Чем отличается разрезной мост от неразрезного: Что означает разрезной и неразрезной мосты?

Содержание

4.3. Балочно-неразрезные мосты

Данные конструкции применяют для средних и больших мостов. Балочно-неразрезная система моста экономичнее по сравнению с разрезной системой. Это достигается за счет их статической работы. Уменьшение значений изгибающих моментов в пролете вследствие возникновения отрицательных моментов над промежуточными опорами обеспечивает экономный расход материалов. Наличие плавности линии прогибов пролетного строения и снижение вертикальных деформаций дают преимущество неразрезным пролетам по сравнению с разрезными.

Неразрезные пролетные строения являются статически неопределимыми системами, поэтому к основным требованиям для их использования относят наличие «жестких» оснований с целью исключения неравномерных осадок опор.

Наиболее широкое применение в практике строительства железнодорожных мостов получили двух- и трехпролетные балки. В трехпролетных системах, учитывая, что средние пролеты разгружаются больше крайних, для выравнивания моментов длину среднего пролета увеличивают на 20–30 %.

Высоту неразрезных пролетных строений железнодорожных мостов назначают в пределах (1/101/20) l для балок из обычного железобетона и (1/151/40) l для балок из предварительно напряженного железобетона [11]. Если используют противовесы в концевых пролетах для уменьшения изгибающего момента в середине среднего пролета, то высоту принимают 1/50 l. В этой связи нижний пояс пролетных строений применяют криволинейного очертания или устраивают вуты в приопорных зонах (рис. 4.24, 4.25) [11].

Рис. 4.24. Эпюры изгибающих моментов балочно-неразрезных пролетных строений прямолинейного (а) и криволинейного (б) очертаний нижнего пояса

Рис. 4.25. Автозаводской мост с неразрезным пролетом (г. Москва)

Поперечные сечения балок пролетных строений различают трех видов: тавровое, двутавровое и коробчатое (рис. 4.26).

Армирование неразрезных балок пролетных строений осуществляют таким образом, чтобы рабочая арматура была размещена в верхней зоне в надопорных сечениях, а в нижней зоне – с учетом действия положительных моментов.

Рис. 4.26. Поперечные сечения неразрезных балок: а – тавровое; б, в – коробчатые

Характер армирования неразрезных пролетных строений из сборного предварительно напряженного железобетона зависит не только от эпюры изгибающих моментов, но и от способа монтажа, как правило, навесного [11].

При перекрытии пролета длиной более 50 м наиболее рациональным может оказаться применение сквозной конструкции.

4.4. Общие сведения о рамных и арочных мостах

4.4.1. Рамные мосты

Рамные системы мостов применяют для путепроводов и эстакад.

Отличительной особенностью рамных мостов по сравнению с балочными является жесткое соединение горизонтальных несущих ригелей с опорными стойками. В практике мостостроения наибольшее распространение получили железобетонные рамные мосты с небольшими пролетами из монолитного железобетона (рис. 4.27, а,б,в) [11].

Рис. 4.27. Схемы рамных мостов: а – из ненапряженного железобетона; б – с деформационными швами; в – с подвесным пролетом; г, д – поперечные сечения рамных мостов

Рамные мосты экономичнее балочных по расходу бетона. При работе моста под нагрузками изгибающие моменты в ригеле меньше по сравнению с неразрезными балками. С учетом статической работы опорные стойки рамных мостов имеют меньшие размеры по сравнению с опорами балочных мостов, но за счет того, что они работают на сжатие с изгибом, требуется усиленное армирование.

В поперечном сечении рамный железобетонный однопутный железнодорожный мост представляет собой раму с вертикальными и наклонными стойками (рис. 4.27,г,д).

В современных условиях наибольшее применение получили рамно-консольные системы из предварительно напряженного железобетона (рис. 4.28).

Рис. 4.28. Схемы рамных мостов из предварительно напряженного железобетона: а – рамно-консольная система; б – рамно-подвесная система; в –рамно-неразрезная система с наклонными стойками

В системе железнодорожного транспорта рамные мосты используются для путепроводов из монолитного железобетона (рис. 4.29).

Рис. 4.29. Конструкция рамного путепровода из монолитного железобетона

Принципы армирования ригелей рамных мостов аналогичны принципам армирования неразрезных балок.

Условием для применения рамных мостов является наличие «жесткого» основания, так как при неравномерной осадке опор в ригелях и стойках возникают дополнительные изгибающие моменты. Монолитные рамы большой длины чувствительно реагируют на температурные изменения и усадку бетона. Для их уменьшения применяют постановку двойных стоек или подвесных балок с продольно-подвижным опиранием одного из концов.

Строительство неразрезных желозобетонных мостов — stroyone.com

Содержание

  • 1 Конструкция неразрезных мостов
  • 2 Технология строительства неразрезных железобетонных мостов
  • 3 Строительство неразрезных железобетонных мостов с помощью плавучих опор
    • 3.1 Монтаж неразрезного пролетного строения
    • 3.2 Строительство моста им. Александра Невского в Санкт-Петербурге
  • 4 Комбинированный метод строительства неразрезных пролетных строений
  • 5 About bridges

Конструкция неразрезных мостов

Железобетонные неразрезные мосты получили широкое применение и имеют существенные экономические, эксплуатационные и эстетические преимущества.

Неразрезные балочные пролетные строения имеют меньшие, чем разрезные, величины изгибающих моментов в пролете, а значит, и меньшую высоту и размеры поперечного сечения главных балок. Возможность наиболее рационального изменения высоты балок по пролету существенно уменьшает общий объем железобетона в конструкции.

В неразрезной системе обычно достигается также экономия в объеме опор за счет размещения на промежуточных опорах только по одной опорной части (по фасаду моста) вместо двух при разрезных системах. Кроме того, вертикальное опорное давление от неразрезного пролетного строения пере­дается на опору центрально и вызывает в сечениях опоры равномерно распределенные сжимающие напряжения.

Отсутствие поперечных деформационных швов, вредно влияющих на развитие скоростного движения на современных автомобильных дорогах, является важным преимуществом неразрезных систем с точки зрения эксплуатации.

В неразрезной конструкции деформации значительно меньшие, чем в конструкции с шарниром типа рамно-консольных или рамно-подвесных.

Как известно, в мостах с центральным шарниром возникают большие вертикальные перемещения концов консолей от воздействия совокупности различных деформаций материалов. Опыт показал, что наличие шарнира в середине пролетов вызывает постепенно нарастающие прогибы концов консолей в течение первых лет службы сооружения. Эти прогибы создают переломы в продольном профиле моста.

Применение балок постоянной высоты в ряде случаев позволяет придать железобетонным неразрезным мостам особую стройность и архитектурную законченность, удовлетворяющую повышенные эстетические требования, особенно, если промежуточные опоры приняты тонкостенными или гибкими.

Наиболее важным технологическим преимуществом балок постоянной высоты является возможность значительного упрощения производства работ при сооружении монолитных неразрезных пролетных строений мето­дом навесного и попролетного бетонирования, а также возможность строительства сборных мостов с пролетами от 40 до 100 м из серийных блоков.

К достоинствам неразрезных систем следует также отнести возможность использования их в сложных условиях при сооружении мостов и эстакад в больших городах и на автострадах, проложенных в гористой местности.

В поперечном сечении неразрезные пролетные строения длиной до 30— 40 м состоят, как правило, из одной или двух коробок.

В качестве рабочей арматуры в неразрезных пролетных строениях применяют пучки из высокопрочной проволоки, стальные канаты и высокопрочную стержневую арматуру. Рабочую арматуру располагают по плите или в каналах, образованных в плите и стенках балки.

К недостаткам неразрезных систем относится необходимость устройства достаточно надежных и жестких оснований опор, а также большая сложность и трудоемкость арматурных работ.

К числу наиболее крупных неразрезных мостов, сооруженных в СССР и за рубежом, следует отнести мост им. Александра Невского через р. Неву в Ленинграде с пролетами до 123 м, мост через р. Москву у Нагатино с русловым пролетом 114 м, мост Олерон-Континент (Франция) общей длиной 2862 м с максимальными пролетами по 79 м, через р. Рейн у Бендорфа (ФРГ) с центральным пролетом 208 м.

Неразрезная конструкция принята в русловой части моста через р. Вол­гу в Саратове. При общей длине моста около 2800 м судоходная часть главного русла реки перекрыта пятипролетным неразрезным решетчатым строением по схеме 106 + 3 X 166 + 106 м.

Технология строительства неразрезных железобетонных мостов

Предварительно напряженные железобетонные мосты неразрезной систе­мы сооружают различными способами.

  1. Неразрезные пролетные строения можно собирать из цельноперевозимых балок, соединенных между собой в неразрезную систему путем установки над промежуточными опорами высокопрочной арматуры, напрягаемой после омоноличивания швов между торцами этих балок. Этот метод при­меняется при перекрытии пролетов длиной до 40—45 м.
  2. Сборные неразрезные пролетные строения можно монтировать путем установки крупных блоков с помощью плавучих опор. Применение этого метода рационально при многократном повторении операций на сооружае­мом объекте. Перевозка крупных блоков на плаву дает возможность вести параллельно работы по сооружению опор в русле и сборку или бетонирование пролетных строений на берегу, но требует дополнительных дорогих устройств.
  3. При сооружении ряда больших мостов монтаж неразрезных пролетных строений был осуществлен методом навесной сборки с подачей блоков на плаву или по собранной части моста.
  4. При сооружении многопролетных виадуков и эстакад с пролетами от 18 до 50 м за рубежом получил распространение метод попролетного бетонирования, основанный на последовательном и многократном использовании инвентарных подмостей и опалубки при строительстве мостов с одинаковыми пролетными строениями постоянной высоты.
  5. Для сооружения неразрезных пролетных строений из монолитного железобетона при благоприятных условиях эффективным оказывается метод навесного бетонирования.
  6. При сооружении одного из мостов был успешно применен комбиниро­ванный способ, который заключается в сочетании установки крупных надопорных блоков на плавучих средствах с последующим наращиванием консолей пролетного строения путем уравновешенного навесного бетонирования.
  7. В последние годы в СССР и за рубежом для сооружения сборных нераз­резных пролетных строений постоянной высоты разработан и применен новый для железобетонных конструкций способ — продольной надвижки. Этот способ применяется при установке в пролет неразрезных пролетных строений с пролетами до 96 м, собранных из отдельных блоков на подхо­дах к мостам.

Строительство неразрезных железобетонных мостов с помощью плавучих опор

Метод установки крупных блоков на плаву был применен при соору­жении неразрезного железобетонного пролетного строения длиной 710 м крупнейшего автодорожного моста через р. Волгу у Саратова.

Главные судоходные пролеты этого моста перекрыты пролетным строе­нием по схеме 106 + 3 X 166 + 106 м, расчлененным согласно условиям монтажа по длине на четыре надопорные решетчатые секции треугольной системы — «птички» длиной по 120 м, и пять соединительных элементов — вставок между ними длиной по 46 м со сплошной стенкой.

Схема русловых пролетов моста через реку волга в Саратове

 

В поперечном сечении пролетное строение состоит из двух ветвей, каждая из которых имеет две несущие плоскости, объединенные поверху плитой проезжей части. Таким образом, пролетное строение собирали из восьми «пти­чек» и 10 вставок. Вставки объединяются с надопорными секциями после окончания сборки.

Каждая решетчатая ферма длиной 120 м имеет 9 панелей по 11,4 м и 2 концевых участка по 8,7 м. Высота фермы на опоре 18 м и на концах 4,68 м. Каждая надопорная секция «птичка» состоит из 144 сборных элементов 72 типоразмеров. Общий объем надопорного блока 730 м3. Элементы нижнего пояса, сжатые раскосы и ребра верхнего пояса «пти­чек» изготовлены на заводах из обычного железобетона.

Предварительно напряженные растянутые раскосы вместе с узловыми блоками были изготовлены в специальных стендах на строительной пло­щадке. Ребра верхнего пояса омоноличивали попанельно в блоки верхнего пояса также на строительной площадке.

Предварительно напряженные блоки-вставки длиной 46 м весом 600 т изготовляли по стендовой технологии аналогично балкам длиной 70 м это­го же моста.
В период монтажа система пролетного строения работает под действием собственного веса как балочно-консольная, а после объединения соедини­тельных узлов надопорных секций со вставками — как неразрезная под действием временной нагрузки.

Монтаж неразрезного пролетного строения

Монтаж неразрезного пролетного строения проводили в пять этапов в такой последовательности:

  1. (й) этап — укрупнительная сборка элементов нижнего пояса и раскосов в плоские треугольники с установкой их в вертикальное положение с помощью специального кантователя и портального крана грузоподъемностью 100 т;
  2. (й) сборка решетчатых секций пролетных строений на подмостях, имеющих ширину, равную половине ширины моста; омополичивание узлов и натяжение продольной арматуры. Каждую секцию собирали при помощи портального крана грузоподъемностью 100 т из 48 предварительно укрупненных элементов: треугольников решетки, плит проезжей части с эле­ментами верхнего пояса, опорного и концевых блоков;
  3. (й) снятие секций весом 2600 т каждая с монтажных подмостей и перекатка на тележках на пирс с опусканием на плашкоут. Перед выкат­кой блока на пирс на одном его конце устанавливали металлический аванбек из инвентарных элементов, а на противоположном конце для уравнове­шивания системы — противовес, состоящий из металлических инвентарных понтонов, заполненных водой. Аналогичный аванбек монтировали и на пролетном строении соседнего пролета. Эти устройства были предназна­чены для временного закрепления блока в устойчивом положении на постоянном опоре моста;
  4. (й) отвозка секций на плаву к месту установки па шарнирные опорные части постоянных опор с временным закреплением с помощью аванбеков. Секции перевозили и устанавливали с помощью плавучей опоры, состоящей из двух плашкоутов. Каждый плашкоут был собран из 74 металлических понтонов типа КС и оборудован системой воздушной балла­стировки
  5. (й) установка блоков — вставок со сплошными стенками с помощью фермоподъемников, расположенных на концах надопорных секций. Замы­кание пролетного строения в неразрезную систему с установкой и напря­жением канатов и омоноличиванием.

Первая надопорная решетчатая секция была собрана за 3,5 месяца. В дальнейшем срок изготовления был снижен до 37 календарных дней. При этом сборку секции выполняли за две недели, а на омоноличивание затрачивали около месяца. Расход бетона в неразрезном пролетном строении составил 0,95 м3 на 1 м2 проезжей части.

Строительство моста им. Александра Невского в Санкт-Петербурге

Метод установки крупных блоков на плаву был применен также при сооружении неразрезных пролетных строений моста им. Александра Нев­ского через р. Неву в Ленинграде.
Мост общей шириной 35 м с ездой по верху имеет симметричную разбивку на пролеты: 49,8 + 110 + 123,5 + 52 + 123,5 + 110 + 49,8 м.

В середине моста размещен разводной пролет раскрывающейся системы с шириной пропускного отверстия 52 м, перекрытый металлическим пролетным строением. Пролеты по 123,5 м и разводной — судоходные. Зеркало реки в месте перехода имеет ширину 505 м между набережными глубина воды у речных опор до 11,5 м.

Схема моста им. Александра Невского в Санкт-Петербурге

Железобетонные трехпролетные строения в поперечном сечении состоят из двух главных блоков коробчатой конструкции шириной по 8 м каждая, расставленных на расстоянии 14,6 м в свету. Главные балки соединены поперечинами, по которым уложено ребристое перекрытие из керамзито — бетона марки 300 с объемным весом 1,8 т/м3. Такое поперечное сечение пролетных строений позволило сделать опоры из раздельных массивов под каждую главную балку.

По архитектурным соображениям, а также для сокращения общей дли­ны мостового перехода и получения более низких отметок проезжей части высота главных балок в средине пролета принята равной 3 м. Очертание нижнего пояса неразрезных железобетонных балок — криволинейное с увеличением высот над опорами (над промежуточными опорами 8 м). Для повышения вертикальной жесткости пролетные строения защемлены на опорах между пролетами 110 и 123,5 м.

Каждая трехпролетная главная балка общей длиной 283 м при изготов­лении была расчленена на три крупных монтажных блока. Блоки № 1 длиной по 90,25 м, перекрывающие береговые пролеты по 49,8 м и имею­щие консоли длиной около 40 м со стороны реки, бетонировали на месте на подмостях в проектном положении. Блоки № 2 длиной по 127,8 м пере­крывают оставшиеся части 110-метровых пролетов и имеют консоли дли­ной около 57 м со стороны 123,5-метровых пролетов.

Блоки № 3 длиной по 66,7 м перекрывают оставшиеся части пролетов между консолями блоков № 2 и опорами разводного пролета. Балки № 2 весом 4800 т и блоки № 3 весом 2400 т, устанавливаемые в речной части моста, изготовляли на берегу, а затем доставляли на плаву на место.

Блоки № 2 и № 3 изготовляли на левобережной строительной площадке. Для одновременного изготовления двух блоков параллельно набережной были сооружены две линии подмостей, состоящих из прогонов, опертых на опоры на свайном основании. Для выкатки блоков на плавсредства было сооружено четыре пирса.
Предварительно напрягаемая арматура главных балок принята двух типов:

  1. шпренгельиая — из заводских канатов (имеющая связь с бетоном только на части длины — над промежуточной речной опорой)
  2. обетони­руемая — пучковая. Пучковую арматуру из 49 проволок диаметром 5 мм устанавливали при изготовлении блоков и затем обетонировали. Этой арматуры достаточно было для раскружаливания блоков и их транспортирования.

Шпренгельная система состояла из стальных канатов диаметром 45 и 47 мм, напрягаемых при замыкании балок в неразрезное пролетное строе­ние. Канаты располагали внутри коробок, покрывали антикоррозионной смазкой и оставляли необетонированными. Подобное решение потребовало в дальнейшем принятия специальных мер для сохранения долговечности сооружения.
Блоки, изготовленные па берегу, перед установкой на плавсистему пере­двигали по пирсам на расстояние до 35 м домкратами грузоподъемностью 170 т, упирающимися в специально сконструированные упоры, самозаклинивающиеся на накатных путях. Блок весом 4800 т четырьмя домкратами перемещали со скоростью 5—5,5 м/ч.

Каждый блок к месту установки транспортировали на двух плавсистемах, состоящих из 105 понтонов типа КС-3 с надстройкой из десяти плос­костных ферм.

Перевозка на плаву блоков неразрезного пролетного строения

Плавсистему в пролет транспортировали тремя морскими буксирами:

  1. одним мощностью 1600 л. с.
  2. двумя по 800 л. с.

При установке в пролет блоки № 2 опирались средней частью на постоянные опоры, а консолями — на временные опоры в 110-метровых пролетах. Над временными опорами блоки № 1 и 2 стыковали, превращая смонтированную конструкцию в двухпролетную балку с консолью.

Блоки № 3 устанавливали одним концом на жесткую (опора разводного пролета) и другим — на упругую опоры (копен, консоли блока № 2). Упругая опора от веса блока опускалась на 132 см. Передачу реакции от веса блока № 3, равную 1200 т, на конец консоли блока № 2 проводили в два этапа.

В подготовительный этап на конце блока № 2 устанавливали пригруз в виде понтонов, заполненный водным балластом весом 630 г, а в смонтированной уже части балки постановкой шпренгельной арматуры создавали дополнительное предварительное напряжение. От пригруза конец консоли блока № 2 опускался на 68 см. Кроме того, в результате поддом­крачивания главной балки на временной опоре в 110-метровом пролете силой в 100 т конец консоли блока № 2 опускался еще на 20 см.

На втором этапе уже при опущенном на 88 см конце консоли блока № 2 заводили на плаву и устанавливали блок № 3. Путем балластировки пон­тонов блок № 3 опускали и в момент, когда он касался одной опорной площадки на конце блока № 2, параллельно с балластировкой понтонов плашкоутов начинали интенсивный слив водного балласта из пригруза консоли.

Таким образом, при непосредственной установке блока № 3 конец блока № 2 прогибался всего на 44 см, а нагрузка на конце консоли возрастала только на величину, равную разнице между реакцией блока № 3 и весом слитого водного балласта.

В дальнейшем аналогичные пригрузы из понтонов с водным балластом в пролетных строениях использовали для обжатия бетона замополичивания и включения в работу сборной плиты главных балок.

После установки в пролет блоков № 3 стыки их с блоками № 2 омоноличивали и путем напряжения стальных канатов вся система превраща­лась в трехпролетное неразрезное пролетное строение.

Комбинированный метод строительства неразрезных пролетных строений

  • Комбинированный метод сооружения неразрезных пролетных строений заключается в установке па речные опоры надопорных блоков при помощи плавучего крана и последующем наращивании консолей путем уравновешенного навесного бетонирования. Применение его позволяет вести параллельно работы по сооружению опор и изготовлению на берегу крупных блоков пролетного строения.
  • При этом значительно упрощаются работы по устройству наиболее сложных участков пролетного строения, примыкающих к опорам, и по анкерному закреплению пролетного строения, бетонируемого навесным способом.
  • Применение этого метода ограничивается гидрологическими условиями водотока и потребностью в мощном плавучем крановом оборудовании.
  • Комбинированный метод сооружения пролетных строений был применен на строительстве моста через р. Неретву у Рогатина (Югославия).
  • Мост имеет общую длину 414 м. Русловая часть реки перекрыта трех ­пролетным неразрезным предварительно напряженным железобетонным пролетным строением по схеме 55 + 110 + 55 м, к которому на обоих берегах примыкают по два балочно-разрезных пролета длиной по 45 м.
  • Ширина моста 10,8 м (проезжая часть 7,5 м и два тротуара по 1,65 м).Береговые балочные пролетные строения имеют постоянную высоту (2,3 м), неразрезное — переменную (на опоре 5,5 м и в пролете 2,3 м).
  • Пролетные строения в поперечном сечении состоят из трех двутавровых балок, объединенных поверху монолитной плитой. Расстояние между ося­ми балок 3 м. Неразрезное пролетное строение сооружалось комбинированным способом в два этапа.
  • На первом этапе заранее изготовленные на полигоне надопорные участки пролетного строения в виде отдельных двутавровых балок весом по 206 т с помощью плавучего крапа последовательно устанавливали на речные опоры. Затем все три балки объединяли в поперечном направлении диафрагмами и верхней плитой.
  • На втором этапе па обоих концах установленных надопорных блоков при помощи плавучего крана собирали передвижные агрегаты для навесного бетонирования и приступали к наращиванию консолей. Уравновешенное навесное бетонирование консолей вели секциями длиной по 5,5 м. При сооружении всех пролетных строений применяли также предварительное напряжение конструкций в поперечном направлении на уровне плиты.

About bridges

  • Bridge
    • Types of bridges/Классификации мостов, виды, типы и их назначение
    • Bridges by country
    • Bridge construction cost/Cтоимость строительства моста
    • Строительство моста
      • Технология строительства мостов
    • Техника для строительства мостов

Что такое разъемная мостовая система и чем она отличается от портальной?

Автор Danielle Collins Оставить комментарий

Многоосевые линейные системы бывают различных конструкций, наиболее распространенными из которых являются декартовы, портальные и XY-таблицы. Хотя эти конструкции упрощают конструкцию и могут обеспечить экономию места, они также приводят к ошибкам «наложения» — сочетанию ошибок по каждой оси, которые проявляются в заготовке или точке инструмента. Установка осей друг на друга также создает консольные нагрузки и ошибки Аббе — угловые ошибки, которые усиливаются по мере того, как точка интереса (заготовка или точка инструмента) перемещается дальше от источника ошибки. Но одна многоосевая конфигурация — система разделенного моста — обеспечивает решение высокоточных задач, требующих движения по нескольким осям, при минимизации ошибок укладки.

В системе раздельного моста одна ось не связана с другими, а работает с ними в связке.
Изображение предоставлено: Parker Motion

Раздельные мостовые системы обеспечивают движение по двум, трем или более осям с использованием поперечной или мостовой оси, которая охватывает основание и поддерживает как минимум одну из осей. Хотя эта установка похожа на традиционный портал, есть некоторые заметные отличия. Для начала в традиционной портальной системе используются две оси X или базовые оси с осью Y, которая пересекает их, и — в большинстве приложений — ось Z (вертикальная), установленная на оси Y. Портальная конструкция обеспечивает очень большую длину перемещения при хорошей грузоподъемности и высокой жесткости, поскольку моменты качения по оси X устранены, а моменты рыскания могут быть сведены к минимуму. Но если параллельные оси X не синхронизированы, может произойти смещение или перекос осей, что приведет к ошибкам в положениях осей Y и Z.

В портальных системах используются две параллельные оси X с осью Y, которая их охватывает, и — во многих случаях — ось Z, установленная на оси Y. Эта конструкция допускает большие длины перемещения, но часто приводит к ошибкам в движениях по осям Y и Z.
Изображение предоставлено: h3W Technologies

Система раздельного моста позволяет избежать этих проблем за счет использования статического элемента или фиксированного моста, соединяющего базовую ось или оси. Базовые оси — будь то одна ось, стол XY или двухосный планарный портал — крепятся к обработанной поверхности (обычно из стали или гранита, хотя иногда используется обработанный алюминий) для обеспечения плоскостности и жесткости. Z или вертикальная ось крепится к мосту независимо от основных осей. А в некоторых случаях оси Y и Z крепятся к мосту, что делает их независимыми от оси X. Оси, установленные на мосту, обычно являются высокоточными ступенями, как и базовые оси, хотя могут использоваться и более традиционные линейные системы, в зависимости от требований приложения.

Эта система раздельного моста для лазерной обработки включает столик XY, который перемещает образец для сканирования, и независимую ось Z, которая перемещает лазерный сканер.
Изображение предоставлено: PI

Одной из основных причин использования системы разъемных мостов является возможность перемещения детали или образца в очень точное положение с помощью основных осей, а затем таких процессов, как сканирование, зондирование или сверление. можно сделать осью (или осями), установленной на мосту.

В этой системе раздельного моста используются четыре ступени оси Z на мосту для повышения пропускной способности.
Изображение предоставлено: Aerotech

Рубрики: Часто задаваемые вопросы + основы, Рекомендуемые, Этапы + порталы

Портальные системы | Разделенный мост | Управление движением | ИП

Гибридная портальная система (воздушные подшипники и механические подшипники) с дополнительной Z-ступенью на поперечной оси Хорошо спроектированные портальные системы и контроллеры движения обеспечивают виртуальную ось для компенсации погрешности вращения или небольших предполагаемых угловых перемещений.

Портальные системы движения и системы движения с раздельными мостами часто используются в промышленном производстве, испытаниях и аддитивном производстве. Портал обычно состоит из опорной плиты (часто из гранита) и двух параллельных рельсов (для оси Y, обычно с линейным приводом от двигателя) и поперечной оси (оси моста), движущейся по двум нижним линейным рельсам с приводом от двигателя.

Вертикальная ось может быть добавлена ​​к оси моста для обеспечения Z-движения. Портальные системы очень полезны, когда требуется движение вверху, а образец нельзя переместить, что типично для процессов 3D-печати, где напечатанный образец должен быть неподвижным для максимальной стабильности и точности. Кроме того, когда большой образец необходимо установить на очень плоскую поверхность, портал имеет преимущество, особенно когда используется точно отшлифованное гранитное основание. Еще одним преимуществом портальной системы является возможность компенсации ошибок ортогональности. Для этого требуется интеллектуальный контроллер движения, который может независимо управлять двумя параллельными двигателями, создавая виртуальную ось вращения (Theta-Z), которую можно использовать для картирования ошибок.

Видео: специальный портал XYZ для 3D-печати с 4 дополнительными столиками по оси Z для точного дозирования

Система Split Bridge может быть менее сложной, чем традиционная портальная система, поскольку не требуется синхронизация двух нижних линейных осей. Либо столик XY используется внизу, а столик Z установлен на фиксированной перемычке, либо этапы движения X и Y могут быть разделены, при этом ось Y находится внизу, а ось X установлена ​​на фиксированной перемычке. Вертикальная ось также может быть установлена ​​на оси X.

Раздельная мостовая система с линейным двигателем XY на гранитном основании и Z-ступенью с компенсированным линейным двигателем на фиксированном гранитном мосту. Мост / портал — плоская XY-платформа на основе двойного Н-образного моста на воздушной опоре под неподвижным гранитным мостом с уравновешенной Z-платформой

Разрезной мост можно использовать, когда испытываемый или изготавливаемый образец не должен быть стационарным или не требует установки на большое, очень плоское основание.

Большинство портальных систем специально адаптированы для каждого применения, но основаны на модульной системе для экономии времени проектирования. Индивидуальные настройки включают диапазоны перемещения, Z-ступени, прокладку кабелей, расположение резьбовых вставок, сварные основания и системы виброизоляции. Обладая многолетним опытом проектирования и производства, команда инженеров PI может масштабировать существующие конструкции, чтобы в короткие сроки предоставить индивидуальное решение для проекта клиента.

Современное программное обеспечение позволяет системным разработчикам быстро модифицировать базовые концепции, а также адаптировать и настраивать их для конкретных приложений.

Крупнейший портфель технологий точного позиционирования и управления движением PI, а также 50-летний опыт работы обеспечивают множество преимуществ для клиентов в промышленности и исследованиях. В дополнение к большому разнообразию приводных технологий и методов управления (включая пьезокерамические двигатели, звуковые катушки и трехфазные двигатели, воздушные подшипники, изгибы и магнитную левитацию), а также сенсорных технологий (емкостных, пьезорезистивных, интерферометрических) — преимущества клиентов от доступа к высокопроизводительным контроллерам движения от нашего партнера, ACS. Офисы обслуживания и поддержки PI по всему миру гарантируют, что вы и ваше приложение охвачены.

Порталы / Декартовы роботы

Стадию прецизионного позиционирования портального типа иногда называют линейным роботом или декартовым роботом. Порталы обычно обеспечивают движение с 2 или 3 линейными степенями свободы (X-Y и X-Y-Z) и часто используются для захвата и перемещения, 3D-печати или лазерной обработки, а также для сварки.

3D-печать — напрямую из оцифрованных данных — на основе STL и других форматов файлов

Прецизионное управление движением при лазерной обработке и резке

Заказные двигатели для точного управления движением

Линейные двигатели для промышленной автоматизации

Спроектированные подсистемы движения / автоматизации

PI является поставщиком высокоточных систем перемещения и использует собственные компоненты привода и высокоточные позиционеры для создания индивидуальных подсистем позиционирования и автоматизации — «двигателей движения» — для наших клиентов. Благодаря самому большому портфелю технологий точного перемещения в отрасли инженеры PI имеют наилучшую основу для поиска решения, которое соответствует вашим требованиям с точки зрения…

Влияние точного выравнивания и картирования ошибок лазерного интерферометра на производительность этапов линейного преобразования XYZ для промышленной автоматизации, испытаний и метрологии

Обзор продуктов О PI

Заполните форму, чтобы получать по электронной почте новые сообщения в блоге

Имя*

Фамилия*

Компания/Организация

Почтовый индекс*

Штат*

Country*Please choose…AfghanistanAlbaniaAlgeriaAmerican SamoaAndorraAngolaAnguillaAntarcticaAntigua and BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBermudaBhutanBoliviaBonaire, Sint Eustatius and SabaBosnia and HerzegovinaBotswanaBouvet IslandBrazilBritish Indian Ocean TerritoryBritish Virgin IslandsBruneiBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCayman IslandsCentral African RepublicChadChileChinaChristmas IslandCocos (Keeling) IslandsColombiaComorosCongoCongo-BrazzavilleCook IslandsCosta RicaCroatiaCubaCuraçaoCyprusCzech RepublicCôte d’IvoireDenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEswatiniEthiopiaFalkland IslandsFaroesFijiFinlandFranceFrench GuianaFrench PolynesiaFrench Southern TerritoriesGabonGambiaGeorgiaGermanyGhanaGibraltarGreeceGreenlandGrenadaGuadeloupeGuamGuatemalaGuernseyGuineaGuinea -Бисау, Гайана, Гаити, остров Херд и острова Макдональд, Гондурас, Хо ng Kong SAR of ChinaHungaryIcelandIndiaIndonesiaIranIraqIrelandIsle of ManIsraelItalyJamaicaJapanJerseyJordanKazakhstanKenyaKiribatiKosovoKuwaitKyrgyzstanLaosLatviaLebanonLesothoLiberiaLibyaLiechtensteinLithuaniaLuxembourgMacao SAR of ChinaMadagascarMalawiMalaysiaMaldivesMaliMaltaMarshall IslandsMartiniqueMauritaniaMauritiusMayotteMexicoMicronesiaMoldovaMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorth KoreaNorth MacedoniaNorthern MarianasNorwayOmanPakistanPalauPalestinePanamaPapua New GuineaParaguayPeruPhilippinesPitcairn IslandsPolandPortugalPuerto RicoQatarReunionRomaniaRussiaRwandaSaint BarthélemySaint Helena, Ascension and Tristan da CunhaSaint Kitts and NevisSaint LuciaSaint MartinSaint Pierre and MiquelonSaint Vincent and the GrenadinesSamoaSan MarinoSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSint MaartenSlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Geo rgia and the South Sandwich IslandsSouth KoreaSouth SudanSpainSri LankaSudanSurinameSvalbardSwedenSwitzerlandSyriaSão Tomé e PríncipeTaiwanTajikistanTanzaniaThailandThe BahamasTimor-LesteTogoTokelauTongaTrinidad and TobagoTunisiaTurkmenistanTurks and Caicos IslandsTuvaluTürkiyeUS Virgin IslandsUgandaUkraineUnited Arab EmiratesUnited KingdomUnited StatesUnited States Minor Outlying IslandsUruguayUzbekistanVanuatuVatican CityVenezuelaVietnamWallis and FutunaWestern SaharaYemenZambiaZimbabweÅland

Электронная почта*

Перед отправкой запроса ознакомьтесь с нашей Политикой конфиденциальности здесь.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *