Простейший двигатель внутреннего сгорания: Простой многотопливный мотор вытеснит привычный двигатель внутреннего сгорания

Содержание

Простой многотопливный мотор вытеснит привычный двигатель внутреннего сгорания

+ A —

Новый многотопливный двигатель готов к массовому производству. При той же мощности, новый двигатель более чем в 2 раза легче ДВС

Компания Cyclone Power Technologies объявила о завершении разработки и тестирования многотопливного двигателя нового типа. В настоящее время начался этап коммерциализации новинки, а также ее сертификации для автомобильной промышленности. Новый тип двигателя под названием Waste Heat Engine (WHE) является устройством для превращения тепловой энергии сгорающего топлива в механическую работу. Собственно, то же самое делает и двигатель внутреннего сгорания (ДВС), но в отличие от него WHE – это двигатель внешнего сгорания.

Принцип работы WHE очень прост: во внешней камере сгорания происходит нагрев теплоносителя, деионизированной воды, которая в свою очередь толкает поршни или крутит турбину. КПД WHE не превышает таковой у дизельного двигателя, однако двигатель внешнего сгорания имеет несколько преимуществ.

Прежде всего, WHE может потреблять любое топливо: жидкое или газообразное. Это может быть этанол, дизельное топливо, бензин, уголь, биомасса или их смеси – в общем, все что угодно, включая тепло солнечного света, отработанного пара и т.д. Например в первоначальных тестах использовалось топливо, получаемое из кожуры апельсина, пальмового или хлопкового масла, куриного жира. При этом биотопливо можно не разбавлять нефтяным, а значит выброс двигателя WHE может быть более чистым. Поскольку WHE способен работать при относительно низкой температуре в 225 градусов Цельсия, он может использовать для работы самые разные источники тепла.

Одно из главных преимуществ WHE – меньшее количество деталей и более простое устройство, чем у ДВС, рассказывает cnews.ru. Внешнее сгорание не требует сложной системы клапанов и газораспределительного механизма, хотя из-за высокого давления необходимо применять высокопрочные материалы. В целом, WHE-DR намного легче традиционного ДВС. Так, типичный 4-цилиндровый блок цилиндров ДВС весит около 90 кг, в то время, как аналогичный алюминиевый блок цилиндров WHE весит около 35 кг.

Стоимость изготовления WHE должна быть не выше, чем стоимостьизготовления аналогичного по мощности ДВС, но при этом новый двигатель будет легче и сможет использовать самые дешевые виды топлива.

Небольшое автомобильное шасси с двигателем WHE мощностью 330 л.с. В центре баки для различных видов топлива: угольный порошок, сжиженный газ (водород, метан и т.д.), жидкое топливо (бензин, биотопливо и т.д.).

Двигатели WHE можно использовать во всем диапазоне мощностей. В частности, небольшие электрогенераторы мощностью от 1 кВт до 10 кВт будут иметь небольшие размеры и смогут питаться любым видом топлива, что крайне важно для аварийных источников энергии. Такие же двигатели можно использовать для небольшой техники, вроде газонокосилок, или составить их в пакеты для применения в промышленности, на морских судах и т.д.

Двигатели WHE среднего размера мощностью 100-400 л.с. идеально подойдут для автомобилей и небольших лодок, а большие двигатели мощностью от 400 до 1000 л.с. – для кораблей.

Благодаря отсутствию дыма, вибрации, меньшему шуму при работе и более экологичному выхлопу, двигатели внешнего сгорания могут использоваться для энергоснабжения городских поездов и других видов общественного транспорта.

Перышкин Физика ГДЗ § 22. – Рамблер/класс

Хай, там же в параграфе все написано, как вы читаете? или ленитесь? 
§ 22. ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ
1. Двигатель внутреннего сгорания — это тепловой двигатель, топливо в котором сгорает прямо в цилиндре внутри самого двигателя. 
2. Простейший двигатель внутреннего сгорания состоит из цилиндра, в котором перемещается поршень, соединенный внизу шатуном с коленчатым валом. Два клапана в верхней части цилиндра открываются и закрываются автоматически в нужные моменты. Один клапан служит для подачи в цилиндр горючей смеси, воспламеняющейся от свечи, другой клапан выпускает отработавшие газы.
3. При сгорании горючей смеси в двигателе внутреннего сгорания сначала значительно повышается температура до 1600°C-l800°C и давление на поршень возрастает, газы, расширяясь, толкают поршень и коленчатый вал, совершая механиче­скую работу. Газы при этом охлаждаются, так как часть их внутренней энергии превращается в механическую энергию.
4. Рабочий цикл двигателя происходит за четыре хода (такта) поршня, при этом коленчатый вал делает два оборота.
5. Такты поршня имеют названия в соответствии с происходящими в них процессами: впуск, сжатие, рабочий ход и выпуск. Впуск — поршень движется вниз, в цилиндре создается разряжение, открывается клапан и в цилиндр поступает горючая смесь, клапан закрывается, коленчатый вал совершает пол-оборота. Сжатие — коленчатый вал продолжает поворот, поршень движется вверх и сжимает горючую смесь, она воспламеняется от искры и быстро сгорает. Рабочий ход — поршень под давлением газов опускается вниз, передавая толчок шатуну и коленчатому валу с маховиком при закрытых клапанах. В конце третьего такта открывается другой клапан для выпуска продуктов сгорания в атмосферу. Выпуск — поршень движется вверх, продукты сгорания выходят через клапан, в конце такта клапан закрывается.
6. Маховик, обладая значительной инерционностью, необходим для передачи движения поршню в следующих тактах.

Принцип работы двигателя внутреннего сгорания: дизель, бензин

Несмотря на постоянно появляющуюся информацию об изобретении новых, современных, более экономичных и экологичных, видов силовых агрегатов, двигатель внутреннего сгорания еще долго не сдаст свои позиции основной «рабочей лошадки» мирового автопрома.  Вот уже более сотни лет именно двигатель внутреннего сгорания работает, приводя в движение миллионы как легковых, так и грузовых автомобилей по всему миру

Уникальное изобретение

Если задать в поисковик вопрос о том, кто является изобретателем ДВС, можно получить добрый десяток имен. Действительно, на заре автомобилестроение над созданием практичного мотора бились десятки пытливых умов. И не столь важно, кто оформил патент первым, а кто опоздал на пару месяцев. Главное – результат вышел на славу.

Компактный, простой в конструкции но в то же время обладающий хорошим КПД, ДВС оставил далеко позади остальных «конкурентов»  в праве именоваться двигателем прогресса нового столетия.

Что такое двигатель внутреннего сгорания

Предназначение любого теплового силового агрегата – превратить энергию топлива в полезную механическую работу. В ДВС сгорают жидкие или газообразные углеводороды: бензин, дизельное топливо или природный газ. 

Как это происходит? В специальных «отверстиях» в корпусе (цилиндрах) расположены поршни – металлические «стаканы». Днище детали ориентировано вверх, а снизу, через кривошипно-шатунный механизм, она соединена с коленвалом.

Герметичность достигается поршневыми кольцами, не допускающими проникновение газов между стенками цилиндра и поршнем.

Все двигатели внутреннего сгорания имеют одинаковые этапы работы:

  • впуска;
  • сжатия;
  • горение;
  • расширения;
  • выпуска.

Для того, чтобы разобраться в процессе, стоит рассмотреть  как работает бензиновый двигатель – самый распространенный в автомобилях.

Как работает бензиновый двигатель

Перемещение поршня в цилиндре ограничивается двумя крайними положениями – верхней и нижней мертвыми точками (ВМТ и НМТ).

Первый такт начинается с того, что при движении поршня вниз открывается впускной клапан, в который подается приготовленная карбюратором (вариант – в инжекторе) воздушно-бензиновая смесь.

Во время обратного хода  топливо сжимается, а когда снова начинается движение вниз, смесь зажигается высоковольтной искрой. Взрыв отталкивает поршень вниз, в результате чего проворачивается коленвал.  

Во время последнего такта отработавшиеся газы удаляются через открывшийся выпускной клапан.

Такой двигатель называют четырехтактных – по числу перемещений. Автомобильный двигатель работает непрерывно, поэтому содержит как минимум четыре цилиндра. Вспомогательные ходы в одних обеспечиваются рабочими тактами в других.  

Как открываются клапаны

Для обеспечения процесса важно точное открывание и закрывание впускных и выпускных клапанов. За эту работу отвечает газораспределительный механизм.

Через шкив ГРМ «синхронизирован» с  коленвалом, что позволяет открывать каналы в нужные такты (при определенном положении поршней).

При вращении кулачок распредвала давит на коромысло, которое открывает клапан. Когда кулачок проворачивается, отверстие закрывается с помощью пружины.

Особенности дизеля

Аналогичные такты имеет и дизельный двигатель, единственное различие которого в том, как работает воспламенение. Здесь топливо и воздух подаются отдельно. Именно последний при сжатии выделяет тепло, воспламеняющее горючее. 

Все для ремонта и обслуживаия бензиновых и дизельных двигателей ищитена страницах fortunaavto.com.ua!

Двигатель внутреннего сгорания — устройство и принцип работы ДВС

Двигатель внутреннего сгорания (ДВС) – это самый распространенный тип двигателя из всех, которые устанавливаются в настоящее время на автомобили. Несмотря на то, что современный двигатель внутреннего сгорания состоит из тысячи частей, принцип его работы весьма прост. В рамках данной статьи мы рассмотрим устройство и принцип работы ДВС.

Внизу страницы смотрите видео, на котором наглядно показано устройство и принцип работы бензинового ДВС.

В каждом двигателе внутреннего сгорания есть цилиндр и поршень. Именно внутри цилиндра ДВС происходит преобразование тепловой энергии, выделяемой при сжигании топлива, в энергию механическую, способную заставить наш автомобиль двигаться. Этот процесс повторяется с частотой несколько сотен раз в минуту, что обеспечивает непрерывное вращение выходящего из двигателя коленчатого вала.

Принцип работы четырёхтактного двигателя внутреннего сгорания

В подавляющем большинстве легковых автомобилей устанавливают четырехтактные двигатели внутреннего сгорания, поэтому мы и берём его за основу. Чтобы лучше понять принцип устройства бензинового ДВС, предлагаем вам взглянуть на рисунок:


Устройство двигателя внутреннего сгорания

Топливно-воздушная смесь, попадая через впускной клапан в камеру сгорания (такт первый – впуск), сжимается (такт второй – сжатие) и воспламеняется от искры свечи зажигания. При сжигании топлива, под воздействием высокой температуры в цилиндре двигателя образуется избыточное давление, заставляющее поршень двигаться вниз к так называемой нижней мертвой точке (НМТ), совершая при этом такт третий – рабочий ход. Перемещаясь во время рабочего хода вниз, с помощью шатуна, поршень приводит во вращение коленчатый вал. Затем, перемещаясь от НМТ к верхней мертвой точке (ВМТ) поршень выталкивает отработанные газы через выпускной клапан в выхлопную систему автомобиля – это четвертый такт (выпуск) работы двигателя внутреннего сгорания.

Такт – это процесс, происходящий в цилиндре двигателя за один ход поршня. Совокупность тактов, повторяющихся в строгой последовательности и с определенной периодичностью, обычно называют рабочим циклом, в данном случае, двигателя внутреннего сгорания.

  1. Такт первый — ВПУСК. Поршень перемещается от ВМТ к НМТ, при этом возникает разряжение и полость цилиндра ДВС заполняется горючей смесью через открытый впускной клапан. Смесь, попадая в камеру сгорания, смешивается с остатками отработавших газов. В конце впуска давление в цилиндре составляет 0,07–0,095 МПа, а температура 80-120 ºС.
  2. Такт второй – СЖАТИЕ. Поршень движется к ВМТ, оба клапана закрыты, рабочая смесь в цилиндре сжимается, а сжатие сопровождается повышением давления (1,2–1,7 МПа) и температуры (300-400 ºС).
  3. Такт третий – РАСШИРЕНИЕ. При воспламенении рабочей смеси в цилиндре ДВС выделяется значительное количество теплоты, резко увеличивается температура (до 2500 градусов по Цельсию). Под давлением поршень перемещается к НМТ. Давление равно 4–6 МПа.
  4. Такт четвертый – ВЫПУСК. Поршень стремится к ВМТ через открытый выпускной клапан, отработавшие газы выталкиваются в выпускной трубопровод, а затем в окружающую среду. Давление в конце цикла: 0,1–0,12 МПа, температура 600-900 ºС.

И так, вы смогли убедиться, что двигатель внутреннего сгорания устроен не очень сложно. Как говорится, все гениальное – просто. А для большей наглядности рекомендуем посмотреть видео, на котором также очень хорошо показан принцип работы ДВС.

Видео: как устроен двигатель внутреннего сгорания

Принципы работы простейшего одноцилиндрового двигателя внутреннего сгорания

В этой статье будут рассмотрены принципы работы простейшего одноцилиндрового двигателя внутреннего сгорания. Этот двигатель взят для простоты понятия физических процессов, для того чтобы понять, как работают все подобные двигатели. На самом деле всё намного сложнее каждый процесс имеет столько особенностей, что и у специалистов, хорошо знающих работу двигателя, часто возникают споры по многим вопросам. Но все бензиновые двигатели (двигатели с принудительным зажиганием) работают на основе принципов, впервые описанных немецким инженером Отто.

Двигатель нужен для обеспечения автомобиля (если это не стационарный двигатель) механической энергией. Двигатель создаёт эту энергию. Но из школьного курса физики известно, что энергия не возникает из ничего и не исчезает бесследно. Что же является источником механической энергии, вырабатываемой двигателем, какую энергию он преобразует в механическую? Источником энергии двигателя внутреннего сгорания является энергия межмолекулярных связей углеводородного топлива, сгорающего в цилиндрах двигателя. Во время сгорания углеводородного топлива происходит разрыв этих связей с большим выделением тепловой энергии, которую двигатель и преобразует в механическую энергию в форме вращательного движения.

Для химических реакций, происходящих при сгорании топлива, требуется окислитель. Для этого используется кислород, содержащийся в окружающем атмосферном воздухе. Воздух это смесь газов, кислорода в этой смеси приблизительно 21%. В цилиндрах двигателя сгорает смесь топлива с воздухом. В идеальном случае все молекулы углеводородов, поданные в цилиндр, сгорая, соединяются со всеми молекулами кислорода, поданными в цилиндр во время одного рабочего цикла. То есть после процесса сгорания в цилиндре двигателя не должно остаться не одной молекулы топлива, и не одной свободной молекулы кислорода.

Химические реакции, во время которых полностью используются все активные вещества, называются стехиометрическими. Во время стехиометрического процесса для полного сгорания всех молекул 1-го килограмма топлива необходимо использовать приблизительно 14,7 килограммов воздуха. Это идеальный процесс, но реально при работе двигателя на различных режимах обеспечить его достаточно трудно, тем более что на некоторых режимах двигатель будет работать устойчиво, только если смесь отличается от стехиометрической.

Разобравшись, откуда берётся механическая энергия, приступим к изучению принципов работы двигателя. Как уже было отмечено ранее, здесь будет рассматриваться работа четырёхтактного двигателя внутреннего сгорания, работающего по циклу Отто. Основным признаком цикла Отто можно назвать то, что перед воспламенением топливовоздушная смесь предварительно сжимается, а зажигание смеси происходит от постороннего источника – в современных двигателях только при помощи электрической искры.

За время становления и развития двигателя внутреннего сгорания было изобретено очень много различных конструкций и, разумеется, двигатель, работающий на принципах цикла Отто, был далеко не единственный. Из двигателей с возвратной поступательным движением поршня можно назвать двигатель, работающий по циклу Аткинсона, а из двигателей с круговым движением поршня наиболее известен роторно-поршневой двигатель Ванкеля. Существует большое количество вообще экзотических конструкций. Но все они не получили широкого практического применения. Более 99,9% используемых в настоящее время двигателей внутреннего сгорания работают по циклу Отто, (в данной статье сюда будут отнесены и дизельные двигатели) которые в свою очередь подразделяются на двигатели с электрическим воспламенением смеси и дизельные двигатели, с компрессионным воспламенением смеси.

Принципы работы таких двигателей и будут рассмотрены в этой статье.

И бензиновые и дизельные двигатели могут быть не только четырёхтактными, но и двухтактными. В настоящее время двухтактные двигатели на автомобиле не применяются, поэтому в данной главе они рассматриваться не будут.

Прежде чем рассматривать принципы работы двигателя рассмотрим, из каких основных деталей он состоит.

Основные детали простейшего ДВС

  1. Цилиндр.
  2. Поршень.
  3. Камера сгорания.
  4. Шатун.
  5. Коленчатый вал.
  6. Впускной канал.
  7. Впускной клапан.
  8. Впускной распределительный вал.
  9. Выпускной канал.
  10. Выпускной клапан.
  11. Выпускной распределительный вал.
  12. Свеча зажигания.
  13. Топливная форсунка (не показана).
  14. Маховик двигателя (не показан).

1. Цилиндр – основа двигателя, именно в нём происходит процесс сгорания топлива, цилиндр является направляющим элементом для движения поршня.

2. Поршень – деталь, перемещающаяся в цилиндре под воздействием расширяющихся газов или под воздействием кривошипно-шатунного механизма. Условно примем, что скользящее соединение, между поршнем и стенками цилиндра абсолютно герметично, то есть, ни какие газа не могут просочиться через это соединение.

3. Камера сгорания – пространство над поршнем, когда поршень находится в самой верхней точке своего хода (ВМТ).

4. Шатун – это стержень, передающий усилие от поршня к кривошипу коленчатого вала и, наоборот, от коленчатого вала к поршню.

5. Коленчатый вал – служит для преобразования возвратно-поступательного движения поршня во вращательное, именно такое движение наиболее удобно для использования.

6. Впускной канал – канал, по которому топливовоздушная смесь поступает в цилиндр двигателя.

7. Впускной клапан – соединяет впускной канал с цилиндром двигателя. Условно принимаем, что в закрытом состоянии клапан полностью герметичен, а в открытом состоянии он не оказывает сопротивление проходу топливовоздушной смеси в цилиндр двигателя.

8. Впускной распределительный вал – открывает и закрывает впускной клапан в нужное время.

9. Выпускной канал – канал, по которому отработавшие газы выводятся из двигателя в атмосферу.

10. Выпускной клапан – соединяет выпускной канал с цилиндром двигателя. Условно принимаем, что в закрытом состоянии клапан полностью герметичен, а в открытом состоянии он не оказывает сопротивление проходу отработавших газов из цилиндра двигателя.

11. Выпускной распределительный вал – открывает и закрывает выпускной клапан в нужное время.

12. Свеча зажигания – служит для воспламенения сжатой топливовоздушной смеси в необходимое время.

13. Топливная форсунка – служит для распыления топлива в воздухе, поступающем в цилиндр двигателя.

14. Маховик двигателя – служит для необходимого перемещения поршня за счёт сил инерции во время всех тактов, кроме рабочего.

Далее придётся понять и запомнить довольно много специальных терминов, но сейчас упомянем, без полного объяснения, только некоторые.

1 — Верхняя мёртвая точка (ВМТ) – точка в которой поршень останавливается при изменении направления своего движения вверх цилиндра на движение вниз.

2 — Нижняя мёртвая точка (НМТ) – точка в которой поршень останавливается при изменении направления своего движения вниз цилиндра на движение вверх.

3 — Ход поршня – расстояние, проходимое поршнем при перемещении от ВМТ к НМТ или наоборот.

4 — Такт двигателя – перемещение поршня от одной мёртвой точки к другой. Во время каждого такта коленчатый вал двигателя совершает половину оборота (180?).

5 — Цикл – периодичное повторение четырёх тактов двигателя во время работы. Полный цикл двигателя состоит из четырёх тактов и совершается за два полных оборота коленчатого вала (720?).

Принципы работы простейшего одноцилиндрового четырёхтактного двигателя:

1 — Такт всасывания

(поступления топливовоздушной смеси в цилиндр).

Впускной клапан открыт.
Выпускной клапан закрыт.

Под воздействием внешнего усилия (стартёра двигателя, заводной ручки или инерции маховика), передаваемого поршню шатуном, поршень перемещается от ВМТ к НМТ. Поскольку соединение между поршнем и цилиндром полностью герметично, в пространстве над поршнем образуется пониженное давление (разрежение). Под воздействием атмосферного давления воздух через впускной канал, и открытый впускной клапан, начинает поступать в цилиндр двигателя. В это время топливная форсунка распыляет в поступающем воздухе необходимое количество топлива, в результате чего в цилиндр поступает горючая топливовоздушная смесь.

При достижении поршнем НМТ впускной клапан закрывается.

2 — Такт сжатия.

Оба клапана закрыты.

Под воздействием внешнего усилия поршень перемещается из НМТ к ВМТ. При этом в цилиндре происходит сжатие топливовоздушной смеси. По окончании такта сжатия, когда поршень встаёт в положении ВМТ, вся топливовоздушная смесь находится в сжатом состоянии в камере сгорания.

В это время свеча зажигания при помощи электрической искры воспламеняет сжатую топливовоздушную смесь. В дизельном двигателе в камеру сгорания при помощи топливной форсунки впрыскивается мелко распылённое топливо. В результате чего в обоих случаях происходит воспламенение смеси.

3 — Рабочий такт.

Оба клапана закрыты.

При сгорании топливовоздушной смеси в цилиндре резко поднимается температура и, главное, давление. Это давление равномерно давит во все стороны, но стенки камеры сгорания и цилиндра рассчитаны на это давления. А вод давление, оказываемое расширяющимися газами на поршень, днище которого является нижней частью камеры сгорания, заставляет поршень перемещаться вниз от ВМТ к НМТ. Это усилие через шатун передаётся на кривошип коленчатого вала, который преобразует поступательное движение поршня во вращательное движение.

При достижении поршнем НМТ открывается выпускной клапан.

4 — Такт выпуска.

Впускной клапан закрыт.
Выпускной клапан закрыт.

Под воздействием внешнего усилия, передаваемого на поршень через шатун, поршень перемещается из положения НМТ в положение ВМТ. Во время этого перемещения поршень вытесняет из цилиндра отработавшие газы через открытый выпускной клапан в выпускной канал и далее в атмосферу.

И так, мы рассмотрели полный цикл двигателя, состоящий из четырех тактов. Далее этот цикл повторяется бесконечно, пока двигатель не будет выключен или не закончится бензин в баке автомобиля.

Наверное, Вы обратили внимание, что из четырёх тактов полезным является только один – рабочий такт. Именно во время этого такта вырабатывается необходимая энергия. Все другие такты являются вспомогательными. Возможно, такая конструкция может показаться не эффективной, но лучшего, по всем показателям, пока ничего не изобретено. Да, существуют двухтактные двигатели, в которых полный цикл осуществляется за один поворот коленчатого вала. Существует роторно-поршневой двигатель Ванкеля, в котором вообще нет деталей, совершающих возвратно-поступательное движение, но этим конструкциям, при некоторых преимуществах, присущи свои недостатки, поэтому двигатели, работающие по четырёхтактному циклу Отто, в настоящее время имеют практически монопольное распространение в мире. И какой-либо замены им, в обозримом будущем, реально не предвидится.

Дизельный двигатель.

Двигатель, изобретённый немецким изобретателем Рудольфом Дизелем, очень похож и по конструкции и принципам работы на двигатель, работающий на бензине, описанный ранее. Но есть одно существенное различие. В этом двигателе воспламенение топливовоздушной смеси происходит не при помощи электрической искры, а за счёт контакта топлива с горячим воздухом находящемся в цилиндре. Такое воспламенение рабочей смеси называется компрессионным зажиганием. А откуда в цилиндре взялся горячий воздух, где его подогрели? Разумеется, никто его нарочно не грел. Если Вам когда-либо приходилось накачивать ручным насосом шину велосипеда, или автомобиля, вы могли обратить внимание, что довольно быстро насос начинает нагреваться. И вообще из школьного курса физики известно, что при сжатии все газы нагреваются, а воздух есть ничто иное, как смесь газов. Сжатие воздуха в двигателе происходит очень быстро, поэтому к концу такта сжатия воздух, находящийся в цилиндре дизельного двигателя, имеет очень высокую температуру (700 ? 900?С).

Поскольку физический процесс немного отличается от описанного ранее бензинового двигателя, в конструкции дизельного двигателя имеются некоторые отличия. Главное отличие в более высокой степени сжатия. У дизельного двигателя отсутствует свеча зажигания, вместо неё непосредственно в головку блока цилиндров вставлена топливная форсунка, разумеется, во впускном канале топливная форсунка отсутствует. В отличие от бензинового двигателя, в цилиндры которого во время такта всасывания поступает смесь бензина с воздухом, цилиндры дизельного воздуха поступает чистый воздух. При достижении поршнем ВМТ во время такта сжатия, в камере сгорания дизельного двигателя находится сжатый воздух, имеющий высокую температуру. И в то время, когда в бензиновом двигателе происходит воспламенение смеси при помощи электрической свечи, в камеру сгорания дизельного двигателя под большим давлением впрыскивается мелко распылённое дизельное топливо. Соприкасаясь с горячим воздухом, находящимся в камере сгорания, топливо воспламеняется.

Запомните основные отличия дизельного двигателя от бензинового.

1 – Топливо в дизельном двигателе воспламеняется не при помощи электрической искры, а за счёт контакта топлива с воздухом, имеющим высокую температуру.

2 – Регулировка крутящего момента и мощности двигателя осуществляется за счёт изменения качества, а не количества топливовоздушной смеси, поэтому в дизельном двигателе отсутствует дроссельная заслонка, регулирующая количество поступающего в цилиндры двигателя воздуха. То есть крутящий момент изменяется количеством впрыскивания топлива без изменения объёма всасываемого воздуха.

Не путайте дизельный двигатель с современными бензиновыми двигателями, с непосредственным впрыском. В этих двигателях топливная форсунка перенесена из впускного канала на головку двигателя, но не вместо свечи зажигания, а установлена совместно с ней. В этом случае топливная форсунка впрыскивает топливо непосредственно в цилиндр. Топливовоздушная смесь в таком двигателе воспламеняется не при помощи компрессионного зажигания, а при помощи электрической искры. А имеющаяся во впускном тракте дроссельная заслонка регулирует количество воздуха, поступающего в цилиндр.

Мы рассмотрели принципы работы простейшего одноцилиндрового двигателя, поняли, как возникает необходимая нам механическая энергия, но для простоты объяснения пришлось прибегнуть очень ко многим упрощениям. Например, клапаны открываются или закрываются не точно в ВМТ или НМТ. Свеча бензинового двигателя воспламеняет смесь или топливная форсунка дизельного двигателя нагнетает топливо в цилиндр не совсем точно при нахождении поршня в ВМТ. Да и двигатель, чаще всего имеет не один, а несколько цилиндров, от 1-го до 16, в автомобильной промышленности, а авиации или на флоте встречались двигатели, имеющие 64 цилиндра. Но основой любого двигателя является цилиндр.

Ранее были рассмотрены некоторые термины, имеющие отношение к цилиндру двигателя, теперь придётся их рассмотреть более подробно и познакомиться с некоторыми новыми.

1. Радиус кривошипа.

Расстояние между осями коренных и шатунных шеек коленчатого вала.
Коренными называются шейки коленчатого вала, в которых вал вращается в блоке цилиндров двигателя.
Шатунными называются шейки, к которым подсоединены шатуны поршней.
Для образования кривошипа ось коренных шеек смещена относительно оси шатунных шеек.
Радиус кривошипа является очень важным конструкционным параметром двигателя. Изменяя радиус кривошипа можно подобрать необходимое соотношение между крутящим моментом и максимальными оборотами двигателя, при неизменном объёме цилиндра.
(Обычно измеряется в миллиметрах)

2. Ход поршня:
Ход поршня, то есть расстояние между НМТ и ВМТ, равен удвоенной величине радиуса кривошипа.

3. Диаметр цилиндра:

Это диаметр внутреннего отверстия цилиндра. Условно принимаем, что диаметр поршня равен диаметру цилиндра.
(Обычно измеряется в миллиметрах)

4. Рабочий объём цилиндра:
Рабочим объёмом цилиндра называется объём, вытесняемый поршнем при перемещении от НМТ к ВМТ.
(Обычно измеряется в кубических сантиметрах (см?) или литрах.)
Рабочий объём цилиндра равен произведению хода поршня на площадь днища поршня.

5. Объём камеры сгорания.
Это объем пространства, находящегося над поршнем, во время нахождения поршня в ВМТ.
(Обычно измеряется в кубических сантиметрах.)
Камера сгорания большинства двигателей имеет сложную форму, поэтому определить её точный объём расчётным методом сложно. Для определения объёма камеры сгорания применяются различные методы прямого измерения.

6. Полный объём цилиндра.
Это сумма объёма камеры сгорания и рабочего объёма цилиндра.
(Обычно измеряется в кубических сантиметрах или литрах.)
Полный объём многоцилиндрового двигателя равен полному объёму одного цилиндра умноженному на количество цилиндров двигателя.

7. Степень сжатия.
Это соотношение полного объёма цилиндра к объёму камеры сгорания. Другими словами это соотношение объёма цилиндра в сумме с объёмом камеры сгорания, когда поршень находится НМТ к объёму пространства, расположенному над поршнем, когда поршень находится в положении ВМТ.
(Безразмерная единица)

8. Соотношение диаметра цилиндра к величине хода поршня:
Является очень важным параметром при конструировании двигателя внутреннего сгорания. Двигатели, в которых ход поршня больше диаметра цилиндра называются длиноходными, двигатели, в которых ход поршня меньше диаметра цилиндра, называются короткоходными.

Значение степени сжатия.

Степень сжатия это один из очень важных технических показателей двигателя внутреннего сгорания, поэтому рассмотрим его более подробно. В общем, повышение степени сжатия поднимает эффективность работы двигателя внутреннего сгорания, то есть при сгорании равного объёма топлива двигатель производит больше механической энергии. При повышенной степени сжатия молекулы топлива физически приближаются друг к другу. При этом топливовоздушная смесь имеет более высокую температуру, в результате чего достигается лучшее испарение частичек топлива и их более равномерное перемешивание с воздухом. Для каждого типа бензина имеется предельное значение степени сжатия. Чем выше октановое число бензина, тем выше степень сжатия, при которой может работать двигатель. При превышении допустимой степени сжатия и, соответственно температуры в камере сгорания, двигатель начинает работать с детонацией (самопроизвольное воспламенение смеси). Процесс детонации достаточно сложный, поэтому, на данном этапе, ограничимся пониманием, что причиной детонации является неправильное сгорание топливовоздушной смеси. При работе двигателя с детонацией резко уменьшается эффективность работы двигателя, и более того, возросшие ударные нагрузки могут привести к разрушению двигателя. Сильные стуки во время работы двигателя являются признаком детонации. Этот режим работы очень вреден для двигателя.

Современные электронные системы управления двигателем практически исключили работу двигателя с детонацией, но те, кому пришлось ездить на автомобилях с двигателями, не имеющих электронных систем управления, помнят, что режим детонации возникал довольно часто.

Раньше для повышения октанового числа бензина применялись специальные присадки на основе свинца. Применение этих присадок позволяло поднять степень сжатия до 12,5:1, но сейчас, в соответствии с законодательными нормами по охране окружающей среды, по причине того, что свинец наносит большой вред окружающей среде, применение присадок на основе свинца запрещено.

Степень сжатия современных бензиновых двигателей равна 10:1 ? 11:1. Величина степени сжатия может изменяться не только от качества предполагаемого к использованию бензина, но и от конструкции двигателя. Современные двигатели, имеющие систему управления двигателя с датчиком детонации, позволяют поднять степень сжатия до 13:1. Такие системы управления, регулируя угол опережения зажигания в каждом отдельном цилиндре, на основе информации, полученной от датчика детонации, позволяют двигателю работать на грани возникновения детонации, но не допускают её. Двигатели с непосредственным впрыском бензина в камеру сгорания из-за особенностей процессов, протекающих в цилиндре, тоже могут работать с повышенной степенью сжатия.

Поскольку воспламенение топлива в дизельных двигателях происходит за счёт нагрева воздуха, находящегося в цилиндре, степень сжатия дизельных двигателей выше, чем бензиновых. Степень сжатия дизельных двигателей лежит в диапазоне 14:1 ? 23:1.

Двигатели с принудительным нагнетанием воздуха в цилиндры (турбокомпрессор или механический нагнетатель), как бензиновые, так и дизельные, имеют более низкую степень сжатия по сравнению с атмосферными двигателями. Это вызвано тем, что перед началом такта сжатия в цилиндре находится большая масса воздуха (и топлива). Слишком высокое давление в цилиндре в конце такта сжатия может привести к разрушению двигателя.

Ранее отмечалось, что повышение степени сжатия явление, в целом, очень желательное, но в действительности всё несколько сложнее. Двигатель внутреннего сгорания, особенно автомобильный, постоянно работает на различных режимах скорости вращения и нагрузок. Научные исследования в данной области показали, что на некоторых режимах двигатель эффективней работает с более низкой степенью сжатия, а на других режимах степень сжатия может быть повышена без риска нанесения повреждений двигателю. Некоторые производители попытались создать двигатель с изменяемой во время работы степенью сжатия. Пионером в этой области, добившимся заметных результатов, был шведский производитель автомобилей SAAB. Работы в этом направлении проводились и другими производителями автомобилей. Но до настоящего времени серийные автомобили с изменяемой степенью сжатия на рынке отсутствуют. Очевидно, это будет следующим направлением повышения эффективности двигателя внутреннего сгорания.

Ранее были рассмотрены некоторые термины, определяющие геометрические показатели двигателя. Далее запомним некоторые термины, определяющие работу двигателя внутреннего сгорания, как простейшего одноцилиндрового, так более сложных двигателей.

  1. Мощность двигателя. Измеряется в киловаттах (кВт) или в старых, для некоторых более привычных единицах измерения, лошадиных силах (л.с.)
  2. Крутящий момент. Измеряется в ньютонах на метр (Н•м).
  3. Удельная литровая мощность. Измеряется отношением максимальной мощности двигателя к рабочему объёму цилиндров двигателя (кВт/литр)
  4. Удельная весовая мощность. Измеряется отношением максимальной мощности двигателя к весу двигателя (кВт/Кг).
  5. Топливная эффективность. Измеряется массой топлива, которое необходимо потратить на выработку мощности в один киловатт в течение часа (гр/кВт*час)
  6. Скорость вращения. В автомобилестроении, как и во многих других областях техники, скорость (частота) вращения коленчатого вала измеряется в оборотах в минуту (об/мин).

За прошедшие более чем сто лет с момента изобретения двигателя внутреннего сгорания (ДВС) количество его конструкций было столь велико, что их не только описать невозможно, их просто никто даже перечислить не сможет, да и задачи такой, в общем, нет. Четко понимая общие принципы работы ДВС (кратко описанные в данной статье), можно разобраться в любой конструкции.

Е.Н. Жарцов

Мини двс своими руками | Авто Брянск

В древние времена люди использовали животных для приведения в действие простейших механизмов. Позже для плавания на парусных суднах и для того чтобы заставить вращаться ветряные мельницы, делающие из зерна муку, стала использоваться сила ветра. Затем люди научились использовать силу течения речной воды для того, чтобы заставить вращаться водяные колёса, перекачивающие и поднимающие воду или приводящие в действие разнообразные механизмы.

Тепловые двигатели появились в далёком прошлом, в том числе и двигатель Стирлинга. Сегодня технологии значительно усложнились. Так, например, человечество изобрело двигатель внутреннего сгорания, который является довольно сложным механизмом. На основе ДВС в настоящее время работает большинство современных автомобилей и другой необходимой для человека техники. Функция, которую выполняет тепловое расширение внутри двигателя внутреннего сгорания, очень сложна, но без неё работа ДВС невозможна.

В механическом устройстве, называемом двигателем внутреннего сгорания, энергия сгорающего топлива преобразуется в механическую. Для того чтобы сделать двигатель внутреннего сгорания своими руками, необходимо знать основные принципы его действия.

Принцип действия ДВС

На сегодняшний день существуют разные виды двигателей, но для моделизма чаще всего используются:

  • Поршневые двигатели дизельного типа.
  • Двигатели, зажигаемые путём накала или искры.

Дизельные двигатели отличаются от искровых или калильных тем, что в первых возгорание горючего происходит при сильном сжатии газа в процессе движения поршня в цилиндре. А последние два типа двигателей требуют для возгорания уже сжатой смеси дополнительной энергии, для чего необходимо заранее нагреть калильную свечу или произвести искровой разряд.

Поршневые двигатели могут быть только двухтактными. Двигатели, которые зажигаются путём накала или искры, бывают и двухтактные, и четырехтактные.

Двухтактные двигатели осуществляют любой рабочий процесс в два такта, выполняемые за 1 оборот коленвала.

В первом такте осуществляется «всасывание-сжатие»: когда коленчатый вал вращается, поршень перемещается снизу вверх. В процессе его движения топливная смесь всасывается через золотник в картер, и в то же время в цилиндре сжимается предыдущая порция горючего.

Перед тем как завершается первый такт, в цилиндре воспламеняется горючая смесь, в результате чего значительно увеличивается давление в камере сгорания, которое способствует движению поршня вверх и вниз.

Во втором такте — «рабочем ходе-продувке» сгорающее топливо расширяется, что способствует развитию механической мощности, а свежая порция топлива, засосанная в цилиндр во время первого такта, сжимается.

После того, как поршень проходит около половины пути вниз, газы, образованные во время сгорания топлива, выталкиваются из цилиндра через специально открывающееся окно. А после того, как открывается перепускное окно, сжатое в картере горючее поступает в цилиндр, и тем самым вытесняет из него оставшиеся отработанные газы, то есть, происходит продувка.

Как сделать простейший двигатель внутреннего сгорания?

Устройство ДВС изучается в школе старшеклассниками. Поэтому даже подросток сможет сделать простейший двигатель внутреннего сгорания своими руками. Для его изготовления нужно взять:

  • Проволоку.
  • Лист картона.
  • Клей.
  • Моторчик.
  • Несколько шестерен.
  • Батарейку 9V.
  1. Сначала из картона следует вырезать круг, который будет играть роль коленчатого вала.
  2. Далее из картона для изготовления шатуна нужно вырезать прямоугольник размером 15×8 см, сложить его вдвое и затем — еще на 90˚. На его концах делаются отверстия.
  3. Далее из картонного листа изготовляется поршень с отверстиями для поршневых пальцев.
  4. Размер поршневых пальцев должен соответствовать размеру отверстия в поршне.
  5. Поршень закрепляется пальцем на шатуне, а его проволокой нужно прикрепить к коленвалу.
  6. В соответствии с размером поршня следует свернуть из картона цилиндр, а в соответствии с размером коленчатого вала — коробочку для самого коленвала.

  1. Далее следует взять шестерёнки и моторчик и собрать механизм вращения коленчатого вала таким образом, чтобы моторчик мог проворачивать коленчатый вал с поршнем и шатуном.
  2. Механизм вращения крепится к коленчатому валу, и он помещается в изготовленную коробочку. При этом вращающий механизм следует прикрепить к стенке коробочки.
  3. Далее в цилиндре размещается поршень и цилиндр склеивается с коробочкой.
  4. Теперь с помощью двух проводов (+ и —) моторчик соединяется с батарейкой, в результате чего поршень приходит в движение.

Как сделать маленький двигатель внутреннего сгорания из подручных средств?

Из следующего примера вы узнаете, как можно сделать двигатель внутреннего сгорания в домашней мастерской, не используя при этом станки и сложное оборудование.

  1. Для создания данного приспособления следует взять плунжерную пару, которую можно извлечь из топливного насоса трактора.

  1. Для изготовления цилиндра от плунжерной втулки была отрезана с помощью машинки утолщенная часть шлефа. Далее требуется прорезать отверстия для выхлопного и перепускного окон, а сверху припаять 2 гайки М6 для свечей зажигания. Поршень же вырезается из плунжера.

  1. Для изготовления картера используется жесть. Также к нему нужно припаять подшипники. Чтобы создать дополнительную прочность, следует взять ткань, пропитать её эпоксидной смолой и покрыть ею картер.

  1. Коленвал собран из толстой шайбы с двумя отверстиями. Одно отверстие, в которое нужно запрессовать вал, сделано в центре шайбы. Во второе отверстие, расположенное с краю, запрессовывается шпилька с одетым на неё шатуном.
  2. Катушка зажигания собирается по следующей схеме:

  1. Также можно использовать катушку от автомобиля или мотоцикла. Схема её подключения выглядит следующим образом:

  1. Свечу зажигания также можно изготовить самостоятельно, сделав для этого сквозное отверстие в болте М6. Для изготовления изолятора можно использовать стеклянную трубочку из-под термометра и приклеить её с помощью эпоксидной смолы. Трубочка также обёрнута в бумагу, пропитанную эпоксидной смолой.

Детали на двигателе расположены согласно следующему чертежу:

Схема впускного клапана:

Схема карбюратора:

Схематический вид самого карбюратора:

Как работает этот ДВС, можно посмотреть в следующем видео:

Бестактный ДВС замкнутого типа

Данный мини двигатель внутреннего сгорания своими руками работает на небольшом количестве жидкого топлива (20 г). Топливо, взрываясь в камере, моментально преобразуется в газ и значительно увеличивается в объёме. В результате создаётся избыточное давление, выталкивающее поршень и вызывающее вращение коленчатого вала на пол-оборота.

Затем этот же газ быстро преобразуется в горючую жидкость, уменьшаясь в объёме до первоначального состояния. В результате этого создаётся пониженное давление, втягивающее поршень назад, а коленчатый вал снова делает половину оборота.

Таким образом, в процессе одного оборота вала поршень совершает два рабочих хода.

Процесс бесконечен за счет постоянного перехода жидкости в газ и обратно. В такой замкнутой системе отсутствует как впрыск топлива, так и выхлоп газа. Составляют двигатель всего три узла:

  1. Камера с двумя секциями и поршень.
  2. Коленчатый вал и коробка передач.
  3. Зажигательная система.

Система запускается в действие аккумулятором, а далее можно использовать генератор. Для питания двигателя необходимо 12 Вольт, 4 Ампера.

Данный ДВС можно создавать с различными мощностями, он подойдёт для любого вида транспорта, передвигающегося по земле и по воздуху. Исключение составляют лишь реактивные самолёты.

На следующем видео представлена небольшая настольная рабочая модель, демонстрирующая эффект ДВС:

Кроме того, из обычного парового двигателя также можно создать подобный двигатель, работающий по принципу замкнутого типа. При этом пар и вода расходоваться не будут, поскольку водяной пар также быстро превращается в жидкость и обратно в пар в результате пропускания его через поле коронного разряда. К тому же, если пропустить пар сквозь колбу с охлаждённой водой, то в результате возникнет дополнительная тяга, вызванная изменением объёма среды и перепадом давлений. Данный метод позволит повышать низкий коэффициент полезного действия паровых двигателей в целом.

Видео о том, как сделать маленький двигатель внутреннего сгорания

А Вы уже пытались сделать двигатель внутреннего сгорания своими руками? Получилось ли у Вас? Расскажите об этом в комментариях.

Всем привет, вот решил поделится вторым проектом ДВС, проект уже построен давненько и чтото я не решался выкладывать его сюда да и честно чтото лень было. Вобщем после удачного первого мотора мне захотелось построить еще один но немного другой конструкции. Изначально задумывался мотор не скоростной а медленно чавкающий на постоянных оборотах (буржуи называют их hit and miss). Но с ходом разработки и постройки пришлось отказаться от чавкающего двигателя из за ряда проблем и основной проблемой стала — отсутствие собственного токарного станка (большого мне не надо, нужен маленький хоббийный типа ТВ16 или ему подобного либо школьный ТВ4 но таких в наших районах не продают или продают но неадекватно дорого, а платить 5к или более за транспортную с другого города что жаба душит да и станок надо самому смотреть состояние). Так вот неспешно был построен второй проект, описание всего процесса постройки можно почитать на форуме, прямая ссыль на тему — sam0delki.ru/viewtopic.php?f=44&t=611 здесь опишу кратко основные части и изменения в конкретно этом втором проекте относительно первого двс.

Цилиндро-поршневую группу использовал уже готовую, ею послужила ЦПГ из компрессора холодильника. При разборе данного компрессора на металлолом было выяслено что у него довольно интересная рабочая пара, диаметром 24мм и самое главное что цилиндр был не монолитным с основанием компрессора как обычно а был съёмным на двух болтах. Сама схема в данном компрессоре не подходила к работе в виде мотора так как поршень и шатун там были литыми, но компрессоров у меня было много и я без труда подобрал к цилиндру нужный поршень. Собственно он то мне и не давал покоя так как ка был изготовлен очень качественно (пара отличная, компрессия просто обалденная, плюс и материал — чугунная гильза и чугунный поршень — идеал для самоделки из за офигительного коэффициента скольжения чугуна по чугуну).

Так, значит ЦПГ была уже готова, причем отличная. Далее ГБЦ, голову решил делать как и у предыдущего проекта из бронзы. На заводе добыл нужную болванку, и изготовил голову. Клапана также как и у первого проекта из саморезов. Клапана были притерты как и у настоящих двигателей с применением паст для притирки.
Отличия данной головы от предыдущей тут будет один управляемый клапан (выпуск) как у обычного четырехтактного мотора через коромысло и второй клапан будет полностью автоматическим (впуск, тут после того как все части ДВС будут собраны воедино надо будет «поиграться» с жесткостью клапанной пружинки и добиться правильной длительность впуска когда поршень будет двигаться к НМТ и открывать разряжением клапан преодолевая жёсткость пружинки) и второе отличие это свеча зажигания. В первом проекте она была диаметром 6мм и очень сложна в изготовлении (плюс очень хрупкая на кручение, можно легко поломать при заворачивании) тут же свеча уже по серьезнее — 8мм, техпроцесс изготовления тот же — стеклянный изолятор посаженный на эпоксидку и холодная сварка в качестве внешнего изолятора.

Можно, конечно купить красивые заводские модели двигателей Стирлинга, как например, в этом китайском интернет-магазине. Однако, иногда хочется творить самому и сделать вещь, пусть даже из подручных средств. На нашем сайте уже есть несколько вариантов изготовления данных моторов, а в этой публикации ознакомьтесь с совсем простым вариантом изготовления двигателя Стирлинга в домашних условиях.

Посмотрите ниже 3 варианта для самостоятельного изготовления.

Как изготовить дома работающий двигатель Стирлинга?

Дмитрий Петраков по многочисленным просьбам отснял пошаговую инструкцию по сборке мощного, относительно своих габаритов и потребляемого количества тепла двигателя Стирлинга. В этой модели задействованы доступные каждому зрителю и распространённые материалы – обзавестись ими способен любой желающий. Все размеры, представленные в этом ролике, автор подбирал на основе многолетнего опыта работы со Стирлингами такой конструкции, и для данного, конкретного экземпляра они являются оптимальными.

В этой модели задействованы доступные каждому зрителю и распространённые материалы, благодаря чему обзавестись ими способен любой желающий. Все размеры, представленные в этом ролике, подбирал на основе многолетнего опыта работы со Стирлингами такой конструкции, и для данного, конкретного экземпляра они являются оптимальными.

C чувством, толком и расстановкой.


Мотор Стирлинга в работе с нагрузкой (водяная помпа).

Водяная помпа, собранная в качестве рабочего прототипа, предназначена для работы в паре с моторами Стирлинга. Особенность насоса заключается в небольших затратах энергии, требуемых для совершения им работы: такая конструкция задействует лишь небольшую часть динамического внутреннего рабочего объёма двигателя, и тем самым по минимуму влияет на его производительность.

Мотор Стирлинга из консервной банки

Для его изготовления вам понадобятся подручные материалы: банка из под консервов, небольшой кусок поролона, CD-диск, два болтика и скрепки.

Поролон – одни из самых распространенных материалов, которые используются при изготовлении моторов Стирлинга. Из него делается вытеснитель двигателя. Из куска нашего поролона вырезаем круг, диаметр его делаем на два миллиметров меньше внутреннего диаметра банки, а высоту немного больше ее половины.

В центре крышки просверливаем отверстие, в которое вставим потом шатун. Для ровного хода шатуна делаем из скрепки спиральку и припаиваем ее к крышке.

Поролоновый круг из поролона пронизываем посередине винтиком и застопориваем его шайбой сверху и снизу шайбой и гайкой. После этого присоединяем путем пайки отрезок скрепки, предварительно распрямив ее.

Теперь втыкаем вытеснитель в сделанное заранее отверстие в крышке и герметично пайкой соединяем крышку и банку. На конце скрепки делаем небольшую петельку, а в крышке просверливаем еще одно отверстие, но чуть-чуть больше, чем первое.

Из жести делаем цилиндр, используя пайку.

Присоединяем с помощью паяльника готовый цилиндр к банке, так, чтобы не осталось щелей в месте пайки.

Из скрепки изготавливаем коленвал. Разнос колен нужно сделать в 90 градусов. Колено, которое будет над цилиндром по высоте на 1-2 мм больше другого.

Шатун который нужно будет приделать к мембране, изготавливаем из скрепки и вставляем его в обрезок резины. По длине шатун нужно сделать таким, чтобы в нижней мертвой точке вала мембрана была втянута внутрь цилиндра, а в высшей – напротив – вытянута. Второй шатун настраиваем так же.

Шатун с резиной приклеиваем к мембране, а другой присоединяем к вытеснителю.

Присоединяем паяльником ножки из скрепок к банке и на кривошип пристраиваем маховик. Например, можно использовать СД-диск.

Двигатель Стирлинга в домашних условиях сделан. Теперь осталось под банку подвести тепло – зажечь свечку. А через несколько секунд дать толчок маховику.

Как сделать простой двигатель Стирлинга (с фотографиями и видео)

Давайте сделаем двигатель Стирлинга.

Мотор Стирлинга – это тепловой двигатель, который работает за счет циклического сжатия и расширения воздуха или другого газа (рабочего тела) при различных температурах, так что происходит чистое преобразование тепловой энергии в механическую работу. Более конкретно, двигатель Стирлинга представляет собой двигатель с рекуперативным тепловым двигателем с замкнутым циклом с постоянно газообразным рабочим телом.

Двигатели Стирлинга имеют более высокий КПД по сравнению с паровыми двигателями и могут достигать 50% эффективности. Они также способны бесшумно работать и могут использовать практически любой источник тепла. Источник тепловой энергии генерируется вне двигателя Стирлинга, а не путем внутреннего сгорания, как в случае двигателей с циклом Отто или дизельным циклом.

Двигатели Стирлинга совместимы с альтернативными и возобновляемыми источниками энергии, поскольку они могут становиться все более значительными по мере роста цен на традиционные виды топлива, а также в свете таких проблем, как истощение запасов нефти и изменение климата.

В этом проекте мы дадим вам простые инструкции по созданию очень простого двигателя DIY Стирлинга с использованием пробирки и шприца .

Как сделать простой движок Стирлинга – Видео

Компоненты и шаги, чтобы сделать моторчик Стирлинга

1. Кусок лиственных пород или фанеры

Это основа для вашего двигателя. Таким образом, он должен быть достаточно жестким, чтобы справляться с движениями двигателя. Затем сделайте три маленьких отверстия, как показано на рисунке. Вы также можете использовать фанеру, дерево и т.д.

2. Мраморные или стеклянные шарики

В двигателе Стирлинга эти шарики выполняют важную функцию. В этом проекте мрамор действует как вытеснитель горячего воздуха от теплой стороны пробирки к холодной стороне. Когда мрамор вытесняет горячий воздух, он остывает.

3. Палки и винты

Шпильки и винты используются для удержания пробирки в удобном положении для свободного перемещения в любом направлении без каких-либо перерывов.


4. Резиновые кусочки

Купите ластик и нарежьте его на следующие формы. Он используется для того, чтобы надежно удерживать пробирку и поддерживать ее герметичность. Не должно быть утечек в ротовой части пробирки. Если это так, проект не будет успешным.



5. Шприц

Шприц является одной из самых важных и движущихся частей в простом двигателе Стирлинга. Добавьте немного смазки внутрь шприца, чтобы поршень мог свободно перемещаться внутри цилиндра. Когда воздух расширяется внутри пробирки, он толкает поршень вниз. В результате цилиндр шприца перемещается вверх. В то же время мрамор катится к горячей стороне пробирки и вытесняет горячий воздух и заставляет его остывать (уменьшать объем).

6. Пробирка Пробирка является наиболее важным и рабочим компонентом простого двигателя Стирлинга. Пробирка изготовлена ​​из стекла определенного типа (например, из боросиликатного стекла), обладающего высокой термостойкостью. Так что его можно нагревать до высоких температур.

Как работает двигатель Стирлинга?

Некоторые люди говорят, что двигатели Стирлинга просты. Если это правда, то так же, как и великие уравнения физики (например, E = mc2), они просты: на поверхности они просты, но богаче, сложнее и потенциально очень запутаны, пока вы их не осознаете. Я думаю, что безопаснее думать о двигателях Стирлинга как о сложных: многие очень плохие видео на YouTube показывают, как легко «объяснить» их очень неполным и неудовлетворительным образом.

На мой взгляд, вы не можете понять двигатель Стирлинга, просто создав его или наблюдая за тем, как он работает извне: вам нужно серьезно подумать о цикле шагов, через которые он проходит, что происходит с газом внутри, и как это отличается из того, что происходит в обычном паровом двигателе.

Все, что требуется для работы двигателя, – это наличие разницы температур между горячей и холодной частями газовой камеры. Были построены модели, которые могут работать только с разницей температуры 4 ° C, хотя заводские двигатели, вероятно, будут работать с разницей в несколько сотен градусов. Эти двигатели могут стать наиболее эффективной формой двигателя внутреннего сгорания.

Двигатели Стирлинга и концентрированная солнечная энергия

Двигатели Стирлинга обеспечивают аккуратный метод преобразования тепловой энергии в движение, которое может привести в движение генератор. Наиболее распространенная схема состоит в том, чтобы двигатель был в центре параболического зеркала. Зеркало будет установлено на устройство слежения, чтобы солнечные лучи фокусировались на двигателе.

* Двигатель Стирлинга как приемник

Возможно, вы играли с выпуклыми линзами в школьные годы. Сосредоточение солнечной энергии для сжигания листа бумаги или спички, я прав? Новые технологии развиваются день ото дня. Концентрированная солнечная тепловая энергия приобретает все большее внимание в эти дни.

Выше приведен короткий видеофильм о простом двигателе с пробиркой, использующим стеклянные шарики в качестве вытеснителя и стеклянный шприц в качестве силового поршня.

Этот простой двигатель Стирлинга был построен из материалов, которые доступны в большинстве школьных научных лабораторий и может быть использован для демонстрации простого теплового двигателя.

Диаграмма давление-объем за цикл

Процесс 1 → 2 Расширение рабочего газа на горячем конце пробирки, тепло передается газу, и газ расширяется, увеличивая объем и толкая поршень шприца вверх.

Процесс 2 → 3 По мере движения мрамора к горячему концу пробирки газ вытесняется из горячего конца пробирки на холодный конец, а по мере движения газа он отдает тепло стенке пробирки.

Процесс 3 → 4 Из рабочего газа отводится тепло, и объем уменьшается, поршень шприца движется вниз.

Процесс 4 → 1 Завершает цикл. Рабочий газ движется от холодного конца пробирки к горячему концу, поскольку мраморные шары вытесняют ее, получая тепло от стенки пробирки, когда она движется, тем самым увеличивая давление газа.

Куда движется автоиндустрия: взгляд автоэксперта | Swedbank

Рост Дата публикации: 13.12.2018

В то время, когда часть европейских стран планирует отказаться от дизельных двигателей, пора задуматься о будущем автомобилей. Какой автомобиль выбрать в качестве следующего? С бензиновым двигателем? Или, может, гибрид? А возможно, стать совсем «зеленым» и взять электромобиль? Об автомобилях, на которые как перспективное направление смотрит часть гигантов автомобилестроения, рассказывает автожурналист, эксперт Сандрис Метузалис.

В каком направлении

Автомобилестроение пришло к распутью, и автомобильным промышленникам приходится думать, по какому пути отправиться дальше. Часть пока что не особо ломает голову и, коптя выхлопными газами, продолжает ехать по автобану хорошо известного двигателя внутреннего сгорания. Более осторожные при этом понемногу начинают перестраиваться на полосу, над которой написано «Запрещено для дизелей!» Такой маневр связан с тревогой, что  в странах Европейского союза в будущем может быть запрещено использование дизельных двигателей, поскольку некоторые города уже выразили готовность в ближайшие десять лет закрыть ворота для автомобилей, оснащенных такими моторами, – чтобы не ухудшали состояние атмосферы. Поэтому некоторые производители уже сообщили, что в обозримом будущем откажутся от дизельных двигателей и сосредоточатся на бензиновых моторах, пополняя свою продукцию дружественными для среды технологиями.

В более отдаленном будущем, возможно, придется отказаться и от двигателей внутреннего сгорания как таковых, ведь, например, Великобритания уже сообщила, что после 2040 года могла бы запретить автомобили с бензиновыми и дизельными двигателями.

Если не пытаться вглядываться в отдаленное будущее, когда могли бы появиться новые революционные решения, приходится признать, что сейчас реально есть два варианта, как приспособиться к ожидаемой угрозе чистки автопарка, – гибриды, в которых бензиновый мотор объединен с электрическим, или же автомобили, которые оснащены только электромотором. И похоже на то, что крупнейшие автопроизводители в этом вопросе разделились на два лагеря – на фанов гибрида и поклонников электромоторов, а посередке есть и те, кто готов поддержать оба лагеря.

Выбор между хорошим и лучшим

Первый лагерь представляют японские бренды Toyota и Lexus, которые занялись разработкой гибридных двигателей одними из первых и сейчас стабильно находятся на вершине рынка гибридов. Особенно в Европе, где 97 процентов продаваемых автомобилей Lexus оснащены гибридными двигателями. У Toyota, которая является материнской компанией для Lexus, этот показатель не столь высок, однако у этого есть логичное объяснение – Toyota представляет сегмент условно более демократичных цен, в то время как Lexus ориентируется на класс люкс, а гибрид уже по своей сути дороже, чем простой двигатель внутреннего сгорания. Поэтому Lexus может позволить себе предлагать по всем своим моделям гибридные версии, в то время как спектр Toyota меньше – классика жанра Prius, за которым следуют Yaris, Auris и RAV4.

Так или иначе, общее количество продаваемых во всем мире гибридов Toyota внушительно – около десяти миллионов. С этой точки зрения можно понять стратегию японцев – работать на поле, где они первые, а не пробиваться через малоизученные джунгли электромобилей. Руководитель европейского представительства Lexus Паскаль Руш в одном интервью четко и ясно сообщил: «Сейчас мы не видим необходимости пополнять спектр своих моделей электромобилями. (…) В смысле электромобилей еще слишком много неясностей: они слишком дорогие, дистанция поездки невелика, однако ее цена слишком высокая, батареи и, конечно, инфраструктура. Мы не говорим, что вообще не думаем в будущем производить электромобили, – когда потребитель будет готов, мы непременно предложим такие автомобили».

Не так давно к семье гибридов присоединился и Volvo, который предлагает несколько моделей своих автомобилей «дорогого края» также в версии гибрида plug-in (в этом случае электромотор не только заряжается во время поездки, но его также можно зарядить от электросети, тем самым ощутимо удлинив дистанцию чисто электрической поездки) с бензиновым двигателем плюс заряжающимся аккумулятором и электромотором, который в целом дает внушительную мощность в 390 лошадиных сил.

Самый новый гибрид plug-in из семейства Volvo был презентован осенью 2018 года, это седан S60, который был создан в подразделении Volvo, занимающимся разработкой спортивных автомобилей, – Polestar Engineered.

Это самый спортивный из всех Volvo, которые доступны, поскольку его общая мощность составляет 415 лошадиных сил, которые обеспечивает бензиновый двигатель в дуете с электромотором. К тому же 40 километров S60 может проехать только на электромоторе – дальше, правда, придется переключаться на бензиновый двигатель. Однако самое разумное решение – все же ехать в режиме Hybrid, который сам сбалансирует пропорции мощности двигателя внутреннего сгорания и электромотора, к тому же во время торможения заряжает аккумулятор.

Немецкое размах

С особо большим размахом на рынок электромобилей готовятся войти немцы. Правда, нельзя сказать, что немецкие компании на нем не были представлены и раньше. Например, Volkswagen уже предлагает e-Golf и e-Up, которые являются стопроцентными электромобилями, а также гибриды Golf и Passat. При этом Volkswagen уже сообщил, что в 2025 году не менее пятой части его продукции будут составлять именно электромобили. Альянс Renault–Nissan настроен еще более решительно и обещает уже в 2022 году почти треть своего ассортимента составлять из электромобилей.

BMW также уже несколько лет назад выпустил два электромобиля, i3 un i8, – первый дешевле, и довольно часто его можно видеть и на улицах Риги. В последнее время BMW предлагает также некоторые свои модели в версии гибрида plug-in. В перспективе обещается также электрический кроссовер от BMWiX3, однако уже в 2019 году мы его вряд ли дождемся.

Audi до этого момента электрическими  технологиями особенно не увлекался, правда, испытывая некоторые гибридные версии, однако не претендуя на большие рыночные успехи. Однако похоже на то, что сейчас все поменяется, поскольку на недавно прошедшем автосалоне в Париже с помпой был представлен электрокроссовер e-tron. Предусматривается, что в продаже он может появиться уже в 2019 году.

Однако с самым большим размахом к электрификации готовится подойти Mercedes-Benz, который уже с 2019 года обещает начать предлагать все новые модели и в электрических версиях. Первым к покупателям отправится построенный на базе уже хорошо известной модели GLC электрический кроссовер EQC, который в продажу поступит уже в следующем году и, как говорят, будет стоить, начиная с 75 000 евро. Выбор в пользу автомобиля класса SUV как первооткрывателя электрической сферы кажется вполне очевидным: во-первых, это сейчас один из самых покупаемых классов, а во-вторых, размеры кроссовера – самые подходящие для оптимального размещения аккумулятора и электромотора. В 2022 году Mercedes планирует предлагать десять моделей электромобилей – если это действительно получится, то, кажется, в спектре электрических моделей у них не будет много конкурентов в Европе… В любом случае, Mercedes все же решил часть золотых яиц положить и в корзину гибридных автомобилей, поскольку планируемое в 2019 году  поколение нового кроссовера GLE предусматривается и как гибрид с трехлитровым бензиновым двигателем, который дополняет электромотор в 22 лошадиные силы.

Похожим образом, между прочим, действует корейский Hyundai, который свой IONIQ недавно выпустил в весьма дружественных для среды версиях – и как гибрид, и как гибрид plug-in, и как чистый электромобиль.

В направлении э-электрификации стремительно движется и спортивный Porsche, который уже предлагает мощные гибриды, однако в будущем к ним присоединится и электрический Mission E, и производитель обещает, что он сможет проехать 500 км без подзарядки аккумулятора, при этом он имеет грандиозные 600 лошадиных сил и рывок с 0 км/ч до 100 км/ч менее чем за 3,5 секунды. В производство эта модель должна пойти в 2019 году.

Вызовы отрасли

Может возникнуть впечатление, что электромобили мчатся вперед на всех парусах, и дни гибридов, уже не говоря о бензиновых двигателях, сочтены. Статистика вроде бы говорит в пользу такого допущения, поскольку сейчас на дорогах во всем мире примерно пять миллионов электромобилей различных марок. Интересно, что крупнейшим потребителем электромобилей является не Европа или США, а Китай, где в 2017 году было продано 777 0000 электромобилей. Тенденция идет по возрастающей, поскольку в сравнении с 2017 годом в 2018 году в мире продано на треть больше электромобилей.

Однако у «электриков» есть и довольно много проблем, которые придется решать, к тому же не по всем из них возможны идеальные решения. Самая главная проблема – емкость аккумуляторов и дистанция, которую можно проехать без подзарядки. Прогресс в этом плане значительный, ведь еще пару лет назад хорошим показателем считались 200 километров, а сейчас Mercedes и Audi заверяют, что электрические кроссоверы могут преодолеть 450 километров. В теории это выглядит здорово – значит, можем съездить, скажем, из Риги в Вентспилс и обратно. Однако скептики уже сейчас говорят, что в жизни таких красивых цифр не будет. В реальности нам придется включать кондиционер или обогрев, наверняка будем слушать и радио, а порой захотим динамично обогнать грузовик. Все эти действия съедят часть ресурсов аккумулятора, и в конце придется констатировать, что вместо обещанных 450 километров в нашем распоряжении всего 350…

Самый главный вызов, без которого у электромобилей нет будущего, – сеть станций скоростной электрозаправки.

Сейчас в этом направлении делается уже довольно много, и первые ростки можно видеть и у нас, в Латвии, где в ряде жилых мест понемногу появляются станции заправки.

В Западной Европе к этому процессу подключились и автопроизводители: Mercedes-Benz, BMW, Ford и Volkswagen создали компанию IONITY, которая планирует в 2020 году построить 400 станций скоростной заправки у крупнейших магистралей. Однако это лишь начало, и до полной электрификации шоссе еще далеко. Таким образом, пока что без старых двигателей внутреннего сгорания нам еще какой десяток лет не обойтись.

  • Какой бы автомобиль вы ни выбрали, Swedbank предлагает лизинг, который поможет реализовать замысел быстрее. Ознакомиться с подробностями и сравнить различные виды финансирования можно здесь. 

Двигатель WAISSI — простейший двигатель внутреннего сгорания

ДВИГАТЕЛЬ WAISSI

Двигатель внутреннего сгорания нового поколения с оппозитными поршнями («оппозитный»).

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ДВИГАТЕЛЯ ПРОТОТИПА

— с воздушным охлаждением
— 2 цилиндра
— 4-тактный
— 8-клапанный
— SOHC (одинарный верхний кулачок)
= прямой вал заменяет коленчатый вал (обычного типа)
= диск + кольцо подшипника заменяет (обычный) шатун + поршневой палец
— цилиндры соосные и противоположные
— ход = 60 мм
— диаметр поршня = 85 мм
— перемещаемый объем = 680 см3 = 0.68 л (340 куб. См на цилиндр)

СМАЗКА:
— мокрый картер; внешний масляный насос (Moroso; ременной привод)
— смазка коренных шеек и подшипника диска в гидродинамических условиях
— зажигание от магнита (Vertex)
— цилиндры и головки цилиндров (Honda TRX 400)
— верхний кулачковый привод с цепным приводом (цепь Honda TRX 400 и звездочки)
— коренные опорные подшипники (стандарт VW Type I (55 мм))

= данные о характеристиках еще не доступны

Преимущества: нет шатунов, следовательно, более медленное объемное расширение над головкой поршня в течение первых 90 градусов после ВМТ с топливом — взрыв воздушной смеси в меньшем и более медленном расширяющемся пространстве, чем любой двигатель с шатунами, в результате чего поршневое усилие на 24% или выше в каждом цикле; отсутствие шатунов, следовательно, меньшее количество поверхностей трения и меньшее внутреннее трение; нет шатунов, следовательно, нет вторичных сил и более простая балансировка двигателя; Кроме того, более простое изготовление / сборка.

Двигатель WAISSI может заменить все двигатели внутреннего сгорания: аэрокосмические (БПЛА, легкие самолеты), автомобили, грузовики, мотоциклы, а также может служить в качестве вспомогательного источника энергии.

ДВИГАТЕЛЬ WAISSI может быть выполнен в 2-тактном и 4-тактном вариантах с использованием любого типа топлива.

Получено 3 патента в США и еще один находится на рассмотрении.

ТЕКУЩИЙ ПРОТОТИП

1. ВЕРСИЯ A: Текущая разработка двигателя
Бензин; 4-тактный
WE-GWRW-A248-SOHC-0000001

В ответ на призыв к разработке нового двигателя —- «EPA и NHTSAs Повышение эффективности двигателя и трансмиссии» http: // www.whitehouse.gov/the-press-office/2014/02/18/fact-sheet-opportunity-all-improving-fuel-efficiency-american-trucks-bol

БУДУЩИЕ ВЕРСИИ ДВИГАТЕЛЯ WAISSI

2. ВЕРСИЯ B: Бензин; SOHC; 2-тактный с клапаном

3. ВЕРСИЯ C: Дизель / JP8; SOHC; клапанный 4-х тактный; «чистый дизель»;
(биодизель, биомасса в жидкость (BTL) — или газ в жидкость (GTL) дизельное топливо)

4. ВЕРСИЯ D: Дизель / JP8; SOHC; клапанный 2-х тактный; «чистый дизель»;
(биодизель, биомасса в жидкость (BTL) — или газ в жидкое топливо (GTL) дизельное топливо)

Двигатель с оппозитным поршнем Achates может вернуть больше мощности за счет меньшего количества топлива

Если вы откроете капот вашего автомобиля и выдернете пластик под ним, вы увидите красивую часть ошеломляющей инженерии: двигатель внутреннего сгорания.Сегодняшние двигатели используют около 100 взрывов топлива и кислорода каждую секунду, генерируя огромную мощность с минимальными выбросами.

Это здорово, но ужесточение стандартов загрязнения во всем мире означает, что автомобили должны становиться все более эффективными. Электромобили предлагают один путь вперед, но они остаются дорогими и ограниченными опасениями по поводу дальности полета — опасениями, часто необоснованными, что вы попадете на мель с разряженной батареей. Внутреннее сгорание никуда не денется в ближайшее время, с такими усовершенствованиями, как турбокомпрессоры, прямой впрыск и регулируемые фазы газораспределения, позволяющие выжимать больше миль из каждого галлона.

Компания Achates Power из Сан-Диего считает, что у нее есть лучший способ: отказаться от конструкции, которая доминировала в конструкции двигателей в течение последних 130 лет, в пользу идеи, от которой отказались в 1940-х годах, и увидеть 30-процентное повышение эффективности.

Большинство автомобильных двигателей, от одноцилиндрового агрегата мощностью в одну лошадиную силу, созданного Карлом Бенцем в 1885 году до 16-цилиндрового «зверя» мощностью 1500 лошадиных сил в Bugatti Chiron, имеют четырехтактную поршневую конструкцию. Это относительно простая идея: поршень в цилиндре втягивает воздух и добавляет топливо во время такта впуска.Такт сжатия сжимает эту смесь и вызывает искру, создавая взрыв, который опускает поршень, генерируя мощность во время рабочего такта. Затем цилиндр поднимается во время такта выпуска, удаляя отработанные газы. Цикл повторяется тысячи раз каждую минуту.

Ахатес хочет выбросить это из головы в пользу двигателя с оппозитными поршнями. Эта установка использует два поршня в каждом цилиндре. Воспламенение топлива и воздуха вызывает взрыв, который разводит поршни в стороны, генерируя энергию.Такие двигатели проще, потому что в них не используются клапаны или распредвалы. Они нашли применение в локомотивах и военных транспортных средствах, пока инженеры не отказались от них в 1940-х годах из-за того, что им было трудно заставить их работать чисто и эффективно. Ахат считает, что эта проблема решена. Мы нанесли визит, чтобы узнать, как — посмотрите видео выше, чтобы увидеть, что мы узнали.

Автомобильный двигатель завтрашнего дня: чище, легче, с одной движущейся частью

РОШ ХААИН, Израиль — В 2014 году Шауль Якоби проводил свои дни, оценивая поврежденные автомобили для страховых компаний.Он проводил ночи в механическом цехе Тель-Авива, занимаясь резкой и сборкой кусков алюминия. Самозваный изобретатель, бросивший среднюю школу, выросший на израильской коммунальной цитрусовой ферме и проработавший последние 25 лет в качестве страхового эксперта, имеет несколько патентов на продукты, начиная от системы очистки воды и заканчивая защищенным от кражи автомобильным ключом. Теперь он стремится создать легкий, дешевый и эффективный автомобильный двигатель, который работает на значительно меньшем количестве топлива и производит меньше вредных выбросов, чем тот, который доступен сегодня.

«Когда вы чувствуете, что у вас есть идея для чего-то большого, вам просто нужно ее реализовать», — сказал г-н Якоби. «Поэтому я купил кусок алюминия и вырезал его вручную, чтобы построить свой двигатель».

После нескольких месяцев работы он представил свой продукт своим деловым партнерам, Галу Фридману, ветерану технологического маркетинга, и Ариэлю Горфунгу, промышленному инженеру. В 2014 году они основали компанию Aquarius Engines Ltd., чтобы вывести сверхэффективный бензиновый двигатель Якоби на автомобильный рынок, который заботится об окружающей среде.Теперь на машине пятого поколения компания успешно провела испытания двигателя в лаборатории, но не на автомобилях.

Aquarius, названный в честь идеального будущего, представленного в популярной песне «The Age of Aquarius», собрал более 25 миллионов долларов, в том числе от руководителей Mobileye, израильского технологического стартапа в области автономных транспортных средств, приобретенного Intel Corp. в 2017 году, и работает 42 человека в Израиле, Германии и Польше. Компания ожидает, что ее продукт выйдет на рынок в ближайшие два года, от автомобилей до генераторов электроэнергии и дронов.

Не только

Aquarius делает ставку на модернизированный двигатель внутреннего сгорания. Автопроизводители находятся под давлением со стороны правительств и потребителей, чтобы они создавали автомобили с более низким уровнем выбросов углерода. В то же время у электромобилей с батарейным питанием есть ограничения, в том числе стоимость производства, ограничения дальности действия и потребность в инфраструктуре, например, в производстве электроэнергии для их зарядки. Согласно мартовскому отчету McKinsey & Co., продажи электромобилей во всем мире растут примерно на 60% в год, но на большинстве рынков они составляют менее 5% от продаж новых автомобилей, и автопроизводители теряют на них деньги.«Когда появился электромобиль, все надеялись, что это решит проблему, но это не так просто», — сказал Джон Б. Хейвуд, почетный профессор машиностроения Массачусетского технологического института, изучающий более чистую энергию и транспорт.

Простой двигатель IC | Домой Модель Двигатель Машинист Forum

У кого-нибудь есть учебник, как правильно сделать и посадить тарелки?

Существует довольно много разных техник.Что касается меня, я разрезаю шток клапана на участки длиной около 8-10 мм, чтобы уменьшить прогиб, пока весь шток не станет больше на 0,01–0,02 мм, а затем доводите его до нужного размера влажным и сухим способом. Затем я отрезаю угол на головке под углом 45 градусов (или где-то поблизости достаточно хорошо) и отделяю клапан, добавляя, по крайней мере, дюйм или около того дополнительного материала на головке в качестве ручки, за которую можно держаться при притирке. Повторите эти действия для любого количества клапанов, которые вам нужны, плюс один-два запасных, а еще один, чтобы стать резаком седла — на этот раз, по крайней мере, на пару дюймов дополнительного материала.Выполнение всех этих операций без изменения настройки на токарном станке критически важно для сохранения всех углов одинаковыми.

Фрезер седла клапана требует некоторой фрезерования, чтобы на «головке» были режущие зубья (здесь много примеров, я могу выкопать один, если он вам нужен), а затем его можно использовать вручную, чтобы сделать тонкие седла в клетках клапана. Затем нужно притирать каждый клапан к его «отдельному седлу» — это то место, где мнения сильно расходятся.

Что мне подходит, пока седла и головки клапана сделаны хорошо (гладкие и блестящие), так это обильное количество стандартной белой зубной пасты и поворот клапана на 180 градусов вручную с приложением небольшого усилия к сиденье.Примерно каждые 30 секунд я проталкиваю зубную пасту так, чтобы свежий кусочек покрыл область притирки, и поворачиваю клапан на 90 градусов, а затем начинаю снова. Повторите это, может быть, 4-5 раз, и это должно создать достаточно хорошую печать, чтобы выстрелить. После запуска двигателя клапаны довольно быстро улучшают свою герметичность.

Единственный раз, когда у меня были серьезные проблемы с уплотнением клапанов, был мой первый двигатель, в котором я применил свои полноразмерные методы и использовал роторную дрель в тщетной попытке прижать клапаны. Они категорически отказались запечатать, и я в конце концов переделал как клапаны, так и клетки.

Вот почему у нас нет двигателей с оппозитными поршнями — по крайней мере, пока

  • Двигатель с оппозитными поршнями существует уже более 100 лет, и более эффективен почти во всех отношениях.
  • В двигателе нет традиционных клапанов, кулачков или распредвалов, а также головки, поэтому его проще и дешевле производить, собирать и эксплуатировать.
  • Испытательный двигатель Achates Power будет работать этим летом на Peterbilt 579.Другая версия — двигатель мощностью 1000 л.с. для боевой машины — будет серийно производиться компанией Cummins в 2024 году. для армии США.

    Почему почти каждый автомобиль в мире имеет четырехтактный двигатель внутреннего сгорания с циклом Отто? Несомненно, после более чем 100 лет существования автомобилей кто-то должен был придумать что-то лучшее?

    Ну так и сделали, причем почти с самого начала. Нет, я не говорю о Ванкеле, хотя вы должны отдать должное Mazda за то, что она придерживалась этого так долго.И нет, я не говорю о радиальных, газовых или паровых турбинах. Я говорю о двигателе с оппозитными поршнями.

    Двигатели с оппозитными поршнями используются с конца 19 века, так что идея не нова. В то время они использовались в тяжелых транспортных средствах, таких как поезда, танки, корабли и подводные лодки. Их преимуществом на раннем этапе был диапазон. В 1930-х годах самолет пролетел 6000 миль с оппозитным поршневым двигателем без дозаправки. Подводные лодки тоже оценили дальность. Как и поезда. Вы можете пойти дальше с топливом, которое вы можете перевозить с помощью двигателя OP.

    Этот контент импортирован с YouTube. Вы можете найти тот же контент в другом формате или найти дополнительную информацию на их веб-сайте.

    Вот как работает двигатель с оппозитными поршнями: два поршня имеют общий цилиндр, каждый со своим коленчатым валом и шатуном. Поршни движутся навстречу друг другу и (почти) встречаются в верхней мертвой точке. По мере приближения поршней друг к другу (или, может быть, непосредственно перед ним) в верхней части каждого хода, дизельное топливо впрыскивается в цилиндр и происходит сгорание.Поскольку двигатель, о котором мы говорим, является дизельным, свеча зажигания не требуется. Затем происходит сгорание, которое раздвигает поршни. Потенциальная энергия была преобразована в работу.

    Два коленчатых вала, по одному с каждой стороны двигателя, соединены набором шестерен, от которых мощность передается на колеса (или гребной винт, или что-то еще, что вы приводите в действие).

    Клапаны выполняют функцию отверстий в стенках цилиндров вниз ближе к нижней части хода (или вверх, поскольку в каждом цилиндре есть два поршня).Один набор отверстий позволяет выходить выхлопным газам, а другой набор отверстий на другом конце цилиндра впускает всасываемый воздух. Выхлопные отверстия больше и остаются открытыми дольше, чтобы вывести сгоревшую топливно-воздушную смесь. Это цикл Аткинсона. Каждый поршень срабатывает при каждом такте, что делает его двухтактным.

    В двигателе нет традиционных клапанов, кулачков или распредвалов, а также головки, поэтому его проще и дешевле производить, собирать и эксплуатировать. Теплота сгорания передается не в головку блока цилиндров, а в противоположный поршень, что, опять же, более эффективно.

    Все это я узнал во время вебинара, проведенного Calstart, консорциумом 280 компаний, стремящихся сделать воздух чище за счет более эффективной транспортировки. Веб-семинар был посвящен грузовикам средней и большой грузоподъемности, и Calstart призвал компании рассмотреть вопрос о двигателях с оппозитными поршнями для своих грузовиков.

    Этот контент импортирован с YouTube. Вы можете найти тот же контент в другом формате или найти дополнительную информацию на их веб-сайте.

    Компания, разрабатывающая двигатель, называется Achates Power из Сан-Диего.Он был основан физиком-теоретиком доктором Джеймсом Лемке (1929-2019). За долгую и продуктивную карьеру Лемке разработал все, что угодно, в том числе магнитные записывающие головки для магнитофонов телевещания. Если вы когда-либо смотрели телевизор в период между живыми программами и эпохой цифровых технологий, вы можете поблагодарить Лемке. Он имеет более 114 патентов. Раньше он любил летать на своем двухмоторном Beech Baron в Баху на выходные. В один из таких выходных он принес книгу по теории двигателей внутреннего сгорания с оппозитными поршнями.

    «Знаешь, легкое чтение», — пошутил он на видео компании.

    Он узнал, что, хотя такие двигатели использовались на протяжении многих лет, они так и не были доведены до своего современного потенциала.

    «Когда я обнаружил этот двигатель, стало ясно, что можно, используя современные методы, такие как вычислительная гидродинамика, улучшить характеристики двигателя намного больше, чем это было возможно, когда он был впервые разработан».

    Этот контент импортирован с YouTube.Вы можете найти тот же контент в другом формате или найти дополнительную информацию на их веб-сайте.

    Итак, он основал компанию для этого. Компания Achates Power была основана в 2004 году и приступила к разработке двигателя с оппозитными поршнями. Achates Power не является производственной компанией; это оставалось бы производителям двигателей, таким как Cummins, Caterpillar и Navistar.

    «Achates Power сотрудничает с ведущими производителями двигателей, лицензирует конструкции, средства разработки и тестирования, программное обеспечение и патенты, которые позволяют использовать двигатели для ряда приложений, которые сокращают выбросы CO2 и критические выбросы и обеспечивают надежное соответствие требованиям экономически эффективным способом», — говорит шаблон на сайте Achates.

    Текущие проекты включают двигатели с оппозитными поршнями для легковых автомобилей, грузовиков средней и большой грузоподъемности, использования в военных целях, а также для бездорожья и производства электроэнергии. Двигатель с оппозитными поршнями Achates Power, который я видел на вебинаре Calstart, был сверхмощным дизельным двигателем для использования в 18-колесных автомобилях. 10,6-литровый трехцилиндровый двигатель (с шестью поршнями) развивает 400 л.с. при 1700 об / мин и 1674 фунт-фут крутящего момента при 950 об / мин. Он призван заменить 13-литровый четырехтактный рядный шестицилиндровый дизельный двигатель. Существует испытательный двигатель Achates Power, который работает с июля прошлого года на Peterbilt 579.Этим летом им воспользуется Walmart. Силовая установка Peterbilt от Achates Power имеет нагнетатель и турбокомпрессор для еще большей эффективности.

    Демонстрация двигателей для тяжелых грузовиков показывает, что с 1990 года по сегодняшний день выбросы NOx сократились на 98%, а твердых частиц — на 99%. Калифорнийский совет по воздушным ресурсам готовится принять постановление, согласно которому к 2027 году выбросы NOx снизятся еще на 90%, а PM — еще на 50% (в общей сложности за период с 1990 по 2027 годы выбросы NOx снизятся на 99,8%). Результаты, представленные на веб-семинаре на этой неделе, показывают, что Achates может снизить выбросы NOx на 96% по сравнению с сегодняшними стандартами (на 65% ниже стандарта CA 2027 года) и CO2 на 7% ниже сегодняшнего стандарта EPA.

    «Важно отметить, что все это делается с помощью обычных систем дополнительной обработки пола и, вероятно, будет наиболее экономичным и надежным способом соответствовать новым стандартам», — сказал исполнительный вице-президент Achates Power по развитию бизнеса Ларри Фромм.

    «С помощью вычислительной гидродинамики мы обнаружили, что когда два поршня сближаются, формируя контур каждого поршня так, чтобы он дополнял друг друга, мы могли создать псевдообъем сгорания, который был бы очень эффективным при смешивании воздуха и топлива, и это было частью решения по повышению топливной эффективности », — сказал Лемке.«У многих двигателей есть золотая середина, где они получают максимальную эффективность. Если вы этого не сделаете, эффективность очень быстро упадет. У нас очень ровный участок и везде примерно одинаковая эффективность. Любое применение дизельного топлива в настоящее время выиграет от этой конфигурации — двухтактной — за счет большей эффективности и более чистых характеристик ».

    Лемке привел один пример.

    «Нам известна одна торговая точка, в которой имеется 7 200 грузовиков. В прошлом году их счет на топливо только для этих грузовиков составил 350 миллионов долларов.Мы можем сэкономить им от 70 до 100 миллионов долларов в год, просто перейдя на этот двигатель ».

    Вот 10,6-литровый трехцилиндровый дизель Achates Power в Peterbilt 579.

    Сила Ахатеса

    Так почему же не все переходят на этот двигатель?

    «Это было похмелье двух ужасов, которые предвосхитили коленные рефлексы многих людей», — сказал Лемке. «Двухтактный? Нет, вы не можете сделать его чистым, вы не можете сделать его эффективным.

    Фромм добавляет больше перспектив.

    «Вплоть до недавнего времени (благодаря нашей работе, подобной той, что вы видели вчера), почти все считали, что двухтактные двигатели не могут соответствовать современным стандартам выбросов на шоссе», — сказал Фромм. «Это связано с тем, что двухтактный цикл очень сложен — газообмен и сгорание происходят в одном непрерывном процессе. Вы должны оптимизировать систему в целом. До появления суперкомпьютеров и сложной химически реактивной вычислительной гидродинамики оптимизация осуществлялась интуитивно, методом проб и ошибок.В результате все двухтактные двигатели были сняты с регулируемых рынков ».

    Так что, возможно, мир должен узнать о современных двухтактных двигателях с оппозитными поршнями. И именно здесь вступает в силу веб-семинар Calstart и его расширение Achates Power.

    «Мы собираем группу организаций, чтобы продвигать сверхмощный двигатель с оппозитными поршнями на пути к коммерциализации, с целью сделать двигатели доступными в 2027 год », — сказал Фромм. «Замечу, что еще одна версия этого двигателя — двигатель мощностью 1000 л.с. для боевой машины — будет серийно производиться Cummins в 2024 году для U.С. Армия ».

    Является ли двигатель с оппозитными поршнями следующим большим достижением? Или это просто еще один из миллиона двигателей, придуманных другими ребятами 100 лет назад, которые никуда не делись? Взгляните на ссылку Дуглас-Селф здесь. На нем показаны 115 двигателей, от Bakewell Wingfoot до Jasper Explosive Motor, которые кто-то когда-то думал, что они станут Следующей Большой Вещью.

    Я сам эгоистично посоветовал Porsche заменить свою нынешнюю плоскую шестерку двигателем с оппозитными поршнями на шестипоршневую трехкомпонентную конфигурацию.Или, может быть, Subaru следует использовать его для создания FrankenSoob. Я всегда доступен для планирования продукта и инженерного консультирования.

    Как вы думаете, имеет ли двигатель с оппозитными поршнями шанс получить более широкое распространение? А какие ваши любимые нестандартные конструкции двигателей? Дайте нам знать в комментариях ниже.

    Этот контент создается и поддерживается третьей стороной и импортируется на эту страницу, чтобы помочь пользователям указать свои адреса электронной почты. Вы можете найти больше информации об этом и подобном контенте на пианино.io

    Эволюция двигателя внутреннего сгорания

    Люди строят автомобили уже более века, и почти под каждым капотом находится двигатель внутреннего сгорания. В течение последних 100 лет его принцип оставался неизменным: воздух и топливо попадают внутрь, в цилиндрах происходит взрыв, и сила толкает вас вперед. Но с каждым годом инженеры оттачивают двигатель внутреннего сгорания, чтобы он двигался быстрее и дальше, делая его более эффективным, чем раньше, и производя такую ​​мощность, которую вы раньше видели только на суперкарах.Состояние двигателя внутреннего сгорания никогда не могло бы зайти так далеко без этих серьезных скачков. Вот как мы дошли до этого.


    1955

    Впрыск топлива

    До впрыска топлива дозирование бензина в камеру сгорания было неточным и сложным процессом. Карбюраторы часто нуждались в очистке и восстановлении, и на них влияли погодные условия, температура и высота над уровнем моря. Для сравнения, впрыск топлива был простым: он помогал двигателю работать более плавно, более стабильно на холостом ходу, работал более эффективно и избавлял от надоедливой рутины регулировки дроссельной заслонки каждый раз, когда вы ее запускали.Созданный на основе самолетов военного времени, он впервые был внедрен в автомобиль в 1955 году. В том же году Стирлинг Мосс и Денис Дженкинсон проехали на гоночном автомобиле Mercedes-Benz 300SLR через изнурительную гонку Mille Miglia протяженностью 992 мили в Италии, победив с рекордом. ни разу не сломался: 10 часов 7 минут 48 секунд.

    Британский автогонщик Стирлинг Мосс на пути к победе в итальянской гонке Mille Miglia Race, установив новый рекорд.

    KeystoneGetty Images

    Дорожная версия

    Benz стала не только первым серийным автомобилем с системой впрыска топлива, разработанным Bosch, но и самым быстрым автомобилем в мире.Два года спустя Chevrolet подарил Corvette двигатель «Fuelie» с системой впрыска топлива Rochester Ramjet, которая смогла разогнать 300SL. Тем не менее, именно системы Bosch с электронным управлением нашли свое применение почти во всех автопроизводителях Европы, а к восьмидесятым годам система впрыска топлива захватила мир.


    1962

    Турбокомпрессор

    Турбокомпрессор — одна из жемчужин развития двигателей. Турбина в форме улитки, набирающая больше воздуха в цилиндр, когда-то позволяла 12-цилиндровым истребителям времен Второй мировой войны взлетать выше, быстрее и дальше.Угадай, что? То же самое и на суше. Когда в 1962 году дебютировал первый автомобиль с турбонаддувом, он был обнаружен не под капотом легкого европейского малолитражного автомобиля, BMW 2002 или Saab 99, а благодаря мозговому доверию General Motors, полному наличными и желающему опробовать новые технологии.

    Предоставлено Hagerty

    В то время Oldsmobile Jetfire требовал — почти с каждым баком, полным бензина, — добавлением «Turbo Rocket Fluid», оригинального названия дистиллированной воды и метанола Jetsons.GM отказалась от этой концепции в середине десятилетия. Но к концу 1970-х такие компании, как BMW, Saab и Porsche, заняли позицию, доказали свою ценность в автоспорте, и теперь каждая машина имеет турбокомпрессор. Почти.

    Турбокомпрессор превратился из грязного трюка с быстрой скоростью в вашем 930 Turbo в семейную жизнь в Mazda CX-9, чей 2,5-литровый двигатель был оснащен первой в своем роде системой Dynamic Pressure Turbo в 2016 году. В действии действует принцип «большой палец над садовым шлангом»: ограниченный поток ускоряет выхлоп в турбину, улучшая отзывчивость на низких оборотах и ​​уменьшая турбо-лаг.Кроме того, с более строгими стандартами выбросов и эффективности, это необходимый компонент для выжимания мощности большого двигателя из самых маленьких и легких двигателей. И крутящий момент! Вам больше не нужно сбивать мессершмитты, чтобы почувствовать себя втянутым в кресло.


    1964

    Роторный двигатель

    Единственным двигателем, который действительно сломал шаблон — единственным, который попал в производство — было вращающееся чудо инженера Феликса Ванкеля, треугольник внутри овала, вращающийся, как демон.По самой природе своей конструкции роторный двигатель легче, менее сложен и имеет более высокие обороты, чем типичная коробка с поршнями. Mazda и несуществующий немецкий автопроизводитель NSU были первыми, кто подписал контракт; В 1964 году NSU Spider стал первым серийным автомобилем с Ванкелем.

    Mazda, однако, была единственной компанией, которая действительно работала с ним — первой Mazda с роторным двигателем была Cosmo 1967 года, предшественница длинной линейки спортивных автомобилей, седанов и даже случайных пикапов. последний RX-8 сошел с конвейера в 2012 году.Концепция RX-Vision 2016 года, представленная на Токийском автосалоне 2015 года, подтвердила непристойные слухи о том, что группа преданных своему делу инженеров, которым нечего терять, все еще разрабатывает следующий великий роторный двигатель где-то на заводе в Хиросиме.

    Вверху слева: Mazda Cosmo Sport 110S 1967 года выпуска; справа и внизу слева: роторный двигатель Mazda RENESIS

    . Предоставлено Mazda

    .

    1981

    Деактивация цилиндра

    Идея проста.Чем меньше срабатывает цилиндр, тем лучше пробег. Как превратить V8 в четырехцилиндровый? Если вы были Кадиллаком около 1981 года, вы представили двигатель с метко названным 8-6-4, в котором использовались соленоиды с электронным управлением для закрытия клапанов на двух или четырех цилиндрах. Это должно было повысить эффективность, скажем, при движении по шоссе. Но последовавшая за этим ненадежность и неуклюжесть были настолько печально известны, что никто не осмеливался повторить попытку в течение двадцати лет.

    Теперь у нескольких производителей эта идея наконец-то работает — и она перешла к двигателям меньшего размера.


    2012

    Степени сжатия

    Наука работает следующим образом: внутри цилиндра двигателя чем меньше вы можете сжать воздух и топливо, тем больше мощности вы получите при взрыве. Объем, который может сжать поршень, и есть степень сжатия. Но производители не могут слишком сильно увеличивать степень сжатия, иначе смесь воспламенится сама по себе; последующий «стук» разорвет двигатель.

    В надире 1970-х годов, задыхаясь от правил смога и вынужденных бороться с неэтилированным бензином, производители построили массивные двигатели V8, которые хрипели.Эти большие мальчики сдерживались болезненно низкой степенью сжатия — свинец, который когда-то был в бензине, предотвращал детонацию. Благодаря электронному управлению подачей топлива и лучшему пониманию контроля за выбросами двигатели стали вырабатывать больше мощности при уменьшении рабочего объема.

    Двигатель Mazda SKYACTIV-G 2018 года с отключением цилиндров выдает 187 лошадиных сил и 186 фунт-фут крутящего момента.

    Предоставлено Mazda

    .

    В 2012 году в производство был запущен двигатель Mazda SKYACTIV-G с самой высокой степенью сжатия для серийного двигателя, поразительной 14: 1 (в Америке — 13: 1), что позволяет ему извлекать энергию почти из каждой капли бензина без множество оборудования для защиты от смога.Следующее нововведение Mazda вывело высокую степень сжатия на новый уровень. SKYACTIV-X использует искровое зажигание от сжатия (SPCCI) для воспламенения топливно-воздушной смеси с минимальным количеством бензина, сочетая крутящий момент дизельного двигателя с высокой частотой вращения бензинового двигателя.

    Даже спустя столетие, даже с использованием альтернативных видов топлива и методов движения, двигатель внутреннего сгорания остается самой большой добычей в городе. Спустя столько времени основы не изменились. Но всегда найдется автомобильная компания, которая готова представить что-то новое, и постоянное совершенствование является ключом к сохранению актуальности двигателя внутреннего сгорания в предстоящие годы.

    Бензиновый двигатель | Британника

    Полная статья

    Бензиновый двигатель , любой из класса двигателей внутреннего сгорания, которые вырабатывают энергию за счет сжигания летучего жидкого топлива (бензина или бензиновой смеси, такой как этанол) с воспламенением, инициируемым электрической искрой. Бензиновые двигатели могут быть построены для удовлетворения требований практически любого возможного применения в силовых установках, наиболее важными из которых являются легковые автомобили, малые грузовики и автобусы, самолеты авиации общего назначения, подвесные и малые внутренние морские агрегаты, стационарные насосные агрегаты среднего размера, осветительные установки и т. Д. станки и электроинструменты.Четырехтактные бензиновые двигатели используются в подавляющем большинстве автомобилей, легких грузовиков, средних и больших мотоциклов и газонокосилок. Двухтактные бензиновые двигатели встречаются реже, но они используются для небольших подвесных судовых двигателей и во многих ручных инструментах для озеленения, таких как цепные пилы, кусторезы и воздуходувки.

    Типы двигателей

    Бензиновые двигатели можно сгруппировать в несколько типов в зависимости от нескольких критериев, включая их применение, метод управления подачей топлива, зажигание, расположение поршня и цилиндра или ротора, количество ходов за цикл, систему охлаждения, а также тип и расположение клапана.В этом разделе они описаны в контексте двух основных типов двигателей: поршневых двигателей и роторных двигателей. В поршневом двигателе давление, создаваемое при сгорании бензина, создает силу на головке поршня, которая перемещает цилиндр по длине возвратно-поступательным или возвратно-поступательным движением. Эта сила отталкивает поршень от головки цилиндра и выполняет работу. Роторный двигатель, также называемый двигателем Ванкеля, не имеет обычных цилиндров, оснащенных возвратно-поступательными поршнями.Вместо этого давление газа действует на поверхности ротора, заставляя ротор вращаться и, таким образом, выполнять работу.

    бензиновые двигатели

    Типы бензиновых двигателей включают (A) двигатели с оппозитными поршнями, (B) роторные двигатели Ванкеля, (C) рядные двигатели и (D) двигатели V-8.

    Британская энциклопедия, Inc.

    Большинство бензиновых двигателей относятся к поршнево-поршневому типу. Основные компоненты поршнево-цилиндрового двигателя показаны на рисунке. Почти все двигатели этого типа работают по четырехтактному или двухтактному циклу.

    Типовая схема поршневой цилиндр бензинового двигателя.

    Британская энциклопедия, Inc.

    Четырехтактный цикл

    Из различных методов восстановления мощности процесса сгорания наиболее важным до сих пор был четырехтактный цикл, концепция, впервые разработанная в конце 19 века. Четырехтактный цикл показан на рисунке. При открытом впускном клапане поршень сначала опускается на такте впуска. Воспламеняющаяся смесь паров бензина и воздуха втягивается в цилиндр за счет создаваемого таким образом частичного вакуума.Смесь сжимается, когда поршень поднимается на такте сжатия при закрытых обоих клапанах. По мере приближения к концу хода заряд воспламеняется электрической искрой. Затем следует рабочий ход, когда оба клапана все еще закрыты, а давление газа обусловлено расширением сгоревшего газа, давящим на головку или головку поршня. Во время такта выпуска восходящий поршень вытесняет отработанные продукты сгорания через открытый выпускной клапан.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *