра может потреблять топлива в городском режиме всего около 8-10 литров на 100 километров пробега. Крутящий момент дизельных двигателей выше, чем на аналогичных бензиновых моторах, он приближается к расчетным максимальным показателям почти с холостых оборотов. Бензиновые же достигают этого момента на максимально допустимых оборотах вращения коленвала.

В настоящее время легковые автомобили с системой впрыска Common Rail способны конкурировать по динамике разгона с бензиновыми моторами. Но потреблять при этом намного меньше топлива. Всю картину портит качество дизтоплива в нашей стране. В итоге выходят из строя насосы высокого давления и форсунки. Стоимость этих деталей довольно высока, поэтому экономия на расходе топлива сходит на нет при наступлении очередного ремонта топливной аппаратуры. Возможно, в скором будущем наши нефтеперерабатывающие заводы повысят качество выпускаемого дизтоплива. И каждый потенциальный клиент сможет выбрать для себя автомобиль именно с экономичным дизельным двигателем…

Автор: Александр Назаров

polnyi-privod.ru

Система питания воздухом двигателя

Система питания воздухом служит для очистки его от пыли и подвода к цилиндрам двигателя.

Основная функция рассматриваемой системы — очистка воздуха от пыли, поскольку, попадая в цилиндр двигателя, ее частицы вызывают интенсивное абразивное изнашивание деталей кривошипно-шатунного механизма, в основном стенок цилиндров, поршневых колец, шеек и подшипников коленчатого вала. Износ приводит к снижению мощности двигателя, сокращению срока его службы, увеличению расхода топлива и смазочного масла. Если воздух, поступающий в цилиндры, не очищать, то срок службы двигателя резко уменьшается. Например, при движении по проселку гусеничной машины без воздухоочистителя выход из строя двигателя происходит после 15… 20 ч работы.

В систему питания воздухом входят воздухозаборник, воздухоочиститель и впускной коллектор, по которому очищенный воздух поступает из воздухоочистителя к цилиндрам двигателя. В некоторых случаях система питания может включать в себя устройства отсоса пыли из пылесборников воздухоочистителей.

Экспериментально установлено, что практически безвредны для работы двигателя пылинки размером 0,001 мм. Однако такая степень очистки воздуха связана со значительными потерями мощности, поэтому допускается попадание в двигатель частиц большего размера, но в очень малой концентрации.

Параметр воздуха, характеризующий концентрацию пыли в нем, называется запыленностью. Под запыленностью воздуха понимают массу пыли в граммах, содержащейся в 1 м3 воздуха. Если запыленность не превышает 0,001 г/м3, то пыль практически не влияет на работу двигателя. На входе в воздухоочиститель запыленность воздуха изменяется в широких пределах и зависит в основном от следующих факторов: климатические и дорожные условия, конструкция ходовой части, скорость движения и высота воздухозаборника над уровнем дороги. Особенно существенно она меняется по высоте.

Воздухоочиститель ТС должен удовлетворять следующим требованиям:

  • обеспечивать высокую степень очистки
  • иметь минимальное и стабильное во времени сопротивление проходу воздуха
  • обладать малой массой и небольшими габаритами
  • иметь ресурс, равный ресурсу двигателя
  • длительно работать без промывки или смены фильтрующего элемента
  • обеспечивать малую трудоемкость работ по обслуживанию и эффективное глушение шума при впуске

Конструкции воздухоочистителей современных колесных и гусеничных машин отличаются многообразием. Однако среди них можно выделить следующие основные типы: инерционные, инерционно-центробежные, фильтрующие, комбинированные, т.е. имеющие не менее двух ступеней очистки.

В инерционных воздухоочистителях используется сила инерции движущихся с большой скоростью пылинок. При резком изменении направления движения воздуха в этих очистителях частицы пыли продолжают двигаться по инерции в первоначальном направлении и, вылетая из воздушного потока, поступающего в двигатель, удаляются наружу либо задерживаются в пылесборниках или специальных масляных ваннах.

В инерционно-центробежных воздухоочистителях наряду с силами инерции, возникающими при резком изменении направления потока воздуха, используются также центробежные силы: воздух, проходя через такой очиститель, закручивается с помощью спиральных направляющих, тангенциального (расположенного по касательной к цилиндрической стенке) входа или другими способами. Частицы пыли отбрасываются центробежным силами к стенке корпуса воздухоочистителя и скатываются по ней в пылесборник.

Инерционно-центробежные воздухоочистители без вращающихся деталей называются циклонами. Существуют также инерционно-центробежные воздухоочистители роторного типа, в которых очистка воздуха от пыли осуществляется за счет действия центробежных сил, вызванных вращающимся ротором. В таком очистителе ротор вращается обычно вследствие взаимодействия его лопастей с потоком воздуха, стремящимися попасть во впускную трубу из-за разрежения, создаваемого работающим двигателем.

Серьезным преимуществом инерционных и инерционно-центробежных воздухоочистителей является возможность выброса сухой пыли из их пылесборников в атмосферу путем отсоса. Это особенно важно при сильной запыленности воздуха, когда необходимо непрерывное удаление пыли. Возможность отсоса сухой пыли из пылесборника обусловлена разрежением, создаваемым в выпускной трубе двигателя с помощью эжекционного устройства. Основной недостаток инерционных и инерционно-центробежных воздухоочистителей — недостаточно высокая эффективность при очистке воздуха от мельчайших частиц.

Фильтрующие воздухоочистители при очистке воздуху от пыли обеспечивают его фильтрацию в пористых материалах или адсорбцию пылевых частиц на смоченных маслом поверхностям В качестве фильтрующего элемента могут применяться смоченные маслом металлические сетки, промасленные кассеты с капроновой ,или проволочной набивкой, пропитанная маслом полиуретановая пена, синтетические материалы на перфорированном каркасе и т.д. Однако в настоящее время наиболее широкое распространение получили сухие фильтрующие элементы из картона, уложенного «гармошкой». Картонные фильтры, эффективные при любом режиме работы двигателя, задерживают более 99 % частиц размером свыше 2 мкм.

Относительно недавно на некоторых ТС начато использование так называемого марлевого фильтра, в котором помимо обычных принципов фильтрации в пористых материалах реализуется принцип удержания пылевых частиц на поверхности фильтрующего элемента за счет статического электричества. Дело в том, что двойной каркас из алюминиевой сетки и пропитанная специальным силиконовым составом марлевая набивка такого фильтра образуют своеобразный конденсатор, который заряжается статическим электричеством при трении между пылинками. В результате пылинки как бы налипают на наружную поверхность фильтра, образуя подобие «шубы». Ресурс такого фильтрующего элемента значительно больше, чем у обычного картонного, так как пыль не остается внутри фильтра, а скапливается на его поверхности и может быть легко удалена при очередном техническом обслуживании.

Достоинством фильтрующих воздухоочистителей является их способность задерживать мельчайшие частицы пыли, а недостатком — необходимость периодической очистки, промывки или замены фильтрующих элементов.

Комбинированные воздухоочистители сочетают в себе преимущества очистителей рассмотренных типов. Они широко используются как на колесных, так и на гусеничных машинах. Чаще всего применяют две ступени очистки. На первой ступени (действует инерционный очиститель или циклон) из воздуха удаляются наиболее крупные и тяжелые частицы, на второй (фильтрующий очиститель) — мелкие пылинки.

ustroistvo-avtomobilya.ru

Охлаждение надувочного воздуха (интеркулляция) | Турбонаддув

Воздух, сжатый турбо­компрессором, как и другие газы, нагревается и расширяется. Горячий воздух обладает меньшей плотностью и содержит значительно меньше ки­слорода, чем холодный. Плотность холодного воздуха увеличивается приблизительно на 10 — 15 %.  Большее количество кислорода означает большее количество сгорев­шего топлива, т.е. двигатель развивает большую мощность. Второй, но не менее важный эффект – это положительное влияние снижения температуры воздушного заряда на процесс сгорания, вследствие снижения детонации. Подача в двигатель более холодного воздуха заметно снижает температурную нагрузку, что благоприятно влияет на его надежность и долговечность. По этим причинам перед подачей воздуха  в цилиндры, для повышения мощности двигателя его следует охлаждать.

Интеркуллер  – это радиатор или, более правильно, охладитель, помещенный между компрессором и впускным коллектором.
Охлаждение воздуха при наддуве

Рис. Охлаждение воздуха при наддуве:
1 – приводное колесо; 2 – поток отработавших газов; 3 – камера сгорания; 4 – поток сжатого охлажденного воздуха; 5 – охладитель; 6 – нагнетательное колесо

Наиболее часто применяются охладители типа воздух/воздух и системы, которые используют охлаждающую жидкость для охлаждения воздуха (охла­ждающая жидкость/воздух. Интеркуллеры типа воздух/воздух имеют наибольшее распространение в силу своей простоты и надежности, так как они не имеют никаких движущихся частей. Такой интеркуллер состоит из трубы и радиатора и изготавливается преимущественно из алюминия. Эффективность работы  интеркуллера зависит от его объема, а значит от наличия свободного пространства для установки. Теплопередающая способность достаточна, но потери давления могут быть высокими, особенно при малых размерах. Данная потеря давления на интеркуллере обнаруживается как увеличение более чем вдвое давления в выпускном коллекторе – одного из главных врагов турбонаддува.

Интеркуллер воздух-вода сложнее. Он состоит из двух радиаторов, один между турбиной и двигателем, другой перед стандартным радиатором системы охлаждения. Вода циркулирует при помощи электрического насоса. Выбор использования типа интеркуллера основывается на  факторах свободного пространства, возможностью обдува воздухом интеркуллера, используемыми датчиками расхода воздуха. Например, для 6 цилиндрового BMW  используется интеркуллер на основе воды, так как для интеркуллера воздух/воздух соответствующих размеров, нет места. Кроме этого  отсутствует поток воздуха с высокой скоростью в местах, где можно было бы разместить интеркуллер. С другой стороны, в Ford Mustang GT ситуация идеальная, для установки интеркуллера воздух/воздух. Пространства достаточно для действительно огромного интеркуллера и он в зоне мощного воздушного потока.

Кроме систем воздух/воздух и жидкость/воздух ведутся разработки по применению распыленной воды в систему впуска. Теплота, поглощенная при испарении воды имеет сильный эффект охлаждения горячего сжатого воздуха, выходящего из турбины. Понижение в температуры наддувного воздуха снижает тенденцию к детонации.

Существуют также специальные конструкции, в которых охлаждение воздуха происходит до температуры ниже окружающей среды, за счет использования льда.

ustroistvo-avtomobilya.ru

Способ подачи воздуха в двигатель внутреннего сгорания

 

СПОСОБ ПОДАЧИ ВОЗДУХА В ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ путем частичной передачи тепла воздуха жидкому аммиаку и впуска охлаждаемого воздуха в цилиндры, о т л и ч а rant и и с я тем, что, с целью повьшения экономичности двигателя, передачу тепла воздуха жидкому аммиаку производят путем их смешивания, а воздух впускают в цилиндры в смеси . с образовавшимися парами аммиака; / (Л ж

СОЮЗ СОВЕТСНИХ

СОЦИАЛИСТИЧЕСНИХ

РЕСПУБЛИК (19) (П) (59 4 F 02 В 29/04

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

К ASTOPCHOMY СВИДЕТЕЛЬСТВУ

ГОСУДАРСТВЕННЫЙ НОМИТЕТ СССР

ПО ДЕЛАМ ИЗОБРЕТЕНИЙ И ОТНРЫТИ ( (21) 3883495/31-06 (22) 10.04.85 (46) 15.11.86. Бюл. Р 42 (71) Омский ордена Ленина сельскохозяйственный институт им. С.М. Кирова (72) В.П, Квашни, Л.Г. Ковалев и О.П. Устенко (53) 621.43.05(088.8) (56) Авторское свидетельство СССР.

Ф 74962, кл. F 02 В 29/04, 1947. (54)(57) СПОСОБ ПОДАЧИ ВОЗДУХА В ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ путем частичной передачи тепла воздуха жидкому аммиаку и впуска охлаждаемого воздуха в цилиндры, о т л и ч а юшийся тем, что, с целью повышения экономичности двигателя, переда-. чу тепла воздуха жидкому аммиаку производят путем их смешивания, а воздух впускают в цилиндры в смеси, с образовавшимися парами аммиака;

1270384 тора 2 подается жидкий аммиак, хранящийся в емкости 3. Жидкий аммиак, испаряясь, охлаждает воздух. Далее

I воздух в смеси с парами аммиака через впускной коллектор 4 подают в цилинд ры двигателя 5. С помощью дозатора 2 регулируют количество подаваемого .. жидкого аммиака в зависимости от температуры воздуха, подаваемого в дви 1O гатель

Составитель Л. Черный

Редактор Е. Копча Техред Л.Сердюкова Корректор С. Черни

Заказ 6217/32, Тираж 523 Подписноp

ВНИИПИ Государственного комитета СССР по делам изобретений и открытий

113035, Москва, Ж-35, Раушская наб., д. 4/5

Производственно-полиграфическое предприятие, r. Ужгород, ул. Проектная, 4

Изобретение относится к машиностроению, а именно к двигателестроению, в частности к способам подачи воздуха в двигатели внутреннего сгорания.

Цель изобретения — повышение экономичности двигателя и повышение его мощности, На чертеже изображена схема устройства для осуществления .предлагаемого способа.

Устройство содержит впускной трубопровод 1, дозатор 2 подачи жидкого аммиака, установленный в трубопроводе 1, емкость 3 для хранения жидкого 15 аммиака и впускной коллектор 4 двигателя 5.

Устройство работает следующим образом.

В воздух, поступающий в двигатель 20

5 по трубопроводу 1, при помощи дозаТаким образом, подача жидкого аммиака непосредственно в поток воздуха, поступающего в двигатель, позволяет повысить экономичность двигателя за счет снижения затрат на охлаждение подаваемого воздуха и сгорания аммиака в цилиндрах двигателя, а также повысить мощность двигателя за счет увеличения массы заряда путем ro охлаждения.

Способ подачи воздуха в двигатель внутреннего сгорания Способ подачи воздуха в двигатель внутреннего сгорания 

findpatent.ru

Нагнетатель воздуха – увеличиваем мощность авто своими руками + Видео

На заре автомобилестроения инженеры решали вопрос увеличения мощности двигателей внутреннего сгорания, что называется, в лоб – увеличивали количество и размеры цилиндров. Однако практичность таких разработок даже во времена дешевой нефти была под большим вопросом. Нагнетатель воздуха позволил решить эту проблему своими руками.

1 Турбонагнетатели – с чем столкнулись инженеры?

Сложно это представить, но еще в 1909 году автомобиль с двигателем внутреннего сгорания установил рекорд скорости в 200 км/ч – достижение для тех времен невероятное. Еще сложнее представить объем двигателя, благодаря которому удалось разогнать авто до такой скорости – 28 литров! Даже речи быть не могло, чтобы запустить такие агрегаты в массовое производство, ведь их обслуживание своими руками было практически невозможным, ввиду огромных габаритов двигателя.

К счастью, дальнейшие разработки автомобильных инженеров велись в сторону уменьшения объема при сохранении мощностей, а также упрощения конструкции. Чтобы автомобиль стал массовым, следует дать возможность ремонтировать его своими руками – так размышляли первые автомобилестроители и были совершенно правы.

Благодаря появлению нагнетателя, удалось при сохранении всех параметров сходу увеличить мощность на целых 50 %! Сегодня опытному автомобилисту не составит труда своими руками установить одну из популярных систем турборежима.

Представить принцип работы такого устройства совершенно не сложно даже школьнику младших классов. Работу мотора обеспечивает постоянное сгорание топливно-воздушной смеси, которая поступает в цилиндры двигателя. В зависимости от возможностей двигателя и режимов его работы устанавливается оптимальное соотношение воздуха и топлива. В обычных условиях объем ТВС ограничен размерами цилиндра – внутрь камеры смесь попадает благодаря разрежению на такте впуска.

Нагнетатель воздуха позволяет подать внутрь цилиндра на впуске больше топливно-воздушной смеси. Больше ТВС – больше энергии при сгорании, больше мощность агрегата. Казалось бы, все просто, как дважды два, однако без нюансов не обошлось. Увеличение мощности двигателя таким способом повлекло целый ряд проблем. Главная из них – возрастание количества тепловой энергии при сгорании смеси, что в свою очередь влечет быстрое прогорание поршней, клапанов, поломку системы охлаждения. И далеко не всегда последствия удается ликвидировать своими руками.

Кроме того, с увеличением объема ТВС увеличивается и шанс детонации двигателя в буквальном смысле этого слова. Даже без детонации преждевременный износ агрегата гарантирован. Чтобы уменьшить негативные последствия для автомобиля (избежать их полностью не удается), принято использовать высокооктановое топливо, а также декомпрессию. В первом случае приходится своими руками платить немалые деньги, а во втором существенно снижается мощность.

2 Нагнетатель воздуха – как влить силы в двигатель?

С развитием автомобилестроения возникали и различные способы компрессии воздуха. Многие разработки уверенно дошли и до наших дней. Итак, разберемся, какие способы наддува существуют:

  1. Механический – «отец» нагнетателей, возникший практически сразу же после появления ДВЗ. В действие такой наддув приводится коленвалом мотора.
  2. Электрический – более современный вариант турбонаддува, в котором излишнее давление в цилиндрах создает электрический компрессор.
  3. Турбонаддув – нагнетатель в такой системе работает от давления выхлопных газов и компрессора.
  4. Комбинированный наддув – совмещение различных систем, чаще всего механической и турбо.


Как правило, такие системы серийно на автомобили не устанавливаются, что дает автолюбителям множество возможностей для тюнинга своими руками.

3 Механический турбонагнетатель воздуха – своими руками совершенствуем авто!

Наиболее эффективен режим турбо на впрысковых бензиновых двигателях. Моторы карбюраторного типа также могут работать с механическим нагнетателем, однако им необходима определенная доработка своими руками, в частности, установка жиклеров с увеличенным сечением и другие меры. В случае с инжекторным двигателем все сводится к новой прошивке.

Механический нагнетатель, работающий от коленвала двигателя, имеет несомненное достоинство – он работает абсолютно синхронно с агрегатом и в режиме турбо обеспечивает равномерную подачу воздуха в соответствии с оборотами мотора. Однако такое устройство будет отбирать для своей работы часть мощности движка.

Самыми распространенными вариантами построения механических нагнетателей, которые можно установить своими руками, являются три типа:

  • Центробежный аппарат – применяется как самостоятельно в виде компрессора, так и в комбинации с другими устройствами. Принцип работы достаточно прост – лопатки, вращающиеся на большой скорости, захватывают воздух и забрасывают внутрь корпуса, который имеет улиткообразную форму. На выходе из корпуса поток воздуха приобретает нужное для режима турбо давление. Невысокая стоимость устройства и возможность установки своими руками сделали его наиболее популярным. Однако в его работе хватает и сложностей, в частности, с техобслуживанием.
  • Нагнетатель ROOTS – представляет собой лопатки ротора, которые помещены в замкнутый корпус. Воздух захватывается на входе, за счет высокой скорости вращения лопаток воздух приобретает более высокое давление на выходе. Главный недостаток устройства такого типа – неравномерность подачи воздушного потока, что вызывает пульсацию давления в режиме турбо. Однако относительно тихая работа, надежность и компактность заставляют автомобилистов мириться даже с таким недостатком. При определенных навыках обращения с техникой вам не составит труда установить такой наддув своими руками.
  • Нагнетатель LYSHOLM – представитель винтового типа аппаратов. Принцип работы схож с предыдущим – поток воздуха создается роторами, которые вращаются на высокой скорости. Главное отличие этого типа нагнетателей – маленький зазор между винтами, что вызывает множество сложностей в проектировании и установке таких изделий. Встречаются они на автомобилях нечасто и стоят недешево. Устанавливать их своими руками не рекомендуется, лучше обращаться к специалистам по турбонаддуву.

4 Турбонагнетатель – универсальный наддув своими руками

Как для бензиновых, так и для дизельных двигателей возможно применение турбонагнетателя. Это устройство представляет собой комбинацию компрессора и турбины, которая использует давление выхлопных газов для работы. Последнее устройство создает ряд проблем – турбина должна выдерживать высокие температуры и огромную скорость вращения, а значит, материалы для ее изготовления должны быть сверхпрочными. Некоторую часть нагрузки с турбины снимает компрессор, что и позволяет комплексу в целом справляться со своей задачей.

Недостаток устройства заключается в некотором запаздывании режима турбо – необходимо время, чтобы после нажатия на педаль турбина раскрутилась до нужного количества оборотов.

Впрочем, современные агрегаты решают и эту проблему, в основном благодаря наличию дополнительных нагнетателей. В отличие от турбонагнетателя, никакого запаздывания после нажатия на педаль в случае с электрическим компрессором вы не почувствуете – устройство, которое чаще всего комбинируют с центробежной турбиной, начинает работать уже на малых и средних оборотах, а турбина подключается на высоких. Электрический нагнетатель воздуха достаточно прост в реализации – никаких сложных систем и устройств для его установки не потребуется, так что усовершенствовать авто своими руками с его помощью вполне осуществимо.

tuningkod.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *