Электромагнитные приводы клапанов — типы и принцип работы
Содержание статьи:
Электромагнитные приводы противопожарных клапанов
Типы огнезащитных клапанов с электромагнитным приводом
Типы электромагнитных приводов
Принцип работы электромагнитного привода
Сравнение характеристик с электроприводом
Достоинства и недостатки по сравнению с электромеханическими приводами
Электромагнитные приводы противопожарных клапанов
Электромагнитный привод – устройство пружинного действия с электромагнитной защёлкой, которые необходимы для управления работой огнезадерживающих и противодымных клапанов. Главные компоненты привода ЭМ – крутящая (возвратная) пружина и электрический магнит, который фиксирует заслонку в исходном состоянии (для дымовых клапанов в закрытом, для огнезащитных – в открытом). В механизме применяются магниты постоянного тока, рассчитанные на напряжение 12В или 24В, и устройства, оснащённые 2-полупериодным выпрямителем, функционирующие от обычной электросети переменного тока с частотой 50 Гц и напряжением 220В.
Электромагнитные приводы огнезадерживающих и дымовых клапанов оборудованы микровыключателями, чтобы управлять их состоянием. Концевые выключатели (КВ1/КВ2) сигнализируют о текущем положении заслонки, которая может быть открыта или закрыта. Диапазон силы тока в сети управления – от 0.1 до 2А (в случае активной нагрузки), от 0.25 до 4А (в случае индуктивной нагрузки с постоянным током), от 0.3 до 2А (при индуктивной нагрузке с переменным током).
Управляющим сигналом на срабатывание заслонки клапана с электромагнитным приводом служит подача питания на э/магнит. Затем необходимо снять напряжение с электромагнита (220В), чтобы обезопасить обслуживающий персонал от удара током.
Типы огнезащитных клапанов с электромагнитным приводом
- В зависимости от назначения и места установки, огнезащитные клапаны с приводом ЭМ, можно разделить на три группы:
- Нормально-открытые (НО) с пределом огнестойкости EI — применяются в системах общеобменной вентиляции приточного типа;
- Нормально-закрытые (НЗ) с пределом огнестойкости EI — рассчитаны на установку в каналы приточной противодымной вентиляции;
- Нормально-закрытые (НЗ) с пределом огнестойкости E — для дымоудаления, устанавливаются в шахты или воздуховоды вытяжной противодымной вентиляции.
Пружинный привод с электромагнитной защелкой и тепловым замком поставляются вместе с нормально-открытыми (НО) противопожарными клапанами, которые противостоят свободному прохождению огня по вентиляционным воздуховодам, т.е. выполняют огнезащитную функцию.
Тепловой замок (ТЗ) — термочувствительный элемент, применяемый для дублирования автоматического срабатывания в условиях пожара.
Аналогичное устройство, но без датчика температуры, устанавливается на огнезадерживающие ОЗК с нормально-закрытой заслонкой.
Электромагнитные приводы дымоудаления устанавливаются на дымовые клапаны, у которых заслонка в режиме по умолчании находится в закрытом состоянии.
Пример применения — КЛОП ВИНГС-М
Клоп 1 НОПрямоугольный
Нормально открытый огнезащитный
Клоп 2 НЗПрямоугольный
Нормально закрытый огнезащитный
Клоп 1 EI60/90Круглый
Противопожарный для круглого воздуховода
Клоп 3Двойная заслонка
Противопожарный с меньшей длиной
Типы электромагнитных приводов
Основным различием между регулирующими устройствами с магнитной защёлкой является напряжение питания: 12В, 24В и 220В. Степень защиты корпуса может различаться, в зависимости от модели, от минимальных IP10 до максимальных IP54 (защита от влаги и пыли). Так же отдельные модификации могут иметь встроенную функцию автоматического отключения и проверки работоспособности (например М183).
Сравнение характеристик с электроприводом
Электромеханические противопожарные электроприводы подключаются в сети переменного тока 230В или постоянного тока 24В, приводы с электромагнитной защёлкой имеют такие же параметры, но ещё и возможность подключения 12В (постоянного тока).
Таблица сравнения характеристик | |||
---|---|---|---|
Модель | ЭМК 25-211-3 54У3 | Модель | Dastech FR-05N220S |
Номинальное напряжение | 220В, 50гц | 220В, 50гц | |
Номинальная тяговая сила | 120 Н | Крутящий момент | 5 Нм |
Номинальный ход якоря | 4,5±0,5 мм | Угол поворота | 90 ° (макс 95°) |
Номинальная мощность | 66 Вт | Потребляемая мощность | 5 Вт / 3 Вт |
Время возврата | 2 сек | Время поворота пружины | 20 сек |
Концевые выключатели | есть | есть | |
Масса | 1. 45 кг | 1.5 кг |
Принцип работы электромагнитного привода
Вращение заслонки происходит при подаче напряжения на магнит или при разрыве теплового замка (обычно настроены на 72°С). Рычажок магнита высвобождает заслонку, а пружина перемещает заслонку из изначального положения в рабочее. В этом состоянии заслонка закрепляется ригелем. Таким образом, перевод состояния из исходного происходит автоматически (для клапанов НО и НЗ), при работе теплового замка (для НО), дистанционно с пульта управления либо от рычага, кнопки на самом клапане. Обратно – из рабочего состояния в изначальное – исключительно ручным способом, с помощью ключа либо рукоятки.
Достоинства и недостатки по сравнению с электромеханическими приводами
- Преимущества:
- Оперативное (по времени – не более 2 секунд) установка заслонки клапана в рабочее состояние, при том, что у электромеханических электроприводов это значение достигает 30-150 секунд для двигателя и 20-30 секунд для возвратной пружины;
- Компактные габаритные размеры;
- Низкая цена по сравнению с электромеханическими аналогами.
- Основные недостатки:
- Необходимость возвращения заслонки после её срабатывания в изначальное состояние в ручном режиме;
- При подсоединении клапанов в группу, управление сигнализирует на работу всех входящих в неё клапанов. Поэтому при проектировании требуется более тщательно группировать клапаны по управлению;
- Большое энергопотребление – 30Вт-60Вт, в то время как у электромеханических – 5-10 Вт для двигателя, удержание пружины – от 2 до 5 Вт.
И несмотря на небольшие размеры, вес вполне сопоставим с электроприводами — 1.4-2 кг. По данному параметру разницы нет.
Электромагнитный привод ЭМП. Выгодная цена в Москве
Узнать стоимость
Электромагнитный привод ЭМП-К предназначен для использования в качестве спускового устройства в различных механических запорных устройствах с ручным взводом и формирования сигнала о положении запорного органа устройства. Для выполненния последней функции ЭМП-К содержит датчик контроля состояния электромагнитного привода. Информация с датчика в виде «сухого контакта» может быть использована в системах автоматики безопасности, в устройствах контроля оборудования.
- ЭМП-К1 — питание электромагнита осуществляется от сети переменного тока частотой 50 Гц через однополупериодный выпрямитель;
- ЭМП-К2 — питание электромагнита осуществляется от источника постоянного тока напряжением 24 В;
- ЭМП-К3 — питание электромагнита осуществляется через специальное устройство форсировки. Это позволяет избежать нагрев катушки электромагнита при длительной работе и тем самым повышается функциональная надежность привода.
Электромагнитный привод ЭМП-К1
ЭМП-К1
Напряжение питающей сети, В | в режиме форсировки (в момент включения) | в установившемся режиме | Рассеиваемая мощность не более, Вт | Режим работы ПВ, % | Усилие удержания не менее, Н | Номинальный ход якоря, мм | Максимальное число включений в час | Масса, кг |
220В, 50Гц | 0,06 | 0,25 | 1,5 | 100 | 5 | 8 | 1200 | 0,6 |
Электромагнитный привод ЭМП-К2
ЭМП-К2
Напряжение питающей сети, В | в режиме форсировки (в момент включения) | в установившемся режиме | Рассеиваемая мощность не более, Вт | Режим работы ПВ, % | Усилие удержания не менее, Н | Номинальный ход якоря, мм | Максимальное число включений в час | Масса, кг |
24 В пост. ток | 0,1 | 0,1 | 1,5 | 100 | 5 | 8 | 1200 | 0,6 |
Узнать стоимость
Электромагнитный привод ЭМП-К3
ЭМП-К3
Напряжение питающей сети, В | в режиме форсировки (в момент включения) | в установившемся режиме | Рассеиваемая мощность не более, Вт | Режим работы ПВ, % | Усилие удержания не менее, Н | Номинальный ход якоря, мм | Максимальное число включений в час | Масса, кг |
220В, 50Гц | 0,05 | 0,05 | 1,5 | 100 | 5 | 8 | 20 | 0,6 |
Узнать стоимость
EmDrive, предполагаемый бестопливный двигатель, снова сбит с ног
Изображение: Luis M. Molina/Gizmodo (Getty Images)
Пять лет назад исследователи НАСА экспериментировали с объектом под названием EmDrive (или электромагнитным приводом), Y-образной металлической камерой, в которой, как они сообщали, тяга могла быть производится без топлива. Такое приспособление опровергло бы основные принципы физики, какими мы их знаем, и устранило бы огромный барьер для путешествий в дальний космос, сведя на нет необходимость носить с собой топливо. В конечном счете, надежда на EmDrive заключалась в том, что двигатели без топлива сделают путешествие к отдаленным объектам, таким как внешняя Солнечная система и даже близлежащие внесолнечные системы, такие как Альфа Центавра, управляемыми в человеческих масштабах времени.
Прототип NASA EmDrive 2013-14 гг. Изображение: Wikimedia Commons (добросовестное использование)
Если это звучит слишком хорошо, чтобы быть правдой, другие ученые думали так же. После того, как эта статья была опубликована в Journal of Propulsion and Power, появилось множество исследований, объясняющих, в чем заключалась ошибка в исходной математике EmDrive. Надежды на бестопливный двигатель точно не оправдались; они постепенно развенчиваются в исследованиях смерти на 1000 человек. Самые последние усилия включают три статьи, представленные на конференции Space Propulsion 2020+1 исследователями из Дрезденского технологического университета в Германии.
«Когда мощность поступает в EmDrive, двигатель прогревается», — сказал соавтор исследования Мартин Тамджар, физик из Дрезденского технического университета, немецкому изданию GleWi. «Это также приводит к деформации крепежных элементов весов, в результате чего весы перемещаются к новой нулевой точке. Мы смогли предотвратить это в улучшенной структуре. Наши измерения опровергают все утверждения EmDrive как минимум на 3 порядка».
Упс. Очень жаль, потому что бестопливный двигатель был бы благом для исследования человеком космоса, ближнего и дальнего. Но немецкая команда использует свой EmDrive уже несколько лет, используя модель технологии, основанную на дизайне НАСА 2016 года. Они до сих пор не нашли доказательств, подтверждающих первоначальные утверждения.
Принцип EmDrive заключался в том, что микроволны, подпрыгивающие внутри камеры, будут создавать неравномерную силу, достаточную для создания мизерной тяги. Критики говорят, что это нарушает основные законы физики: казалось, что EmDrive создает импульс, а не тягу, возникающую из известных физических явлений.
«Я считаю, что история с EMDrive закрыта», — сообщил Таймар Gizmodo по электронной почте. «Я не видел достоверных доказательств (опубликованных измерений, соответствующих высоким экспериментальным стандартам), которые требуют дальнейшего изучения».
При предварительном тестировании результатов НАСА та же немецкая команда также обнаружила небольшой эффект тяги, но они не были в этом уверены. С тех пор они пытаются приглушить все внешние шумы, чтобы увидеть, действительно ли EmDrive производит их сам. В одном из новых исследований авторы пришли к выводу, что эффект тяги на самом деле был просто вибрацией устройства, артефактом его работы.
Альфа и Бета Центавра, Проксима Центавра обведена красным. Изображение: Wikimedia Commons (добросовестное использование)
EmDrive был любимым проектом DARPA, научно-исследовательского подразделения Министерства обороны США. Инвестиции DARPA в проект продлятся до мая 2021 года, так что для финансирования проекта, на который когда-то возлагалось так много надежд, осталось очень мало времени.
Фантазия об EmDrive пока остается таковой, хотя это не помешает ученым заняться проблемой топлива, которая остается колоссальной баррикадой для нас, крошечных людей, отважившихся зайти дальше нашего собственного космического порога. С другой стороны, с каждой проходящей статьей кажется, что «Невозможный драйв» оправдал свое прозвище.
Эта история была дополнена комментариями Мартина Таймара.
EmDrive: возможно ли это? | Ученые только что убили EmDrive
- «Невозможный» EmDrive не прошел международные испытания в трех новых статьях.
- Идея всегда была далекой, но это часть того, как наука движется вперед.
- EmDrive работает (или нет), накачивая микроволны в асимметричную закрытую камеру.
В крупных международных испытаниях бросивший вызов физике EmDrive не смог обеспечить ожидаемую сторонниками тягу. На самом деле, во время одного из испытаний в Дрезденском университете в Германии он вообще не создавал никакой тяги. Это конец линии для EmDrive?
EmDrive, авторские права на который принадлежат его материнской компании SPR Ltd, теоретически работает, улавливая микроволны в специальной камере, где их отскок создает тягу. Камера закрыта, то есть снаружи кажется, что она просто движется без подачи топлива или выхода тяги.
SPR Ltd объясняет:
«Это основано на втором законе Ньютона, где сила определяется как скорость изменения количества движения. Таким образом, электромагнитная (ЭМ) волна, распространяющаяся со скоростью света, имеет определенный импульс, который она передаст отражателю, в результате чего возникнет крошечная сила».
Эта аккумулированная крошечная сила в большом количестве — это то, что позволяет EmDrive, по словам компании — звучит просто, но, по сути, разрушает наше существующее понимание физики. Никакая энергия не входит и не выходит, так как же инициализируются волны, как они продолжают двигаться и откуда берется их импульс?
Связанная история
- EmDrive просто не умрет
У вас не может быть спонтанного, созданного импульса без объяснимого толчка, поэтому многие ученые не воспринимают EmDrive всерьез. Если EmDrive сработает, то он обесценит многое из того, что физики знают о Вселенной.
Тем не менее, несколько исследовательских групп, в том числе Eagleworks НАСА (официально известная как Advanced Physics Propulsion Laboratory , созданная для изучения новых технологий) и DARPA, агентство по исследовательским проектам Министерства обороны, продолжали изучать жизнеспособность EmDrive.
Почему? Потому что эта концепция может «преобразовать космические путешествия и увидеть, как корабли бесшумно взлетают со стартовых площадок и выходят за пределы Солнечной системы», — сказал Майк МакКаллох, преподаватель геоматики в Университете Плимута, Великобритания, и руководитель проекта DARPA EmDrive.0043 Pop Mech в прошлом году. «Мы также можем отправить беспилотный зонд к Проксиме Центавра за (долгую) человеческую жизнь, 90 лет».
Команда NASA Eagleworks тестирует EmDrive в 2016 году.
NASAИнвестиции DARPA в EmDrive начались в 2018 году и продлятся до мая 2021 года. .
Суть EmDrive заключается в том, что если вы отбрасываете микроволны внутри трубы, они прилагают больше усилий в одном направлении, чем в другом, создавая результирующую тягу без необходимости в каком-либо топливе. И когда НАСА и команда из Сианя в Китае попытались это сделать, они действительно получили небольшую, но отчетливую чистую силу.
Теперь, однако, физики из Дрезденского технологического университета (TU Dresden) говорят, что многообещающие результаты, показывающие тягу, были все ложных срабатывания, которые объясняются внешними силами. Ученые недавно представили свои выводы в трех статьях на Space Propulsion Conference 2020 +1 под такими заголовками, как «Высокоточные измерения тяги EmDrive и устранение ложноположительных эффектов». (О двух других исследованиях читайте здесь и здесь.)
Андрей Суслов//Getty Images
Используя новую измерительную шкалу и разные точки подвески того же двигателя, ученые Дрезденского технического университета «смогли воспроизвести кажущиеся силы тяги, подобные тем, которые были измерены командой НАСА, а также заставить их исчезнуть с помощью точечной подвески, — сообщил немецкому сайту GreWi исследователь Мартин Таймар .
Вердикт:
«Когда мощность поступает в EmDrive, двигатель прогревается. Это также вызывает деформацию крепежных элементов на шкале, в результате чего шкала перемещается к новой нулевой точке. Мы смогли предотвратить это в улучшенной структуре. Наши измерения опровергают все заявления EmDrive как минимум на 3 порядка. ”
Другие вещи, которые вам понравятся
- Ученые говорят, что физический варп-двигатель возможен
- Двигатель, который может доставить нас на Марс за 3 месяца
- Этот термоядерный двигатель может ускорить межзвездное путешествие тесты как момент «сделай или умри» EmDrive, и кажется, что результат указывает на смерть — на данный момент. Инвестиции DARPA в невозможный EmDrive, по крайней мере, довольно малы, и это, безусловно, не самая безумная вещь, на которую DARPA потратила деньги. Более того, космические путешествия породили ряд диковинных идей для двигателей, поскольку ученые пытаются мыслить как можно более нестандартно, чтобы освободиться от новых и революционных концепций.