Датчики акселерометр что это: что это, как работает и зачем нужен в фитнес-браслете, часах и смартфоне

Содержание

что это, как работает и зачем нужен в фитнес-браслете, часах и смартфоне

Практически в каждом описании характеристик современного смартфона, фитнес-браслета или умных часов можно встретить упоминание датчика под названием «акселерометр». Еще его могут называть «датчик ускорения» или  G-сенсор. Что это такое, как работает и зачем нужен в телефоне, часах или браслете, читайте далее.

Акселерометр: что это и зачем нужен?

Простым языком, акселерометр – это прибор, измеряющий ускорение (величину изменения скорости). Название прибора происходит от латинского «accelero», что дословно переводится, как «ускоряю» и греческого «metreō», что в переводе означает «измеряю».

Измерение величины динамического ускорения позволяет определить, насколько быстро и в каком направлении движется устройство с акселерометром. По конструктивному исполнению акселерометры подразделяются на однокомпонентные, двухкомпонентные, трёхкомпонентные (одноосевые, двух осевые и трехосевые). Например, 3-осевой датчик ускорения может определять величину и направление  ускорения как векторную величину во всех трех осях.

Часто этот датчик путают с гироскопом, но это совершенно разные датчики, хотя часто они взаимодополняют друг друга для достижения более точных результатов, а иногда даже могут выполнять одни и те же функции. Отличаются же эти датчики принципом работы и эффективностью при выполнении конкретной задачи.

В основном в устройствах акселерометр используется для определения ориентации, ударов, вибрации и ускорения координат. Например, в смартфонах именно акселерометр отвечает за переворот картинки при изменении положения корпуса, а фитнес-браслетах он активирует экран при вращении запястья.

Где применяется акселерометр?

Датчик ускорения применяется в самых различных сферах:

  • Навигационные устройства летательных аппаратов. Без приборов на основе гироскопов и акселерометров не может обойтись ни один самолет, вертолет и даже квадрокоптер. Так, например, для работы квадрокоптера необходимо минимум три гироскопа.
  • Автомобили. В автомобилях акселерометр интегрируется в системы безопасности и стабилизации. Прибор определяет экстренное торможение или дорожно-транспортное происшествие и запускает электрическую цепь, которая заставляет подушки безопасности срабатывать.
  • Промышленность. Датчики активно используются в различных станках, агрегатах и производственных линиях в системах защиты для отключения питания в случае поломок или при достижении критических значений.
  • Электроника. В компьютерах и ноутбуках акселерометр применяется для защиты жестких дисков от ударов и падений. В случае обнаружения падения прибор отдает команду считывающим головкам принять безопасное положение для избегания повреждения диска и потери данных.
  • В смартфонах и планшетах акселерометр отвечает за смену ориентации экрана при повороте корпуса, а также за управление игровым процессом при наклонах гаджета. В фитнес-браслетах и часах акселерометр применяется для подсчета шагов, отслеживания сна и активации экрана поднятием запястья.
  • Бытовая техника. Да, акселерометрами могут оснащаться даже стиральные машины, утюги и тепловентиляторы. Например, в утюгах акселерометр, обнаружив его падение, отключает питание, чтобы не допустить возникновения пожара.

Как работает акселерометр?

Большинство устройств оснащается емкостными, пьезорезистивными и пьезоэлектрическими приборами. Часто акселерометр представляет собой микроэлектромеханическую систему (MEMS), содержащую несколько компонентов, каждый размером от 1 до 100 микрометров. Размер же прибора обычно не превышает габариты спичечной головки.

Механический акселерометр

Объяснить принцип работы акселерометра проще на механическом приборе. Он состоит из пружины, прикрепленной к корпусу, подвижной массы и демпфера. Масса или, проще сказать, грузик, крепится к пружине. С обратной стороны грузик поддерживает демпфер, гасящий вибрации грузика. Во время ускорения корпуса пружина деформируется (растягивается или сжимается) по противоположным осям под воздействием грузика, стремящегося сохранить свое первоначальное положение, то есть отстать или опередить корпус. На величине деформации и основываются вычисления прибора.

Для получения информации о положении предмета в трехмерном пространстве используется три таких прибора, объединенных в один комплекс.

Конечно же, никто не будет «запихивать» в компактный фитнес-браслет или смартфон такую громоздкую конструкцию. Поэтому она заменяется миниатюрным чипом. Хотя чип и более сложный, чем прибор с шариком и пружиной, он имеет те же основные элементы.

У такого чипа имеется корпус, который крепится к часам или смартфону, «гребенчатая» секция с отведенными по сторонам пластинами и ряд фиксированных пластин, снимающих показания. Эта секция может перемещаться вперед и назад, изменяя значение напряженности поля вокруг контактов. Полученные данные передаются на обработку электроникой и программным обеспечением, после чего происходит вычисление физического расположения устройства.

Внутренняя работа акселерометра

Но самое интересное, как изготавливаются такие акселерометры. При толщине примерно 500 микрон ни один инструмент не сможет его создать. Вместо этого инженеры используют некоторые уникальные химические свойства кремния и силикона с другими веществами. Весь процесс изготовления полностью автоматизирован и выполняется на конвейерных линиях без участия человека.

Также понять как работает акселерометр поможет короткое видео ниже:

Чем отличается акселерометр от гироскопа?

Хотя в некоторых случаях гироскоп и акселерометр и могут выполнять одни и те же функции, это два абсолютно разных датчика, которые часто используются в паре для достижения максимального эффекта. Часто такой дуэт называют 6-осевым датчиком.

Акселерометр не умеет точно измерять угол поворота устройства в пространстве, а может лишь примерно его оценить. На практике это может выражаться в ложных срабатываниях и задумчивости в повороте экрана. И тут на помощь приходит гироскоп. Не вдаваясь в подробности о принципе работы данного прибора, скажем, что он может определять не только угол поворота устройства, но и скорость поворота, что, например, во время игры на смартфоне позволяет реализовать более быстрое и точное управление.

Иллюстрация работы механического гироскопа

Поэтому в большинстве устройств эти два прибора устанавливаются совместно для достижения наибольшей эффективности.

Акселерометр в фитнес-браслете и смарт-часах

В фитнес-браслетах и умных часах акселерометр отвечает за несколько функций. Обнаруживая поднятие или вращение руки, он отдает сигнал для включения экрана. Также именно акселерометр отвечает за подсчет шагов и мониторинг сна. На акселерометре «завязана» и работа функции «Умный будильник», который будит владельца гаджета в фазе быстрого сна.

Акселерометр в телефоне

Первый акселерометр появился в телефоне Nokia 5500. Там он использовался для подсчета пройденных шагов. Такое решение многим понравилось и с тех пор компания Apple стала оснащать таким датчиком все модели своих iPhone. А начиная с iPhone, если не ошибаюсь, четвертого поколения, в дополнение к акселерометру компания стала оснащать свои смартфоны гироскопом. После этого наличие этой пары датчиков стало стандартом для большинства производителей мобильных устройств.

Акселерометр в телефоне отвечает не только за поворот экрана при наклоне корпуса. Он так же как и в случае с фитнес-браслетом позволяет вести учет пройденного расстояния. Еще акселерометру нашли применение в системных жестах. Например, отключение звука телефона встряхиванием или переворотом смартфона вниз экраном.

Как откалибровать акселерометр?

В некоторых случаях может потребоваться настройка или калибровка акселерометра. Например, если телефон не реагирует на поворот корпуса или не точно считаются шаги. Для смартфонов под управлением операционной системы ANDROID для этих целей есть несколько сторонних приложений, например GPS Status & Toolbox. Для iPhone таких приложений нет, поэтому в случае сбоев придется ограничиться перезагрузкой устройства. Обычно это помогает.

Некоторые производители фитнес-браслетов и смарт-часов также позволяют откалибровать акселерометр. Точнее, не откалибровать, а «обучить» с помощью «Меток поведения», то есть помогая датчику более точно понимать, какое именно действие владелец гаджета выполняет в тот или иной момент. Такая возможность есть у владельцев популярной линейки Xiaomi Mi Band и ряда других моделей.

Источник изображений: YouTube , Wikipedia

Что такое акселерометр? Определение — Типы — Применение

Большинство современных устройств используют датчики для контроля и управления различными физическими величинами, такими как давление, температура, влажность, интенсивность света, направление и т.д. Один из таких датчиков, используемый для измерения ускорения устройств, называется датчиками акселерометра.

Когда-то давно вы бы нашли такие датчики только в современных машинах, таких как космические ракеты или реактивные самолеты. Теперь они есть практически в каждом смартфоне, ноутбуке, автомобиле и игровой консоли. Давайте копнем глубже и выясним, что это такое, как они работают, и для чего они используются?

Что такое акселерометр?

Определение: Акселерометр — это электромеханический инструмент, который измеряет ускорение (скорость изменения скорости). Ускорение может быть статическим, как ускорение, вызванное гравитацией, или может быть динамическим, как движение и вибрации, вызванные внешним фактором.

Измеряя величину гравитационного ускорения, инструмент может вычислить угол, под которым он наклонен относительно Земли. Например, акселерометр, установленный на поверхности Земли, будет измерять ускорение 9,81 м / с2 в прямом направлении вверх.

Измеряя величину динамического ускорения, можно определить, насколько быстро и в каком направлении движется устройство. Например, трехосевой акселерометр может определять величину и направление (во всех трех осях) ускорения как векторную величину.

Цель

Акселерометры используются в различных отраслях промышленности и научных исследованиях. Они в основном используются в электронных устройствах для определения ориентации, ускорения координат, ударов и вибрации.

Акселерометры, встроенные в смартфоны,например, выясняют, когда переключать макет экрана с ландшафтного на портретный. Данные, предоставляемые этими датчиками, могут помочь определить, идет ли устройство вверх или падает вниз.

Высокочувствительные акселерометры интегрированы в инерциальные навигационные системы ракет и реактивных двигателей. Беспилотные летательные аппараты также используют такие устройства для стабилизации полета.

Как работает акселерометр?

Механический акселерометр состоит из пружины, прикрепленной массой. Эта пружина обычно подвешивается внутри наружного корпуса. Когда все устройство ускоряется, корпус сразу же движется в том же направлении. Масса, однако, остается в своем положении (на короткое время), растягивая пружину с силой, соответствующей ускорению.

Принцип работы механического акселерометра

Измеряя длину пружины растяжения, мы можем определить ускорение. Это может быть сделано различными способами. Сейсмометр, например, использует тот же принцип для измерения землетрясений.

Когда происходит землетрясение, он трясет корпус сейсмометра, но масса движется дольше. К массе прикрепляется ручка, чтобы проследить ее движение на бумажном графике.

Современные акселерометры генерируют электрические или магнитные сигналы вместо того, чтобы использовать след от ручки на бумаге.

Самые распространенные типы акселерометров

Большинство коммерческих устройств оснащены емкостными, пьезорезистивными и пьезоэлектрическими приборами для преобразования механического движения в электрический сигнал.

1. Пьезоэлектрические акселерометры используют пьезоэлектрический эффект определенных материалов для измерения ускорения, вибрации или механического удара. Эти материалы накапливают электрический заряд (пьезоэлектричество) в ответ на приложенное механическое напряжение.

Принцип работы пьезоэлектрического акселерометра

К массе прикрепляется пьезоэлектрический материал, например, цирконат-титанат свинца. При движении акселерометра масса оказывает механическое давление на этот материал. В результате этого материал вырабатывает крошечное электрическое напряжение, которое можно расшифровать, чтобы вычислить соответствующее ускорение.

2. Пьезорезистивные акселерометры работают по аналогичному принципу. Они используют изменение сопротивления пьезорезистивных материалов для преобразования механического напряжения в выходное напряжение постоянного тока. Эти типы акселерометров подходят для измерений удара, где уровень g и диапазон частот значительно высоки.

Endevco 727 | легкий пьезорезистивный акселерометр, идеально подходящий для измерения удара при испытаниях на падение

Пьезоэлектрические компоненты, напротив, не имеют себе равных по высокотемпературному диапазону и малому весу в упаковке.

3. Емкостные акселерометры основаны на изменении электрической емкости в ответ на ускорение. Они содержат два компонента: первичную (стационарную) пластину, прикрепленную к корпусу, и вторичную пластину, соединенную с массой, которая свободно перемещается внутри корпуса.

Емкость изменяется с расстоянием между двумя металлическими пластинами, и, измеряя емкость, можно определить приложенное ускорение. Эти типы акселерометров могут измерять постоянное, а также медленное переходное и периодическое ускорение.

Трехосный емкостный акселерометр

Современные акселерометры бывают всех трех форм. Они часто представляют собой микроэлектромеханические системы (MEMS), содержащие несколько компонентов, каждый размером от 1 до 100 микрометров. Акселерометры, встроенные в планшеты и смартфоны, обычно имеют площадь менее 100 миллиметров.

Микромеханический акселерометр чувствителен только к одному направлению в плоскости. Двухосевой акселерометр построен путем интеграции двух устройств перпендикулярно, а трехосный акселерометр может быть сделан путем добавления другого устройства вне плоскости. Интегрированный модуль может быть гораздо более точным, чем три отдельных устройства, объединенные после упаковки.

Для достижения сверхвысокой чувствительности можно использовать квантовое туннелирование. Однако этот процесс является чрезвычайно сложным и дорогостоящим.

С помощью существующих технологий мы можем измерять ускорения до тысяч g. Инженерам и производителям приходится идти на компромисс между максимальным измеряемым ускорением и чувствительностью устройства.

Применение

Акселерометры используются в различных областях, от инженерной и бытовой электроники до биологии и медицинских технологий. Ниже приведены наиболее часто используемые датчики акселерометров.

Навигация

Инерциальная навигационная система (также называемая инерциальной эталонной платформой) использует компьютер и акселерометры для непрерывного измерения местоположения, ориентации и скорости движущегося объекта без каких-либо внешних ориентиров.

Инженерия

Акселерометры широко используются для измерения вибрации на машинах, автомобильных двигателях и зданиях. В автомобильном секторе акселерометры с высоким значением g используются для обнаружения дорожно-транспортных происшествий и установки подушек безопасности в нужное время.

Они также используются для контроля работоспособности оборудования и регистрации вибрации вращающихся инструментов, таких как компрессоры, турбины, которые, если их не обслуживать, могут привести к дорогостоящему ремонту. Некоторые акселерометры специально настроены (встроены в гравиметры) для измерения гравитационных сил.

В космических аппаратах акселерометры используются для обнаружения апсиса — точки на орбите спутника, в которой он наиболее удален от Земли.

Бытовая электроника

Они используются практически во всех ноутбуках, мобильных телефонах и камерах для определения положения и ориентации устройства и отображения контента в вертикальном положении на экранах. Игровые приставки, такие как пульт дистанционного управления PlayStation DualShock , используют трехосевой акселерометр, чтобы сделать рулевое управление более реалистичным в гоночных играх.

Многие производители ноутбуков используют акселерометры для защиты жестких дисков от повреждений. Если датчик обнаруживает внезапное падение, головки жесткого диска припаркованы, чтобы избежать повреждения диска и потери данных.

Биология и медицинское применение

В биологических науках все чаще используются акселерометры. Данные, получаемые с помощью высокочувствительных трехосных акселерометров, позволяют ученым различать поведенческие модели животных, когда они находятся вне поля зрения.

Многие автоматические внешние дефибрилляторы содержат акселерометр для определения глубины сдавления грудной клетки СЛР.

Несколько компаний производят часы для спортсменов, которые состоят из акселерометров для измерения скорости и пройденных дистанций бегунов. Современные будильники фазы сна также интегрированы с акселерометрическими датчиками, так что они могут обнаружить движение спящего и разбудить человека в цикле не-быстрого сна.

Мобильная диагностика: как работают датчики уровня кислорода, пульса, ЭКГ и шума | Смарт-часы и фитнес-браслеты | Блог

Непростой 2020 год показал, что за здоровьем надо тщательно следить даже при самой невероятной занятости. Тем более, что развитие технологий позволяет делать это при помощи смартфона, умных часов или фитнес-браслета. Комбинация различных датчиков и софта может контролировать ряд важных параметров и делать выводы: все ли в порядке или стоит запланировать визит к врачу.

Всплеск интереса к повседневному контролю здоровья случился после появления на рынке «умных» часов и браслетов. Разработчики с самого начала встраивали в них не только акселерометр и/или гироскоп с навигационным приемником, но и датчики контроля сердечных ритмов. Сейчас в такие устройства ставят несколько дополнительных чипов, позволяющих узнать о своем организме много полезного.

Давайте разберемся, какие датчики применяются в «умных» гаджетах, что они умеют и насколько точным получается результат измерений.

Акселерометр и гироскоп

Изначально эти датчики устанавливали в смартфоны. Когда появились «умные» часы и браслеты, их также оснастили такими чипами: на работе акселерометра, например, построена одна из основных задач всех «умных» гаджетов — подсчет количества шагов.

Сейчас все настолько привыкли к тому, что акселерометр и гироскоп есть в мобильных устройствах, что не видят между ними разницы. Тем более, что функции этих датчиков реализуются одной микросхемой. На самом деле разница есть. Если коротко, то акселерометр реагирует на ускорение предмета, а гироскоп — на изменение его положения в пространстве. Поэтому с помощью акселерометра можно, например, понять, нужно ли сменить ориентацию экрана смартфона или посчитать шаги. А с помощью гироскопа — точно определить положение тела.

Зачем это нужно в мобильной диагностике? С подсчетом шагов все ясно — это контроль здорового образа жизни. Но это больше относится к фитнесу. А как это помогает в плане наблюдений за своим самочувствием? 

Дело в том, что связка акселерометра и гироскопа обеспечивает работу функции, способной определить, что владелец устройства упал. «Умный» гаджет на основании резкого изменения показаний датчиков делает вывод, что пользователю необходима помощь, и автоматически вызовет экстренные службы, например, скорую или полицию. Зачем это нужно? Например, гаджет оперативно вызовет врачей, если с вами случится какая-то неприятность на улице. А при инсульте и инфаркте очень важно, чтобы квалифицированная медицинская помощь была оказана как можно быстрее.

К примеру, такая функция реализована в Apple Watch. По умолчанию она активируется у пожилых пользователей, также можно ее включить вручную.

Кстати, обратите внимание, что наличие акселерометра вместе с гироскопом позволяет получать более точные результаты тренировок: гироскоп точно распознает такие вещи, как бег на месте или прыжки, и понимает, когда вы идете пешком, а когда бежите.

Датчик пульса

Датчик пульса — первое устройство для мобильной диагностики, появившееся в носимых гаджетах. Он предназначен для контроля сердечных ритмов в состоянии покоя и при физической нагрузке. На основании собранной статистики можно оценить состояние здоровья и понять, оптимальны ли нагрузки на тренировках или, если имеются какие-либо заболевания, сориентироваться, не пора ли обратиться к специалисту.

Измерения пульса

Датчики пульса, используемые в мобильных гаджетах, работают на основе оптической технологии — фотоплетизмографии (PPG). Смысл ее заключается в следующем. При сокращении сердечной мышцы в кровеносных сосудах изменяется кровяное давление и происходит изменение интенсивности капиллярного кровотока. Увеличившееся количество крови в сосуде поглощает больше поступающего света. Если подать поток света определенной интенсивности, то на основании прошедшего через ткань или отраженного сигнала можно сделать вывод об изменениях анализируемой среды: например, подсчитать количество «всплесков» кровотока в минуту и сделать вывод о частоте пульса.

В мобильных гаджетах подсчет пульса реализуется на основе как прошедшего через ткань света (в компактных пульсоксиметрах), так и отраженного — в «умных» часах и фитнес-браслетах. В них светодиод, размещенный на внутренней стороне устройства, испускает свет,который отражается от тканей запястья и поступает на фотодатчик, регистрирующий уровень отраженного сигнала. 

Для подсветки используется светодиод зеленого цвета (525 нм). Зеленый цвет излучения выбран потому, что является наиболее контрастным к красному цвету крови, согласно цветовому кругу Иттена, а следовательно, лучше всего поглощается. 

«Умные» гаджеты регистрируют пульс автоматически (по расписанию) или по желанию пользователя. На основании измеренных значений они построят красивые графики в мобильных или десктопных приложениях, которые помогут следить за уровнем пульса: контролировать выход за установленные пределы, наблюдать процесс в динамике за определенные интервалы времени. В целом с этой задачей мобильные устройства справляются хорошо.

Измерения артериального давления

Раз датчик пульса анализирует сердечные ритмы на основе изменений кровотока и давления, то логично предположить, что с его помощью можно не только посчитать пульс, но и измерить давление. Это на самом деле так. На основании данных, полученных от датчика пульса, программа может рассчитать величину артериального давления.

Но проблема заключается в том, что для того, чтобы получить близкий к реальному результат, необходимо выполнить калибровку устройства под конкретного пользователя. В противном случае измерение давления будет корректным только для тех, у кого оно находится на нормальном уровне, и еще не проявились возрастные изменения или проблемы, связанные с различными заболеваниями. Поэтому, если вы хотите с помощью «умных» гаджетов контролировать еще и давление, ищите модель с настройкой измерений под владельца. 

Датчик ЭКГ

Еще более интересная вещь в плане контроля здоровья — датчик электрокардиографии (ЭКГ). Дело в том, что о работе сердца можно судить не только по изменениям кровотока в сосудах, но и по электрическим сигналам, которые возникают в процессе работы этого органа. И эта информация точнее и информативнее.  Электрокардиограмма, полученная специалистом медицинского центра, позволяет сделать выводы о работе сердца и его здоровье. Для этого на руки, ноги и грудную клетку устанавливают электроды, а результат интерпретирует компьютер. 

Точно такой же датчик ЭКГ, только миниатюрных размеров, сейчас устанавливают в ряд мобильных устройств. Например, начиная с 4-го поколения, датчик ЭКГ имеется в Apple Watch. Но с мобильными датчиками существует ряд проблем.

Дело в том, что в профессиональном медицинском оборудовании обычно используют 10-12 датчиков, минимум шесть из них размещают в области сердца. А носимое мобильное устройство крепится на запястье. То есть, оно удалено от сердца на большое расстояние. И датчиков в таких устройствах значительно меньше.

Например, в Apple Watch их всего два: один размещен в Digital Crown, второй вместе с датчиком пульса установлен на внутренней стороне.

Поэтому точность ЭКГ, снятого с помощью мобильного устройства, не настолько высока, чтобы делать серьезные клинические выводы. Тем не менее, даже такой точности достаточно, чтобы определить мерцательную аритмию, показывающую, что визит к врачу откладывать не стоит.

Еще один важный момент — работа функции ЭКГ должна пройти проверку надзорных органов в разных странах. На момент написания статьи у Apple, например, получено разрешение для использования функции ЭКГ на территории США. В России Росздравнадзор сертифицировал ее буквально несколько дней назад. В остальном мире она официально отключена, хотя датчики в устройствах имеются. Остается только надеяться, что вопрос рано или поздно решится и полезная функция будет разблокирована.

Датчик уровня шума

Еще одна занятная функция, которая имеется, например, в Apple Watch — измерение уровня шума. Датчик регистрирует уровень фонового шума и, если он в течение некоторого времени превышает пороговое значение, гаджет выдает уведомление и предлагает покинуть место с высоким уровнем шума.

Полезна ли такая функция? Да, поскольку ВОЗ обращает внимание на то, что значительное количество людей подвергается риску потерять слух из-за сильного шумового воздействия в местах развлечений. Вы, наверное, замечали, что после того, как выходишь с рок-концерта или из клуба, некоторое время все слышно словно сквозь вату. Вот от таких «сюрпризов» датчик шума вас и защитит. Если, конечно, вы сами захотите защищаться.

Датчик уровня кислорода в крови

Теперь поговорим о новомодном датчике, которым мобильные устройства начали оснащать недавно. Это датчик определения уровня кислорода в крови. В свете коронавирусной инфекции, ставшей главной темой 2020 года, эта функция оказалась чуть ли не самой рекламируемой.

Нужно отметить, что, помимо наблюдений за своим состоянием в свете последних событий, контроль за уровнем кислорода в крови интересен и в других случаях: недостаток кислорода приводит к таким нехорошим вещам, как дыхательная недостаточность, одышка, головные боли и так далее.

Медики измеряют уровень кислорода в крови с помощью небольших приборов — пульсоксиметров. Внешне они напоминают прищепку с экраном, которая крепится на палец и выдает информацию о пульсе и степени насыщения кислородом артериальной крови. По этой причине датчики уровня кислорода в крови также называют датчиками SpO2.

Расшифровывается эта аббревиатура так:

  • S — степень сатурации (насыщения) кислородом.
  • P — пульс.
  • O2- кислород.

Нормальной считается величина сатурации от 95 до 100%, показания ниже 90% говорят о наличии проблем.

В пульсооксиметре датчик измерения уровня кислорода работает следующим образом. В приборе установлен светодиод, излучающий сигналы инфракрасного диапазона и красного цвета, а также фотодетектор, фиксирующий, какая часть светового потока прошла через ткани пальца с капиллярными сосудами. Аналогичный способ используется и в умных гаджетах.

Только фотодетектор принимает не прошедший через ткани, а отраженный от них сигнал, так как браслет или часы крепятся на запястье. На основании уровня отраженного сигнала приложение, встроенное в гаджет, делает оценку сатурации и выводит на дисплей измеренное значение.

Такие датчики есть в новой серии Apple Watch, а также в ряде фитнес-браслетов, например, Honor Band 5 и Huawei Band 4 PRO.

Точность измерений и их использование для диагностики

Все перечисленные измерения — сердечных ритмов, ЭКГ и уровня кислорода — работают в мобильных гаджетах в упрощенном режиме. Они имеют уровень погрешности, не позволяющий использовать их как медицинские диагностические приборы. Это написано в документации ко всем «умным» часам и фитнес-трекерам, но, тем не менее, на этом стоит дополнительно заострить внимание.

К примеру, датчик уровня кислорода может ошибаться на несколько процентов, причем значение может колебаться, как в большую, так и в меньшую сторону. Также результаты измерений изменятся в том случае, если браслет или часы неплотно прилегали к вашему запястью, либо потому что резко похолодало.

Поэтому производители и специалисты обращают внимание, что все данные, полученные с мобильных датчиков, могут использоваться для общего контроля здоровья и оценки динамики состояния организма. Они не предназначены для постановки диагнозов и не являются медицинскими приборами. Для профессионального осмотра необходимо использовать специализированную технику. 

Вместе с тем, нельзя не отметить и то, что имеется очевидная польза от использования датчиков в мобильной технике. Спортсмены и просто любители активного образа жизни успешно контролируют процесс тренировоки объемы нагрузок. А те, кому пришло время внимательнее относиться к своему здоровью, собирают статистику, показывающую общую картину изменений, и могут ее соотнести со своим самочувствием.

Анализ собранной статистики позволит вовремя заметить, если что-то пошло не так, и своевременно обратиться к врачу, например, при наличии сердечно-сосудистых заболеваний. Поэтому во многих случаях использование мобильной диагностики интересно, полезно и даже необходимо.

Как откалибровать датчики в смартфоне | Смартфоны | Блог

Производители редко об этом говорят, но в вашем смартфоне очень много датчиков. Зачем? Они экономят заряд аккумулятора, делают комфортной навигацию, избавляют от ошибочных нажатий и многое другое. Но случается так, что некоторые датчики начинают работать некорректно. Разбираемся, как откалибровать датчики смартфона вручную и возможно ли это вообще.

Какие бывают датчики в смартфоне и зачем они нужны?

Современные мобильные устройства обладают большим набором датчиков, и изредка среди них встречаются необычные варианты вроде измерения температуры и влажности окружающей среды, ультрафиолета и пульса, как это случилось со смартфоном Blackview BV9900.

Но стандартный набор включает в себя совсем другие, более привычные датчики.

Самым популярным из них можно смело назвать акселерометр. Предназначен для измерения ускорения по трем осям координат (X — поперечная, Y — продольная и Z — вертикальная) с учетом силы тяжести. Благодаря полученным данным смартфон словно начинает понимать свое положение в пространстве, и появляются такие функции, как автоповорот экрана или запуск приложений встряхиванием смартфона. Нашел себе применение акселерометр еще в некоторых играх и приложениях — за счет него при наклонах смартфона можно управлять чем-либо на экране. Такой способ управления станет хорошим дополнением сенсорному экрану.

Вторым по популярности идет датчик приближения (или приближенности), который отключает экран при телефонных разговорах, если смартфон находится возле уха (или любой другой части тела). А еще он может, наоборот, предотвратить включение дисплея, когда девайс находится в кармане. Почти все современные смартфоны оснащены отдельным датчиком приближения, но в некоторых устройствах реализован программный метод отключения экрана при разговоре, о котором в статье будет рассказано чуть позже.

Датчик освещенности (освещения) тоже почти всегда используется за исключением редких бюджетных моделей. Он измеряет уровень внешнего освещения в люксах, и отвечает за автоматическую настройку яркости в зависимости от внешних условий. Более того, в некоторых смартфонах автояркость неотключаемая, а вместе с подсветкой может изменяться и насыщенность цветовых оттенков.

Через магнитометр (компас) измеряется внешнее магнитное поле, а точнее его напряженность по трем осям. Как нетрудно догадаться, компас нужен для определения сторон света, а также он упрощает работу с приложениями-навигаторами — на картах гораздо быстрее получается определить направление движения. Магнитометр, к сожалению, есть уже не во всех смартфонах, но вполне может обнаружиться в бюджетном устройстве.

Гироскоп, который иногда путают с акселерометром, на самом деле работает с ним в паре и пригодится для измерения скорости вокруг осей X, Y и Z. Без гироскопа невозможно смотреть 360-градусные видеоролики и пользоваться технологией VR, так как смартфон не сможет отследить и зафиксировать движения в трехмерном пространстве. Без гироскопа нельзя комфортно играть и в некоторые игры. Самым популярным примером является Pokemon Go, в которой пользователи с девайсами, у которых нет гироскопа, не могут включить режим дополненной реальности и ловить покемонов через камеру.

Частым гостем в смартфонах стал датчик под названием шагомер, который измеряет количество пройденных пользователем шагов. Без него некоторые приложения, предназначенные для отображения физической активности пользователя, либо вовсе не будут работать, либо у них станет доступна лишь часть функционала. При этом есть софт, который замеряет шаги только при помощи акселерометра, но такой метод подсчета будет менее точным.

Завершает список популярных датчиков барометр — он встречается обычно в дорогих смартфонах, либо в некоторых защищенных девайсах среднего ценового сегмента. Барометр измеряет атмосферное давление и высоту над уровнем моря, и в целом датчик, как и магнитометр, может стать полезным дополнением при навигации.

Полный список датчиков, доступных в смартфоне, можно посмотреть, установив на смартфон одно или несколько бесплатных приложений, среди которых выделяются Device Info, Датчикер и Senson Kinetics, но список достойных вариантов на этом вовсе не заканчивается. Интересно же то, что иногда в списках вы можете увидеть слово Virtual, что указывает на программное происхождение датчика, и давайте попробуем разобраться в том, что это такое.

Что такое виртуальные датчики?

Под виртуальными понимаются датчики, которые работают исключительно за счет других датчиков или благодаря некоторым функциям смартфона. Такие датчики еще называют программными, то есть, на уровне железа в мобильном устройстве их нет, и по точности они всегда хуже, чем реальные датчики. К сожалению, калибровке такие датчики не поддаются, разве что производитель сам не создаст софт с таким функционалом.

Для примера можно привести современный аппарат Samsung M21, у которого именно виртуальные датчики освещенности и приближения. Внешнее освещение в смартфоне на самом деле измеряется с помощью фронтальной камеры, а вместо отдельного датчика приближения трудится экран, который отключается, когда вы касаетесь верхней его части при телефонных разговорах. Проблема в том, что в случае с приближением экран может не выключиться, если на вас надета шапка, а освещенность наверняка будет измеряться менее точно, что сделают работу автояркости менее чувствительной и более долгой.

А вот у бюджетных смартфонов Vivo и realme часто встречается виртуальный гироскоп, работа которого основана на акселерометре, и, вероятно, магнитометре. При просмотре 360-градусных видео можно заметить, что виртуальный вариант датчика реагирует на повороты менее точно, чем реальный, а картинка меняется не так плавно, как хотелось бы.

Исходя из этого, можно сделать вывод о том, что виртуальные датчики делаются с целью экономии, а точнее для снижения стоимости смартфонов, но в целом, несмотря на недостатки, программные варианты чаще всего лучше, чем ничего.

Почему датчики перестают правильно работать и как это определить?

Причин, по которым датчики могут некорректно работать, может быть множество, и в некоторых случаях поможет только их замена, а иногда датчики по вине производителя плохо функционируют уже из коробки, и даже ремонт не способен устранить неисправность. Но рассмотрим варианты, когда любому пользователю под силу что-то изменить.

Нередко датчики приближения и освещенности начинают некорректно работать из-за наклеенной на экран пленки или защитного стекла, в которых не предусмотрен вырез для датчиков либо он сделан не слишком точно. Рано или поздно аксессуары, созданные для защиты дисплея, загрязняются и покрываются царапинами, и вот тогда во время разговора подсветка экрана может быть постоянно выключенной, а функция автояркости будет всегда стремиться сделать уровень подсветки меньше, чем это необходимо. В таком случае следует полностью снять пленку или стекло, либо попытаться сделать вырез для датчиков.

Еще одна трудность в том, что датчики приближения и освещенности трудно заметить на корпусе черного цвета, и обычно их становится видно, только после поднесения аппарата к яркому источнику света и рассматривания на предмет небольших маленьких точек на передней части смартфона, а точнее над дисплеем. В некоторых случаях датчики находятся на верхней грани, но тогда им ничего не должно мешать, если производитель грамотно реализовал их работу (а судя по отзывам, такое бывает не всегда).

Плохо работающий гироскоп, как и акселерометр, можно определить в уже упомянутых ранее приложениях, отображающих датчики в смартфоне. Если на неподвижно лежащем устройстве постоянно ощутимо меняются показатели хотя бы по одной из осей, то от таких датчиков совершенно не будет толка. Ниже на скриншоте можно посмотреть как выглядят нормальные значения в приложении Датчикер при неподвижно лежащем девайсе на ровной поверхности.

Недостаточно точный магнитометр в приложениях-компасах чаще всего пользователю будет предложено откалибровать, но еще оценку работы датчика можно получить из софта GPS-тест.

Как откалибровать (починить) датчики?

Калибровка компаса происходит за счет определенных действий, которые в зависимости от софта могут отличаться, но информация о которых наверняка должна появиться на экране приложений-компасов. 

Через приложение GPS Status получается откалибровать не только компаc, но и акселерометр, а также, при необходимости, можно сбросить данные GPS, что в некоторых случаях может улучшить работу навигации.

Если реакции на калибровку нет, и точность компаса оставляет желать лучше, то на Android-устройствах стоит попробовать установить приложение Цифровой компас и направление Qibla, которое иногда выручает, когда другие варианты оказываются бесполезны.

При настройке датчика приближения, а точнее при сбросе его настроек, иногда помогает софт Proximity Sensor Reset, в котором нужно следовать инструкциям на экране. Впрочем, судя по отзывам, не всем помогает такой метод, но альтернативных вариантов на самом деле немного.

В некоторых смартфонах откалибровать часть сенсоров получается прямо из настроек операционной системы. Точное расположение настроек давать нет смысла, так как в зависимости от модели оно может отличаться, но на скриншотах ниже можно посмотреть на то, как может выглядеть меню с функцией калибровки (на примере смартфонов AGM A10 и Ulefone Armor X7).

Предусмотрена калибровка и в инженерном меню для некоторых смартфонов, работающих на чипсетах от MediaTek. Попасть в инженерное меню можно, набрав  ‎*#*#3646633#*#*, или через приложение MTK Engineering Mode. Перед этим возможно потребуется активировать права разработчика зайти в «Настройки смартфона/Информация о телефоне» и шесть раз нажав на пункт «Информация о сборке» (названия могут немного отличаться).

Попав в инженерное меню, следует открыть вкладку Hardware Testing, а затем выбрать пункт Sensor, после чего должен открыться список с сенсорами, доступными для калибровки. Далее калибровка запускается нажатием на кнопку Start Calibration, после чего могут появиться подсказки о том, как правильно завершить калибровку.

Однако даже если в списке присутствует акселерометр (G-sensor), гироскоп и датчики приближения и освещенности, то при попытке калибровки вас может ждать неудача, а на экране — появиться надпись Fail. Такое бывает, и с этим ничего не поделаешь. Универсального метода устранения неполадок с некоторыми датчиками не существует, а иногда это и вовсе невозможно, но стоит опробовать все методы, описанные в статье.

Для смартфонов Xiaomi предусмотрена следующая инструкция для калибровки датчика приближения:

  1. В поле вызова набираем символы и числа *#*#6484#*#*.
  2. Попав в инженерное меню, нажимаем на три точки в правом верхнем углу — Additional tools.
  3. Переходим пункт под названием Proximity sensor.
  4. Жмем кнопку Calibrate. Работу датчика можно проверить путем его закрытия и открытия пальцем. При срабатывании датчика верхнее значение меняется с 5 на 0.

В меню Additional tools еще есть калибровка акселерометра и гироскопа — достаточно лишь следовать инструкциям в верхней части экрана.

Также можно посмотреть видеоинструкию:

MEMS-акселерометры и гироскопы — разбираемся в спецификации / Хабр

“Хьюстон, у нас проблемы”, — устало раздалось в мозгу, пытающемся в ночи продраться сквозь Datasheet IMU MPU-9250 от InvenSense. Когда все слова в отдельности понятны, но взаимосвязь их запутана до невозможности. Началось всё с параметра LSB, про который я только смутно помнила, что в переводе это Least Significant Bit. Дальше пошли “Resolution”, “Sensitivity”, а ещё дальше я поняла, что получающийся текст уже можно озаглавить “Datasheet для чайников”.

Немного об основных блоках инерционного модуля.
MEMS-гироскоп

MPU-9250 состоит из трёх независимых одноосных вибрационных датчиков угловой скорости (MEMS гироскопов), которые реагируют на вращение вокруг X-, Y-, Z- осей. Две подвешенные массы совершают колебания по противоположным осям. С появлением угловой скорости эффект Кориолиса вызывает изменение направления вибрации (, которое фиксируется емкостным датчиком. Измеряемая дифференциальная емкостная составляющая пропорциональна углу перемещения [Время Электроники]. Получившийся сигнал усиливается, демодулируется и фильтруется, давая в итоге напряжение, пропорциональное угловой скорости вращения. Данный сигнал оцифровывается с помощью встроенного в плату 16-битного АЦП. Скорость оцифровки (sample rate) может программно варьироваться от 3.9 до 8000 выборок в секунду (samples per second, SPS), а задаваемые пользователем фильтры низких частот (LPF) предоставляют широкий диапазон возможных частот среза. ФНЧ нужен, в том числе, чтобы убирать вибрации от моторов (как правило, выше 20-25 Гц).
Трёхосевой MEMS-акселерометр

Использует для каждой оси отдельную пробную массу, которая смещается при возникновении ускорения вдоль данной оси (фиксируются емкостными датчиками). Архитектура MPU-9250 снижает подверженность температурному дрейфу и вариациям электропараметров. При расположении устройства на плоской поверхности оно измерит 0g по X- и Y-осям и +1g по Z-оси. Масштабный коэффициент (scale factor — отношение изменения выходного сигнала к изменению выходного измеряемого сигнала) калибруется на заводе и не зависит от напряжения питания. Каждый сенсор снабжен индивидуальным сигма-дельта АЦП (состоит из модулятора и цифрового фильтра низких частот, подробнее про устройство в [Easyelectronics]), выходной цифровой сигнал которого имеет настраиваемый диапазон измерений.
И сразу про трёхосевой MEMS-магнетометр

Основан на высокоточной технологии эффекта Холла. Включает в себя магнитные сенсоры, определяющие напряжённость магнитного поля земли по осям, схему управления, цепь усиления сигнала и вычислительную схему для обработки сигналов с каждого датчика. Каждый АЦП имеет разрешение 16 бит, диапазон измерений . Для измерения слабых магнитных полей применяют либо единицу в системе СИ микротесла (мкТл), либо гаусс (Гс, система СГС): , [Радиолоцман]).
Итак, что такое LSB и как его посчитать? Инструкция по добыче

Допустим, наш акселерометр сейчас работает в диапазоне измерений , то есть полный размах возможных значений будет . Соответствующие им значения напряжений оцифровываются 16-битным АЦП, который может разбить весь интервал максимально на ступеней. Минимальный инкремент, который можно засечь, — это как раз одна ступенька . Тут надо помнить, что счёт ведётся с нуля, так что на самом деле максимально измеряемое значение будет . То есть, чем больше бит в цифровом слове АЦП или ЦАП, тем меньше будет расхождение. При этом
чувствительность (иногда называется масштабным коэффициентом, sensitivity scale factor)
датчика на конкретном диапазоне будет определяться как соотношение электрического выходного сигнала и механического воздействия. Традиционно указывается для частоты сигнала 100 Гц и температуры Для MPU-9250 чувствительность составляет ступеней на каждые g или (, ), для другого IMU, BMI088 от Bosch Sensortec, чувствительность гироскопа высчитывается так же, а для акселерометра используется ступеней на каждое g.

Варианты FS вытаскиваем из спецификации на гироскопы и, чтобы дважды не вставать, акселерометры.

FS для акселерометров я брала ещё и из документации на BMI088 (см. ниже).

Гироскоп, 16 бит Акселерометр, 16 бит
Диапазон (FS), (dps) LSB, (dps) Диапазон (FS), g LSB, mg
(FS = 250) 0,004 (FS = 4) 0,06
(FS = 500) 0,008 (FS = 6) 0,09
(FS = 1000) 0,0015 (FS = 8) 0,12
(FS = 2000) 0,03 (FS = 12) 0,18
(FS = 4000) 0,06 (FS = 16) 0,24
(FS = 24) 0,37
(FS = 32) 0,48
(FS = 48) 0,73

Всё, вроде бы, встало на свои места, можно идти дальше. В некоторых случаях (ниже, например, вырезка из документации на BMI088) отдельно указывается такой параметр, как разрешение (Resolution).

По факту, вроде бы, получается, что это должен быть LSB. Но почему тогда мы видим одно значение вместо нескольких, завязанных на конкретные диапазоны? Пришлось расширять список исследуемых источников в поисках ответов.

Что такое разрешение (Resolution)?

Минимальная величина, которую достоверно видит датчик, крайне важная при попытке соблюсти баланс между ценой и производительностью. Это не точность — сенсор с высоким разрешением может быть не особо точным, равно как и сенсор с малым разрешением в определённых областях может обладать достаточной точностью. К сожалению, LSB определяет лишь теоретическое минимально-различимое значение при условии, что мы можем использовать все 16 бит АЦП. Это разрешение в цифровом мире. В аналоговом какая-то часть ступеней будет зашумлена и число эффективных бит будет меньше.

Какие бывают характеристики шума и откуда что берётся?


Источники шума можно в общем разбить на электронный шум схемы, преобразующей движение в сигнал напряжения (джонсоновский тепловой шум, дробовой шум, розовый 1/f фликкер-шум и т.д.), и тепловой механический (броуновский, обусловленный наличием мелких подвижных частей) от самого сенсора. Характеристики последнего будут зависеть от резонансной частоты механической части системы (собственной частоты колебаний сенсора ).
Среднеквадратичное значение шумов во всём спектральном диапазоне — Total RMS (Root mean square) Noise

Уровни шума можно определять несколькими способами. Можно рассматривать их во временной или частотной области (после преобразования Фурье). В первом случае берут остаточный шум как среднеквадратичное значение сигналов от неподвижного датчика (по факту это стандартное отклонение для выборки при ) за некоторый промежуток времени:


Ускорения или угловые скорости вращения меньше уровня широкополосного шума будут неразличимы — вот и фактическое разрешение. Среднеквадратичное значение переменного напряжения или тока (часто называется действующим или эффективным) равно величине постоянного сигнала, действие которого произведёт такую же работу в активной (резистивной) нагрузке за время периода. Наиболее эффективен такой подход при оценке широкополосного шума, где доминирует белый шум.

Для белого шума отношение амплитуды (мгновенного пикового значения) к среднеквадратчному с вероятностью 99.9% составляет Называется такое отношение крест-фактором (crest factor, cross ratio). Можно выбрать вероятность 95.5% — крест фактор будет равен 4.

На деле же сигналы шума ведут себя не так хорошо и могут выдавать пики, увеличивающие крест-фактор до 10 раз. В некоторых спецификациях можно найти значения или сам множитель.

В узкой низкочастотной полосе 0.1-10 Гц основную роль играет фликкер-шум “1/f”, для оценки которого используют значение размаха шумового сигнала (peak-to-peak).

Спектральная плотность

Иногда сигнал удобнее рассматривать в частотной области, где его описание называется спектром (зависимость амплитуды и фазы от частоты). Одна из возможных характеристик шума в спецификациях зовётся
power spectral density of noise (PSD), noise spectral density, noise power density,
или попросту noise density). Описывает распределение мощности шума по диапазону частот. Вне зависимости от представления электрического сигнала через ток или напряжение мгновенную рассеиваемую на нагрузке мощность можно нормировать (R = 1 Ом) и выразить её как Средняя мощность, рассеиваемая сигналом в течение промежутка времени

Мощность – скорость поступления энергии. Через энергию определяются детерминированные и непериодические сигналы. Периодические и случайные сигналы выражаются через мощность, поскольку они не ограничены по времени и, соответственно, энергии, при этом в любой момент времени их средняя мощность отлична от нуля

Можно вспомнить [Sklyar], что произвольный периодический сигнал выражается через комбинацию бесконечного числа гармоник с возрастающими частотами:

что после представления косинуса и синуса в экспоненциальной форме

и замены можно записать в виде

где комплексные коэффициенты (спектральные компоненты) ряда Фурье для ,

$$display$$\begin{equation} c_n = \frac{1}{T_0}\int^{T_0/2}_{-T_0/2} x(t)e^{-i n\omega t},dt = \begin{cases} \frac{1}{2}(a_n-ib_n), & n>0\\ \frac{a_0}{2}, & n=0\\ \frac{1}{2}(a_n + ib_n), & n<0 \end{cases} \end{equation}$$display$$

В общем случае эти коэффициенты представимы следующим образом:

Амплитудным и фазовым спектром называют графики зависимости и от частоты. Спектральная плотность мощности периодического сигнала даёт распределение мощности сигнала по диапазону частот:

и имеет размерность Средняя нормированная мощность действительного си

что это такое, как настроить и калибровать

Современные смартфоны и планшеты на ОС Android и других платформах, обеспечивают своим владельцам огромное количество возможностей, которые уже давно вышли за пределы обычного общения и интернет-сёрфинга. Для повышения функциональности гаджетов применяется множество дополнительных устройств – от такого приспособления как датчик приближения до акселерометра и гироскопа.

С их помощью удобнее разговаривать по мобильной связи, делать фото и даже играть. Некоторые функции таких датчиков похожи, но в основном они дополняют друг друга – поэтому установленный акселерометр в телефоне не исключает наличие в конструкции и гироскопа.

Принцип действия датчика

Пользователь, впервые столкнувшийся с термином «акселерометр» в списке характеристик смартфона, может заинтересовать, что это такое, как работает и выглядит. Ответить на эти вопросы несложно –  устройство, получившее название от латинского слова «accelero» («ускоряю»), применяется для измерения кажущегося ускорения.

Определяя этот параметр, датчик помогает программному обеспечению контролировать положение телефона в пространстве и расстояние, на которое был перемещён мобильный гаджет.

Между тем, даже зная, что такое акселерометр, некоторые пользователи не отличают его от гироскопа. На самом деле оба датчика могут измерять одни и те же величины, но полностью заменить друг друга не способны.

При этом гироскоп в телефоне необходим для определения угла поворота гаджета относительно определённой плоскости. А акселерометр требуется для контроля положения в пространстве путём измерения ускорения движения. Совместное использование устройств помогает программному обеспечению гаджета получить более точные результаты.

Рис. 1. Один из примеров работы акселерометра.

Рассматривая действие акселерометра и что это такое по большому счёту, стоит познакомиться с принципом действия классического приспособления:

  1. Основная часть датчика представляет собой инертную массу (например, грузик), прикреплённую к упругому элементу.
  2. Упругая деталь типа пружины фиксируется на неподвижном элементе.
  3. Пружина зафиксирована на неподвижной части конструкции.
  4. Колебания груза подавляются демпфером.
  5. При наклонах, встряске и поворотах гаджета инертная масса реагирует на силу инерции.
  6. Чем больше интенсивность и сила наклона, встряски или поворота, тем сильнее деформируется пружина.
  7. После возвращения массы на место под воздействием пружины уровень смещения относительно обычного положения фиксируется специальным датчиком.

Рис. 2. Конструкция стандартного акселерометра.

С другой стороны, ответ на вопрос по поводу акселерометра в телефоне – что это и как выглядит, будет немного отличаться. В данном случае он представляет собой миниатюрный элемент на плате с расположенной внутри инертной массой и выглядит обычно как маленький чёрный квадрат.

Основной принцип работы элемента мало отличается от стандартного – при изменении положения инертной массы определяется величина смещения, по которому рассчитываются показатели положения гаджета. Такие датчики стоят практически на любом виде мобильной техники – на телефоне или планшете.

Рис. 3. Внешний вид датчика для смартфона.

к оглавлению ↑

Применение устройства

Определившись с тем, что представляет собой акселерометр в телефоне, стоит узнать и как им пользоваться – для этого можно привести несколько примеров:

С помощью датчика осуществляется управление в играх – смена положения мобильного устройства вызывает определённые действия со стороны игрового персонажа или управляемого игроком транспортного средства. Так, например, наклоном телефона можно изменять направление движения автомобиля в гоночных симуляторах.

Рис. 4. Игра Asphalt 8, управление в которой выполняется с помощью акселерометра.

Во время спортивной пробежки акселерометр используется в смартфонах и планшетах для контроля пройденной дистанции. При этом определяется примерное количество сделанных шагов – и, хотя погрешность может быть довольно высокой (зависит от скорости движения), полученные результаты можно использовать для повышения результатов тренировки.

Наличие таких датчиков на смартфонах и планшетах позволяет изменять ориентацию изображения. Расположив мобильный гаджет горизонтально, пользователь при помощи акселерометра автоматически получает альбомный формат картинки или текста. При вертикальном расположении экрана ориентация изменится на книжную.

В других устройствах датчик применяют и для выполнения тех же задач, для чего нужен акселерометр на телефонах, и для других целей. Так, в авиации он необходим для работы навигационных систем, а в промышленности используется в качестве вибропреобразователя.

В системах управления жёсткими дисками HDD акселерометр требуется для компенсации вызываемых ускорениями объекта колебаний и защиты хранящихся на накопителе данных.

Видеорегистраторы с помощью этого датчика способны определять время ускорения и торможения, фиксировать остановки и столкновения. На джойстиках игровой приставке акселерометр необходим для управления игровым процессом.

к оглавлению ↑

Включение и отключение датчика

Способ, как узнать есть ли акселерометр на телефоне, заключается в повороте экрана в другое положение. Если изображение при этом не изменилось, значит датчик отсутствует – или на смартфоне просто отключена функция «Автоповорота».

У большинства моделей поворот экрана при изменении положения автоматически включается и выключается с помощью меню настроек или верхней панели на главном экране:

В первом случае следует перейти в «Настройки», выбрать пункт «Экран» и включить поворот изображения.

Рис. 5. Включение через настройки.

Во второй ситуации достаточно потянуть пальцем за верхнюю панель, увеличив её размер на весь экран, и включить соответствующую функцию.

Рис. 6. Включение через верхнюю панель.

Совет: Иногда автоматическая реакция акселерометра на движения мобильника не требуется – и даже может мешать. В таких случаях датчик можно отключить, воспользовавшись одним из тех меню, в которых можно включать автоповорот.

к оглавлению ↑

Настройка и калибровка

Практически все новые телефоны с гироскопом имеют и встроенный датчик контроля ускорения. При отсутствии акселерометра в телефоне, что говорит о бюджетной стоимости модели или её выпуске много лет назад, добавить эту функцию не получится ни перепрошивкой, ни изменением настроек.

Зато при наличии датчика, если он не работает или неправильно реагирует на изменение положения устройства, можно выполнить его калибровку.

Автоматическая настройка Андроид акселерометра выполняется в три этапа:

1Скачайте с гугл плей бесплатное приложения для калибровки (например, GPS Status & Toolbox).

2Установите телефон с акселерометром на ровную поверхность.

3Перейдите в меню настроек утилиты и выберите пункт калибровка акселерометра.

Рис. 7. Меню приложения.

На дисплее гаджета появится сообщение о необходимости установки на ровную поверхность. После подтверждения запускается калибровка. Завершение процесса сопровождается появлением соответствующей надписи.

Рис. 8. Работа приложения GPS Status & Toolbox.

к оглавлению ↑

Выводы

Зная, что такое акселерометр, можно сделать определённые выводы по поводу его наличия в современных мобильных устройствах. Наличие датчиков определения положения смартфонов и планшетов позволяет упростить просмотр на телефоне видео или чтение книг, а иногда даже помогает в игровом процессе.

Однако перед использованием акселерометра его иногда приходится настраивать. На это потребуется всего несколько минут и скачивание бесплатной утилиты.

Тематическое видео:

Лучший акселерометр в датчиках — Отличные предложения акселерометра в датчиках от глобального акселерометра в продавцах датчиков

Отличные новости !!! Вы попали в нужное место для акселерометра в датчиках. К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress. У нас буквально тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.

Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.

AliExpress никогда не уступит по выбору, качеству и цене.Каждый день вы будете находить новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, поскольку этот лучший акселерометр в датчиках скоро станет одним из самых востребованных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что у вас есть датчик акселерометра на AliExpress. Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.

Если вы все еще не уверены в акселерометре в датчиках и думаете о выборе аналогичного товара, AliExpress — отличное место для сравнения цен и продавцов.Мы поможем вам разобраться, стоит ли доплачивать за высококачественную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь. И, если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе.Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца. Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово — просто слушайте миллионы наших довольных клиентов.

А если вы новичок на AliExpress, мы откроем вам секрет. Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны — и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести акселерометр in sensor по самой выгодной цене.

У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы. На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните лучший опыт покупок прямо здесь.

Определение акселерометра Merriam-Webster

С 1828 г.

ac · cel · er · om · e · ter | \ ik-ˌse-lə-rä-mə-tər, ak- \

Определение акселерометра

: прибора для измерения ускорения или для обнаружения и измерения вибрации

Примеры акселерометра в предложении

Недавние примеры на Интернет Но эти политики обычно требуют, чтобы водитель дал согласие на предоставление этих данных через бортовое устройство с акселерометром , которое передает данные по беспроводной сети.- Натан Бомей, США СЕГОДНЯ , «GM предложит автострахование OnStar, обещая более низкие ставки, чем безопаснее вы вождение», 18 ноября 2020 г. Наряду с этим основным датчиком SE оснащен акселерометром , гироскопом для обнаружения падения, всегда -на альтиметре, компасе, GPS и датчике внешней освещенности. — Джейкоб Крол, CNN Подчеркнул : «Apple Watch SE, возможно, пока что лучший вариант, но с некоторыми компромиссами», 29 сентября.2020 Датчики включают в себя акселерометр , , датчик температуры, монитор сердечного ритма и два микрофона. — Самуэль Аксон, Ars Technica , «Amazon Halo будет взимать абонентскую плату за отслеживание тона вашего голоса», 27 августа 2020 г. Группа также включает в себя датчик сердечного ритма, датчик температуры и акселерометр , который может помочь отслеживать режим сна и шаги, сделанные в течение дня. — Спенсер Нил, Washington Examiner , «Amazon представляет Halo, носимый трекер здоровья, который отслеживает жировые отложения и измеряет эмоции с помощью голоса», 27 августа.2020. Используя приложение для записи данных акселерометра , телефоны затем измеряли ускорение, из стороны в сторону, вверх-вниз, вперед и назад, пока участники шли. — Эми Вудятт, CNN , «Ваш смартфон может сказать вам, когда вы пьяны», 18 августа 2020 г. iO полагается на AI, гироскопический датчик и акселерометр в ручке. — Адриенн Доника, Popular Mechanics , «Oral-B провела шесть лет, исследуя свою новейшую зубную щетку.Это того стоило », 11 августа 2020 Ученые также могут предложить

Как работают акселерометры | Типы акселерометров

Криса Вудфорда. Последнее изменение: 8 октября 2020 г.

Хотите знать, как быстро едет ваша машина? Это просто — взгляните на спидометр! Скорость удобное измерение, показывающее, как быстро вы можете получить из одного места в другое. Максимальная скорость автомобиля обычно является хорошим показателем того, насколько мощный двигатель это есть, но при условии, что все соблюдают ограничение скорости, максимум скорости — это просто цифры на бумаге — они никому не нужны.

Ускорение намного интереснее скорости и полезнее, если вам нужно избежать опасности за рулем: это как быстро что-то может ускоряться или замедляться. Измерение ускорения немного сложнее, чем измерение скорости, потому что здесь нужно выяснить, как скорость меняется с течением времени. Как вы измеряете ускорение? Неудивительно, что с устройством под названием акселерометр . Давным-давно вы бы нашли такие гаджеты только в космических ракетах или гигантских реактивных самолетах; теперь они практически в каждом автомобиль, многие портативные компьютеры и всевозможные гаджеты, такие как iPod, iPhone и Nintendo Wii.Давайте подробнее разберемся, что это такое, какие они делают, и как они работают!

Фото: Сюда! Как ваш мобильный телефон узнает, в каком направлении повернуть дисплей? Все это делается с помощью акселерометров, спрятанных внутри корпуса.

Для чего используются акселерометры?

Фото: Аппарат ракетостроения? Акселерометр, разработанный Honeywell в 1980-х годах для использования на космических кораблях. Фото любезно предоставлено космическим центром NASA Johnson Space Center (NASA-JSC).

Акселерометры — это в буквальном смысле слова ракетостроение! Установлен в космическом корабле, это удобный способ измерить не только изменения скорости ракеты, но и также апогей (когда корабль находится на максимальном удалении от Земли или другая масса, поэтому ее ускорение из-за силы тяжести минимально) и ориентация (потому что наклон чего-то меняет способ воздействия на него гравитации и силу, которую оно ощущает). Акселерометры бывают также широко используется в инерциальной навигации и системах наведения в таких вещах, как автопилоты самолетов и кораблей.Еще одно очень распространенное использование на транспорте — автомобильные подушки безопасности: когда акселерометр обнаруживает внезапное изменение скорости автомобиля, сигнализируя о неизбежном столкновении, он запускает электрическую цепь, которая заставляет подушки безопасности срабатывать.

Фото: набор акселерометров, используемых для испытаний ветряных турбин. Фото Дэвида Парсонса любезно предоставлено Министерством энергетики США / Национальной лабораторией возобновляемых источников энергии (US DOE / NREL).

Если у вас есть современный мобильный телефон, MP3-плеер или портативный игровая консоль, вероятно, в нее встроен акселерометр, поэтому она может почувствовать, когда вы наклоняете его из стороны в сторону.Вот как iPhone или iPod Touch автоматически определяет, когда нужно переключить раскладку экрана с книжной на альбомную. Многие игры и «приложения», разработанные для гаджетов, таких как iPhone, работают, определяя, насколько сильно или быстро вы перемещаете или встряхиваете корпус, используя крошечные микросхемы акселерометра внутри.

Вы будете удивлены тем, для чего используются акселерометры. Знаете ли вы, например, что высокотехнологичный стиральные машины есть акселерометры, которые могут определять, когда нагрузка выходит из равновесия и выключить электродвигатель, чтобы они не разлетались на части? Или что нагревательные приборы, такие как электронные утюги и тепловентиляторы, имеют внутри акселерометры, которые обнаруживают, когда они падают, и выключают их, чтобы не допустить возникновения пожара? Удивительно, а? Разве ракетостроение не полезно!

Что такое ускорение?

Прежде чем вы сможете понять акселерометры, вам действительно нужно понять ускорение — так что давайте подведем итоги.Если у вас есть машина, разгоняется с места до скорости (или, строго говоря, скорость) 100 км / ч за 5 секунд, ускорение — это изменение скорость или скорость, разделенная на время, то есть 100/5 или 20 км / ч за второй. Другими словами, каждую секунду, когда машина едет, она добавляет еще 20 км / ч до его скорости. Если вы сидите в этой машине, вы мог измерить ускорение с помощью секундомера и автомобильного спидометр. Просто снимите показания спидометра через 5 секунд, разделите чтение на 5, и вы получите ускорение.

Но что, если вы хотите узнать момент ускорения, не дожидаясь определенное время до истечения? Если вы знаете о законах движения, вы знают, что гениальный английский ученый Исаак Ньютон определил по-другому, связав его с массой и силой. Если у вас есть определенная сила (скажем, сила в ноге, когда вы ее пинаете) наружу), и вы примените его к массе (футбольный мяч), вы заставить массу разогнаться — мяч взлетит в воздух.

Фото: Ускорение происходит, когда вы прикладываете силу к объекту — например, пинаете футбольный мяч.Ускорение — это мера того, насколько скорость мяча изменяется за определенное время. Менее очевидно, что это также мера того, сколько силы вы прикладываете к каждому килограмму массы, который содержит объект. Фото Гэри Николса любезно предоставлено ВМС США.

Второй закон движения Ньютона связывает силу, массу и ускорение с помощью этого очень простого уравнения:

Сила = масса x ускорение

или …

F = m a

или …

а = Ф / м

Другими словами, ускорение — это сила, необходимая для перемещения каждого единица массы.Глядя на это уравнение, вы можете понять, почему футбольные мячи работают как они это делают: чем сильнее вы пинаете (чем больше сила), или чем легче мяч (тем меньше масса), тем большее ускорение вы создадите — и тем быстрее мяч полетит по небу.

Вы также можете видеть, что теперь у нас есть второй способ вычисления ускорение, которое не связано с расстоянием, скоростью или временем. Если мы можем измерить силу, действующую на что-то, а также его массу, мы можно вычислить его ускорение, просто разделив силу на масса.Не нужно вообще измерять скорость или время!

Как работают акселерометры?

Это уравнение — теория акселерометров: они измеряют ускорение не путем расчета изменения скорости с течением времени, а путем измерительная сила. Как они это делают? Вообще говоря, ощущая, насколько масса давит на что-то, когда на него действует сила.

Это то, с чем мы все хорошо знакомы, когда едем в машине. Представьте, что вы сидите в заднее сиденье автомобиля, радостно занимающегося своими делами, а водитель ускоряется внезапно проехать тихоходный грузовик.Вы чувствуете, что отбиваете назад в сиденье. Почему? Потому что ускорение автомобиля заставляет его двигаться вперед внезапно. Вы можете подумать, что двигаетесь назад, когда машина ускоряется вперед, но это иллюзия: действительно то, что вы испытываете, является машина пытается тронуться с места без вас, а ваше сиденье догоняет вас сзади!

Законы движения говорят нам, что ваше тело пытается продолжайте двигаться с постоянной скоростью, но сиденье постоянно давит на вас с силой и заставляет вместо этого ускоряться.В чем больше автомобиль ускоряется, тем больше силы вы чувствуете, сидя на сиденье, и вы действительно можете это почувствовать! Ваш мозг и тело работают вместе, чтобы достаточно эффективный акселерометр: тем сильнее ваше тело опыта, тем большее ускорение регистрирует ваш мозг от разница между движениями вашего тела и движения автомобиля. (И это собирает полезные подсказки из других ощущений, включая скорость какие движущиеся объекты проходят мимо окна, изменение звука двигатель машины, шум проносящегося мимо воздуха и так далее.) Момент, автор: момент, вы чувствуете изменения в ускорении от изменений ощущений на вашем теле, а не путем подсчета того, как далеко вы прошли и как это заняло много времени.

Акселерометры работают примерно так же.

Виды акселерометров

Есть много разных типов акселерометров. Механические немного похожи на уменьшенные версии пассажиров, сидящих в автомобилях, переключающихся назад и вперед, когда на них действуют силы. У них есть что-то вроде массы, прикрепленной к пружине подвешен внутри внешнего кожуха.Когда они ускоряются, кожух сразу уходит, но масса отстает и пружина растягивается с силой, соответствующей ускорению. В расстояние, на которое растягивается пружина (которое пропорционально растягивающее усилие) можно использовать для измерения силы и ускорение различными способами. Сейсмометры (раньше измерения землетрясений) работают примерно так же, используя ручки на тяжелых массы, прикрепленные к пружинам для регистрации сил землетрясения. Когда землетрясение сотрясает шкаф сейсмометра, но ручка (прикрепленный к массе) перемещается дольше, поэтому оставляет резкий след на бумажной диаграмме.


Изображение: основная концепция механического акселерометра: когда серый блок акселерометра перемещается из стороны в сторону, масса (красная капля) ненадолго остается позади. Но пружина, соединяющая его с коробкой (красный зигзаг), вскоре возвращает его в исходное положение, и при движении он рисует след (синяя линия) на бумаге.

Альтернативные конструкции акселерометров измеряют силу не путем рисования пером на бумаге, а генерируя электрические или магнитные сигналы. В пьезорезистивных акселерометрах масса прикреплена к потенциометру (переменному резистору), немного похожему на регулятор громкости, который вращает электрический ток вверх или вниз в зависимости от величины силы действуя по нему.Конденсаторы также могут использоваться в акселерометрах для измерения силы аналогичным образом: если движущийся Масса изменяет расстояние между двумя металлическими пластинами, измерение изменения их емкости дает измерение действующей силы.


Иллюстрация: Общая концепция емкостного акселерометра: когда серый блок акселерометра перемещается вправо, красная масса остается позади и сближает синие металлические пластины, изменяя их емкость измеримым образом.

В некоторых акселерометрах пьезоэлектрические кристаллы, такие как кварц, делают умную работу.У вас есть кристалл, прикрепленный к массе, поэтому, когда акселерометр движется, масса сжимает кристалл и генерирует крошечное электрическое напряжение.


Иллюстрация: Основная концепция пьезоэлектрического акселерометра: когда серый блок акселерометра движется вправо, масса сжимает синий пьезоэлектрический кристалл (на этом рисунке сильно преувеличен), который генерирует напряжение. Чем больше ускорение, тем больше сила и тем больше ток (синие стрелки).

В акселерометрах на эффекте Холла сила и ускорение измеряются путем измерения крошечных изменений магнитного поля.

Руководство по использованию IMU (акселерометр и гироскоп) во встроенных приложениях. — Старлино Электроникс

Введение

Теперь эта статья переведена на ФРАНЦУЗСКИЙ язык в формате PDF. Спасибо Даниэлю Ле Герну!

Это руководство предназначено для всех, кто интересуется инерциальными датчиками MEMS (микроэлектромеханические системы), в частности акселерометрами и гироскопами, а также комбинированными устройствами IMU (инерциальные измерительные устройства).

Пример блока IMU: Acc_Gyro_6DOF поверх блока обработки MCU UsbThumb, обеспечивающего USB / последовательное соединение

В этой статье я постараюсь осветить несколько основных, но важных тем:

— что измеряет акселерометр
— что измеряет гироскоп (он же гироскоп)
— как преобразовать аналого-цифровые (АЦП) показания, которые вы получаете от этого датчика, в физические единицы (это будет g для акселерометра, градусы / s для гироскопа)
— как совместить показания акселерометра и гироскопа, чтобы получить точную информацию о наклоне вашего устройства относительно плоскости земли

На протяжении всей статьи я постараюсь свести математические вычисления к минимуму.Если вы знаете, что такое синус / косинус / тангенс, тогда вы сможете понять и использовать эти идеи в своем проекте независимо от того, на какой платформе вы используете Arduino, Propeller, Basic Stamp, чипы Atmel, Microchip PIC и т. Д. кто считает, что вам нужна сложная математика, чтобы использовать блок IMU (сложные FIR или IIR фильтры, такие как фильтры Калмана, фильтры Паркс-Макклеллана и т. д.). Вы можете исследовать все это и получить замечательные, но сложные результаты. Мой способ объяснения требует простой математики.Я верю в простоту. Я думаю, что простую систему легче контролировать и отслеживать, к тому же у многих встроенных устройств нет мощности и ресурсов для реализации сложных алгоритмов, требующих матричных вычислений.

Я буду использовать в качестве примера новый блок IMU, который я разработал — Акселерометр Acc_Gyro + Gyro IMU. Мы будем использовать параметры этого устройства в наших примерах ниже. Это устройство — хорошее устройство для начала, потому что оно состоит из 3 устройств:

— LIS331AL (техническое описание) — аналоговый 3-осевой акселерометр 2G
— LPR550AL (техническое описание) — двухосный (наклон и крен), гироскоп 500 град / секунду
— LY550ALH (техническое описание) — одноосный гироскоп (рыскание) (это последнее устройство не используется в этом руководстве, но оно станет актуальным, когда вы перейдете к реализации матрицы DCM)

Вместе они представляют собой инерциальный измерительный блок с 6 степенями свободы.Вот это красивое имя! Тем не менее, за причудливым названием скрывается очень полезное комбинированное устройство, которое мы рассмотрим и подробно объясним ниже.

Часть 1. Акселерометр

Чтобы разобраться в этом устройстве, начнем с акселерометра. Когда вы думаете об акселерометрах, часто бывает полезно представить коробку в форме куба с шаром внутри. Вы можете представить себе что-нибудь еще, например, печенье или пончик, но я представлю шар:

Если мы возьмем этот ящик в место без гравитационных полей или, если уж на то пошло, без других полей, которые могли бы повлиять на положение мяча — мяч просто будет плавать в середине коробки.2), мяч ударится о стену X-. Затем мы измеряем силу давления, которую мяч прикладывает к стене, и выводим значение -1g по оси X.

Обратите внимание, что акселерометр фактически обнаруживает силу, направленную в противоположном направлении от вектора ускорения. Эту силу часто называют инерционной силой или фиктивной силой. Одна вещь, которую вы должны извлечь из этого, заключается в том, что акселерометр косвенно измеряет ускорение через силу, приложенную к одной из его стенок (согласно нашей модели, это может быть пружина или что-то еще в реальных акселерометрах).Эта сила может быть вызвана ускорением, но, как мы увидим в следующем примере, она не всегда вызвана ускорением.

Если мы возьмем нашу модель и поместим ее на Землю, мяч упадет на Z-стенку и приложит силу 1g к нижней стенке, как показано на рисунке ниже:

В этом случае ящик не движется, но мы все равно получаем значение -1g по оси Z. Давление, которое мяч оказывал на стену, было вызвано силой гравитации. Теоретически это может быть другой тип силы — например, если вы вообразите, что наш мяч металлический, размещение магнита рядом с коробкой может сдвинуть мяч так, что он ударится о другую стену.Это было сказано, чтобы доказать, что по сути акселерометр измеряет силу, а не ускорение. Просто так случается, что ускорение вызывает инерционную силу, которая улавливается механизмом определения силы акселерометра.

Хотя эта модель не совсем соответствует конструкции датчика MEMS, она часто бывает полезна при решении проблем, связанных с акселерометром. На самом деле существуют аналогичные датчики с металлическими шариками внутри, они называются переключателями наклона, однако они более примитивны и обычно могут только определить, наклонено ли устройство в пределах некоторого диапазона или нет, но не степень наклона.

До сих пор мы проанализировали выходной сигнал акселерометра на одной оси, и это все, что вы получите с одноосными акселерометрами. Настоящая ценность трехосных акселерометров заключается в том, что они могут обнаруживать силы инерции по всем трем осям. Вернемся к нашей блочной модели и повернем коробку на 45 градусов вправо. Теперь мяч коснется 2 стен: Z- и X-, как показано на рисунке ниже:

Значения 0,71 не произвольны, они фактически являются приближением для SQRT (1/2).Это станет более ясным, когда мы представим нашу следующую модель акселерометра.

В предыдущей модели мы зафиксировали силу гравитации и повернули наш воображаемый ящик. В последних двух примерах мы проанализировали выходной сигнал в двух разных положениях бокса, в то время как вектор силы оставался постоянным. Хотя это было полезно для понимания того, как акселерометр взаимодействует с внешними силами, более практично выполнять вычисления, если мы зафиксируем систему координат на осях акселерометра и представим, что вектор силы вращается вокруг нас.

Пожалуйста, взгляните на модель выше, я сохранил цвета осей, чтобы вы могли мысленно перейти от предыдущей модели к новой. Только представьте, что каждая ось в новой модели перпендикулярна соответствующим граням коробки в предыдущей модели. Вектор R — это вектор силы, который измеряет акселерометр (это может быть либо сила гравитации, либо сила инерции из приведенных выше примеров, либо их комбинация). Rx, Ry, Rz — проекции вектора R на оси X, Y, Z.2

, просто подставив R = 1, Rx = -SQRT (1/2), Ry = 0, Rz = -SQRT (1/2) в Eq.1

После длинной теоретической преамбулы мы приближаемся к реальным акселерометрам. Значения Rx, Ry, Rz фактически линейно связаны со значениями, которые выводит ваш реальный акселерометр и которые вы можете использовать для выполнения различных вычислений.

Прежде чем мы приступим к делу, давайте немного поговорим о том, как акселерометры передают нам эту информацию. Большинство акселерометров делятся на две категории: цифровые и аналоговые.Цифровые акселерометры предоставят вам информацию с использованием последовательного протокола, такого как I2C, SPI или USART, в то время как аналоговые акселерометры будут выводить уровень напряжения в заранее определенном диапазоне, который вы должны преобразовать в цифровое значение с помощью модуля АЦП (аналого-цифрового преобразователя). Я не буду вдаваться в подробности того, как работает ADC, отчасти потому, что это такая обширная тема, а отчасти потому, что она отличается от одной платформы к другой. Некоторые микроконтроллеры будут иметь встроенные модули АЦП, некоторым из них потребуются внешние компоненты для выполнения преобразований АЦП. 12 -1.

Применяя эту формулу ко всем 3 каналам, получаем:

Вольт Rx = 586 * 3,3 В / 1023 = ~ 1,89 В (мы округляем все результаты до 2 десятичных знаков)
ВольтRy = 630 * 3,3 В / 1023 = ~ 2,03 В
Вольт Rz = 561 * 3,3 В / 1023 = ~ 1,81 В

Каждый акселерометр имеет нулевой уровень напряжения, его можно найти в спецификациях, это напряжение, которое соответствует 0g. Чтобы получить значение напряжения со знаком, нам нужно рассчитать сдвиг от этого уровня. Допустим, наш уровень напряжения 0g равен VzeroG = 1,65 В.2), для окончательного преобразования мы применяем чувствительность акселерометра, обычно выражаемую в мВ / г. Допустим, наша чувствительность = 478,5 мВ / г = 0,4785 В / г. Значения чувствительности можно найти в технических характеристиках акселерометра. Чтобы получить окончательные значения силы, выраженные в g, мы используем следующую формулу:

Rx = DeltaVoltsRx / Чувствительность

Rx = 0,24 В / 0,4785 В / г = ~ 0,5 г
Ry = 0,38 В / 0,4785 В / г = ~ 0,79 г
Rz = 0,16 В / 0,4785 В / г = ~ 0,33 г

Мы, конечно, могли бы объединить все шаги в одну формулу, но я прошел все шаги, чтобы прояснить, как вы переходите от показаний АЦП к компоненту вектора силы, выраженному в g.

Rx = (AdcRx * Vref / 1023 — VzeroG) / Чувствительность (Eq.2 )
Ry = (AdcRy * Vref / 1023 — VzeroG) / Чувствительность
Rz = (AdcRz * Vref / 1023 — VzeroG) / Чувствительность

Теперь у нас есть все 3 компонента, которые определяют вектор нашей силы инерции. Если на устройство не действуют другие силы, кроме гравитации, мы можем предположить, что это направление нашего вектора силы гравитации. Если вы хотите рассчитать наклон устройства относительно земли, вы можете рассчитать угол между этим вектором и осью Z.Если вас также интересует направление наклона для каждой оси, вы можете разделить этот результат на 2 компонента: наклон по осям X и Y, который можно рассчитать как угол между вектором гравитации и осями X / Y. Вычислить эти углы проще, чем вы думаете, теперь, когда мы рассчитали значения для Rx, Ry и Rz. Вернемся к нашей последней модели акселерометра и сделаем несколько дополнительных обозначений:

Углы, которые нас интересуют, — это углы между осями X, Y, Z и вектором силы R.2).

Теперь мы можем найти наши углы, используя функцию arccos () (обратная функция cos ()):

Axr = arccos (Rx / R)
Ayr = arccos (Ry / R)
Azr = arccos (Rz / R)

Мы прошли долгий путь, чтобы объяснить модель акселерометра, просто чтобы прийти к этим формулам. В зависимости от ваших приложений вы можете использовать любые полученные нами промежуточные формулы. Мы также скоро представим модель гироскопа и увидим, как данные акселерометра и гироскопа могут быть объединены, чтобы обеспечить еще более точные оценки наклона.2) = 1

Это приятное свойство, поскольку оно освобождает нас от необходимости контролировать модуль (длину) вектора R. Часто, если нас просто интересует направление нашего инерциального вектора, имеет смысл нормализовать его модуль, чтобы упростить другие вычисления.

Часть 2. Гироскоп

Мы не собираемся вводить какую-либо эквивалентную коробочную модель для гироскопа, как мы сделали для акселерометра, вместо этого мы собираемся сразу перейти ко второй модели акселерометра, и мы покажем, что гироскоп измеряет в соответствии с этой моделью. 2, это можно вывести из Eq.2

Мы не собираемся использовать эти формулы в этой статье, но полезно отметить взаимосвязь между всеми значениями в нашей модели.

Вместо этого мы собираемся определить угол между осью Z и векторами Rxz, Ryz следующим образом:

Axz — угол между Rxz (проекция R на плоскость XZ) и осью Z
Ayz — угол между Ryz (проекция R на плоскость YZ) и осью Z

Теперь мы приближаемся к тому, что измеряет гироскоп. Гироскоп измеряет скорость изменения углов, определенных выше.Другими словами, он выдаст значение, которое линейно связано со скоростью изменения этих углов. Чтобы объяснить это, давайте предположим, что мы измерили угол поворота вокруг оси Y (это был бы угол Axz) в момент времени t0, и мы определяем его как Axz0, затем мы измерили этот угол в более позднее время t1, и это был Axz1. Скорость изменения будет рассчитана следующим образом:

RateAxz = (Axz1 — Axz0) / (t1 — t0).

Если выразить Axz в градусах, а время в секундах, то это значение будет выражено в градусах / с.Это то, что измеряет гироскоп.

На практике гироскоп (за исключением специального цифрового гироскопа) редко дает значение, выраженное в градусах / с. Как и в случае с акселерометром, вы получите значение АЦП, которое вам нужно будет преобразовать в град / с, используя формулу, аналогичную Eq. 2 , который мы определили для акселерометра. Давайте представим формулу преобразования АЦП в градусы / с для гироскопа (мы предполагаем, что мы используем 10-битный модуль АЦП, для 8-битного АЦП замените 1023 на 255, для 12-битного АЦП замените 1023 на 4095).

RateAxz = (AdcGyroXZ * Vref / 1023 — VzeroRate) / Чувствительность Eq.3
RateAyz = (AdcGyroYZ * Vref / 1023 — VzeroRate) / Чувствительность

AdcGyroXZ, AdcGyroYZ — получены из нашего модуля adc, и они представляют каналы, которые измеряют вращение проекции вектора R в XZ соответственно в плоскостях YZ, что эквивалентно тому, что вращение производилось вокруг осей Y и X соответственно.

Vref — это Опорное напряжение АЦП мы будем использовать 3.3V в примере ниже

VzeroRate — это напряжение с нулевой скоростью, другими словами напряжение, которое выдает гироскоп, когда он не подвержен никакому вращению, для платы Acc_Gyro это например 1.23 В (вы можете найти эти значения в спецификациях, но не верьте спецификациям, большинство гироскопов будут иметь небольшое смещение после пайки, поэтому измерьте VzeroRate для каждого выхода оси с помощью вольтметра, обычно это значение не будет меняться со временем после того, как гироскоп был припаян, если он меняется — напишите процедуру калибровки, чтобы измерить его перед запуском устройства, пользователь должен быть проинструктирован, чтобы устройство оставалось в неподвижном положении при запуске для калибровки гироскопов).

Чувствительность — это чувствительность вашего гироскопа, она выражается в мВ / (град / с), часто записывается как мВ / град / с, в основном это говорит вам, на сколько мВ увеличится выход гироскопа, если вы увеличите скорость вращения на единицу. град / с.Чувствительность платы Acc_Gyro составляет, например, 2 мВ / град / с или 0,002 В / град / с

Давайте возьмем пример, предположим, что наш модуль ADC вернул следующие значения:

AdcGyroXZ = 571
AdcGyroXZ = 323

Используя приведенную выше формулу и используя параметры спецификации платы Acc_Gyro, мы получим:

RateAxz = (571 * 3,3 В / 1023 — 1,23 В) / (0,002 В / град / с) = ~ 306 град / с
RateAyz = (323 * 3,3 В / 1023 — 1,23 В) / (0,002 В / град / с) = ~ -94 град / с

Другими словами, устройство вращается вокруг оси Y (или мы можем сказать, что оно вращается в плоскости XZ) со скоростью 306 град / с и вокруг оси X (или мы можем сказать, что оно вращается в плоскости YZ) со скоростью -94 град / с.Обратите внимание, что отрицательный знак означает, что устройство вращается в противоположном направлении от обычного положительного направления. Условно одно направление вращения положительное. Хороший лист технических характеристик гироскопа покажет вам, какое направление является положительным, в противном случае вам придется найти его, поэкспериментировав с устройством и отметив, какое направление вращения приводит к увеличению напряжения на выходном контакте. Лучше всего это делать с помощью осциллографа, так как как только вы остановите вращение, напряжение снова упадет до нулевого уровня.Если вы используете мультиметр, вам нужно поддерживать постоянную скорость вращения в течение как минимум нескольких секунд и отмечать напряжение во время этого вращения, а затем сравнивать его с напряжением с нулевой скоростью. Если оно больше нулевого напряжения, это означает, что направление вращения положительное.

Часть 3. Собираем все вместе. Объединение данных акселерометра и гироскопа.

Если вы читаете эту статью, вы, вероятно, приобрели или планируете приобрести устройство IMU, или, возможно, вы планируете построить его из отдельных устройств акселерометра и гироскопа.

ПРИМЕЧАНИЕ: ДЛЯ ПРАКТИЧЕСКОЙ РЕАЛИЗАЦИИ И ТЕСТИРОВАНИЯ ДАННОГО АЛГОРИТМА ПРОЧИТАЙТЕ ЭТУ СТАТЬЮ:

http://starlino.com/imu_kalman_arduino.html

Первым шагом в использовании комбинированного устройства IMU, которое объединяет акселерометр и гироскоп, является выравнивание их систем координат. Самый простой способ сделать это состоит в выборе системы координат акселерометра в качестве эталонной системы координат. В большинстве таблиц данных акселерометра будет отображаться направление осей X, Y, Z относительно изображения физического чипа или устройства.Например, вот направления осей X, Y, Z, как показано в спецификациях для платы Acc_Gyro:

Следующие шаги:

— определяет выходы гироскопа, которые соответствуют значениям RateAxz, RateAyz, рассмотренным выше.
— определить, нужно ли инвертировать эти выходы из-за физического положения гироскопа относительно акселерометра

Не предполагайте, что если гироскоп имеет выход, помеченный X или Y, он будет соответствовать любой оси в системе координат акселерометра, даже если этот выход является частью блока IMU.Лучший способ — это проверить.

Вот пример последовательности для определения того, какой выходной сигнал гироскопа соответствует значению RateAxz, описанному выше.

— начните с размещения устройства в горизонтальном положении. Оба выхода акселерометра X и Y будут выводить напряжение нулевого ускорения (например, для платы Acc_Gyro это 1,65 В)
— затем начните вращать устройство вокруг оси Y, другой способ сказать, что вы вращаете устройство в XZ плоскости, так что выходы акселерометра X и Z изменяются, а выход Y остается постоянным.
— при вращении устройства с постоянной скоростью обратите внимание, какой выходной сигнал гироскопа изменяется, другие выходы гироскопа должны оставаться постоянными.
— выходной сигнал гироскопа, который изменился во время вращения вокруг оси Y (вращение в плоскости XZ), предоставит входное значение для AdcGyroXZ, из которого мы вычисляем RateAxz
— последний шаг — убедиться, что направление вращения соответствует нашей модели, в некоторых случаях вам может потребоваться инвертировать значение RateAxz из-за физического положения гироскопа относительно акселерометра
— повторите вышеуказанный тест, вращая устройство вокруг оси Y, на этот раз следите за выходом X акселерометра (AdcRx в нашей модели).Если AdcRx растет (первые 90 градусов поворота от горизонтального положения), то AdcGyroXZ должен уменьшаться. Это связано с тем, что мы отслеживаем вектор гравитации, и когда устройство вращается в одном направлении, вектор будет вращаться в противоположном направлении (относительно системы координат устройства, которую мы используем). Итак, в противном случае вам нужно инвертировать RateAxz, вы можете добиться этого, введя знаковый фактор в Eq.3 , как показано ниже:

RateAxz = InvertAxz * (AdcGyroXZ * Vref / 1023 — VzeroRate) / Sensitivity, где InvertAxz равно 1 или -1

такой же тест можно провести для RateAyz, вращая устройство вокруг оси X, и вы можете определить, какой выход гироскопа соответствует RateAyz, и нужно ли его инвертировать.Получив значение InvertAyz, вы должны использовать следующую формулу для вычисления RateAyz:

RateAyz = InvertAyz * (AdcGyroYZ * Vref / 1023 — VzeroRate) / Чувствительность

Если вы проведете эти тесты на плате Acc_Gyro, вы получите следующие результаты:

— выходной контакт для RateAxz — GX4, а InvertAxz = 1
— выходной контакт для RateAyz — GY4 и InvertAyz = 1

С этого момента мы будем считать, что вы настроили свой IMU таким образом, чтобы вы могли рассчитывать правильные значения для Axr, Ayr, Azr (как определено в Части 1.Акселерометр) и RateAxz, RateAyz (как определено в Части 2. Гироскоп). Далее мы проанализируем отношения между этими значениями, которые окажутся полезными для получения более точной оценки наклона устройства относительно плоскости заземления.

Вы можете спросить себя к этому моменту, если модель акселерометра уже дала нам углы наклона Axr, Ayr, Azr, зачем нам беспокоиться о данных гироскопа? Ответ прост: данным акселерометра не всегда можно доверять на 100%.Есть несколько причин, помните, что акселерометр измеряет силу инерции, такая сила может быть вызвана гравитацией (а в идеале только гравитацией), но она также может быть вызвана ускорением (движением) устройства. В результате, даже если акселерометр находится в относительно стабильном состоянии, он по-прежнему очень чувствителен к вибрации и механическому шуму в целом. Это основная причина, по которой большинство систем IMU используют гироскоп для сглаживания любых ошибок акселерометра. Но как это сделать? И свободен ли гироскоп от шума?

Гироскоп не лишен шума, однако, поскольку он измеряет вращение, он менее чувствителен к линейным механическим движениям, типу шума, от которого страдает акселерометр, однако у гироскопов есть другие типы проблем, такие как, например, дрейф (не возвращается к нулевой скорости значение при остановке вращения).Тем не менее, усредняя данные, поступающие с акселерометра и гироскопа, мы можем получить относительно лучшую оценку текущего наклона устройства, чем мы могли бы получить, используя только данные акселерометра.

В следующих шагах я представлю алгоритм, вдохновленный некоторыми идеями, использованными в фильтре Калмана, однако он намного проще и легче реализовать на встроенных устройствах. Перед этим давайте сначала посмотрим, что мы хотим, чтобы наш алгоритм вычислял. Ну, это направление вектора силы гравитации R = [Rx, Ry, Rz], из которого мы можем получить другие значения, такие как Axr, Ayr, Azr или cosX, cosy, cosZ, которые дадут нам представление о наклоне нашего устройства. Относительно плоскости земли мы обсуждаем связь между этими значениями в Части 1.Можно сказать — разве у нас уже нет этих значений Rx, Ry, Rz из Eq.2 в Части 1? Ну да, но помните, что эти значения получены только из данных акселерометра, поэтому, если вы собираетесь использовать их непосредственно в своем приложении, вы можете получить больше шума, чем может выдержать ваше приложение. Чтобы избежать дальнейшей путаницы, давайте переопределим измерения акселерометра следующим образом:

Racc — вектор инерционной силы, измеренный акселерометром, который состоит из следующих составляющих (проекций на оси X, Y, Z):

RxAcc = (AdcRx * Vref / 1023 — VzeroG) / Чувствительность
RyAcc = (AdcRy * Vref / 1023 — VzeroG) / Чувствительность
RzAcc = (AdcRz * Vref / 1023 — VzeroG) / Чувствительность

На данный момент у нас есть набор измеренных значений, которые мы можем получить исключительно из значений АЦП акселерометра.2),

Однако для уверенности имеет смысл обновить этот вектор следующим образом:

Racc (нормализованный) = [RxAcc / | Racc | , RyAcc / | Racc | , RzAcc / | Racc |].

Это гарантирует, что длина нормализованного вектора Racc всегда равна 1.

Далее мы представим новый вектор и назовем его

.

Остальное = [RxEst, RyEst, RzEst]

Это будет результат нашего алгоритма, это скорректированные значения, основанные на данных гироскопа и на основе прошлых оценочных данных.

Вот что будет делать наш алгоритм:
— акселерометр сообщает нам: «Вы сейчас находитесь в позиции Racc»
— мы говорим «Спасибо, но позвольте мне проверить»,
— затем исправьте эту информацию с помощью данных гироскопа, а также с помощью прошлых данных Rest, и мы выводим новый оценочный вектор Rest.
— мы считаем Rest нашим «лучшим выбором» относительно текущего положения устройства.

Давайте посмотрим, как мы можем заставить его работать.

Мы начнем нашу последовательность, доверяя нашему акселерометру и назначив:

Отдых (0) = Racc (0)

Между прочим, помните, что Rest и Racc являются векторами, поэтому приведенное выше уравнение представляет собой простой способ написать 3 набора уравнений и избежать повторений:

RxEst (0) = RxAcc (0)
RyEst (0) = RyAcc (0)
RzEst (0) = RzAcc (0)

Затем мы будем проводить регулярные измерения с равными интервалами времени T секунд, и мы получим новые измерения, которые мы определим как Racc (1), Racc (2), Racc (3) и так далее.Мы также будем выпускать новые оценки через каждый временной интервал Отдых (1), Отдых (2), Отдых (3) и так далее.

Предположим, мы на шаге n. У нас есть два известных набора значений, которые мы хотели бы использовать:

Rest (n-1) — наша предыдущая оценка, с Rest (0) = Racc (0)
Racc (n) — наше текущее измерение акселерометра

Прежде чем мы сможем вычислить Rest (n), давайте введем новое измеренное значение, которое мы можем получить с помощью нашего гироскопа и предыдущей оценки.

Назовем его Rgyro, он также представляет собой вектор, состоящий из 3-х компонентов:

Rgyro = [RxGyro, RyGyro, RzGyro]

Мы будем вычислять этот вектор по одному компоненту за раз.Начнем с RxGyro.

Давайте начнем с наблюдения следующего соотношения в нашей модели гироскопа, из прямоугольного треугольника, образованного Rz и Rxz, мы можем вывести это:

tan (Axz) = Rx / Rz => Axz = atan2 (Rx, Rz)

Atan2 может быть функцией, которую вы никогда раньше не использовали, она похожа на atan, за исключением того, что возвращает значения в диапазоне (-PI, PI) в отличие от (-PI / 2, PI / 2), возвращаемых atan, и принимает 2 аргумента вместо одного. Это позволяет нам преобразовывать два значения Rx, Rz в углы в полном диапазоне 360 градусов (-PI в PI).Вы можете узнать больше об atan2 здесь.

Итак, зная RxEst (n-1) и RzEst (n-1), мы можем найти:

Axz (n-1) = atan2 (RxEst (n-1), RzEst (n-1)).

Помните, что гироскоп измеряет скорость изменения угла Axz. Таким образом, мы можем оценить новый угол Axz (n) следующим образом:

Axz (n) = Axz (n-1) + RateAxz (n) * T

Помните, что RateAxz можно получить из показаний АЦП нашего гироскопа. Более точная формула может использовать среднюю скорость вращения, рассчитанную следующим образом:

RateAxzAvg = (RateAxz (n) + RateAxz (n-1)) / 2
Axz (n) = Axz (n-1) + RateAxzAvg * T

Таким же образом находим:

Ayz (n) = Ayz (n-1) + RateAyz (n) * T

Хорошо, теперь у нас есть Axz (n) и Ayz (n).2).

Где Sign (RzGyro) = 1, когда RzGyro> = 0, и Sign (RzGyro) = -1, когда RzGyro <0.

Один простой способ оценить это — взять:

Знак (RzGyro) = Знак (RzEst (n-1))

На практике будьте осторожны, когда RzEst (n-1) близко к 0. В этом случае вы можете полностью пропустить фазу гироскопа и назначить: Rgyro = Rest (n-1). Rz используется в качестве эталона для расчета углов Axz и Ayz, и когда он близок к 0, значения могут выходить за пределы и приводить к плохим результатам. Вы попадете в область больших чисел с плавающей запятой, где реализация функций tan () / atan () может не иметь точности.

Итак, давайте резюмируем, что у нас есть до сих пор, мы находимся на этапе n нашего алгоритма, и мы вычислили следующие значения:

Racc — текущие показания нашего акселерометра
Rgyro — полученные от Rest (n-1) и текущие показания гироскопа

Какие значения мы используем для расчета обновленной оценки Rest (n)? Вы, наверное, догадались, что мы будем использовать оба. Мы будем использовать средневзвешенное значение, так что:

Отдых (n) = (Racc * w1 + Rgyro * w2) / (w1 + w2)

Мы можем упростить эту формулу, разделив числитель и знаменатель дроби на w1.

Отдых (n) = (Racc * w1 / w1 + Rgyro * w2 / w1) / (w1 / w1 + w2 / w1)

и после подстановки w2 / w1 = wGyro получаем:

Отдых (n) = (Racc + Rgyro * wGyro) / (1 + wGyro)

В приведенной выше формуле wGyro говорит нам, насколько мы доверяем нашему гироскопу по сравнению с нашим акселерометром. Это значение может быть выбрано экспериментально. Обычно значения от 5 до 20 дают хорошие результаты.

Основное отличие этого алгоритма от фильтра Калмана состоит в том, что этот вес относительно фиксирован, тогда как в фильтре Калмана веса постоянно обновляются на основе измеренного шума показаний акселерометра.Фильтр Калмана нацелен на предоставление вам «лучших» теоретических результатов, тогда как этот алгоритм может дать вам результаты, «достаточно хорошие» для вашего практического применения. Вы можете реализовать алгоритм, который регулирует wGyro в зависимости от некоторых факторов шума, которые вы измеряете, но фиксированные значения будут хорошо работать для большинства приложений. 2)

RxEst (n) = RxEst (n) / R
RyEst (n) = RyEst (n) / R
RzEst (n) = RzEst (n) / R

И мы готовы повторить наш цикл снова.

ПРИМЕЧАНИЕ: ДЛЯ ПРАКТИЧЕСКОЙ РЕАЛИЗАЦИИ И ТЕСТИРОВАНИЯ ДАННОГО АЛГОРИТМА ПРОЧИТАЙТЕ ЭТУ СТАТЬЮ:

http://starlino.com/imu_kalman_arduino.html

Другие ресурсы по акселерометру и гироскопу IMU Fusion:

http://www.mikroquad.com/pub/Research/ComplementaryFilter/filter.pdf

http://stackoverflow.com/questions/1586658/combine-gyroscope-and-accelerometer-data

http: // www.Dimensionengineering.com/accelerometers.htm

// старлино //

Акселерометр в телефоне имеет потенциал отслеживания, исследователи обнаружили

(Phys.org) — Пути к уязвимостям в системе безопасности смартфонов продолжают привлекать внимание исследователей безопасности. В настоящее время все больше внимания уделяется датчикам, разрабатываемым для смартфонов, и их потенциальной роли в нарушении конфиденциальности. Исследователи хотят узнать больше о том, как датчики, производящие данные, могут повысить риски безопасности, и недавнее открытие обращает внимание на акселерометры.Команда из Стэнфорда обнаруживает, что акселерометр может помочь идентифицировать смартфон за секунды. Согласно подробному отчету об исследовании SFGate , в открытии участвует исследовательская группа Стэнфордского университета, которая в прошлом году намеревалась проверить, можно ли идентифицировать устройства с помощью различных датчиков смартфона. Христо Божинов, кандидат компьютерных наук и член группы, сказал, что целью было повысить осведомленность производителей устройств, дизайнеров и политиков о том, как датчики могут быть средством отслеживания.Они обнаружили недостатки в датчиках телефонов, которые потенциально могли бы использовать рекламодатели.

«Код, запущенный на веб-сайте в мобильном браузере устройства, позволяет измерить мельчайшие дефекты в акселерометре устройства — датчике, который обнаруживает движение, — создавая уникальный набор чисел, который рекламодатели могут использовать для идентификации и отслеживания большинства смартфонов», — говорится в отчете.

Отслеживание рекламы и конфиденциальность будут оставаться предметом исследований, дискуссий и дебатов, поскольку компании используют данные о клиентах для таргетинга рекламы и специальных предложений.Файлы cookie служат популярным способом для маркетологов понимать действия пользователей и соответствующим образом настраивать таргетинг рекламы. Промоутеры продуктов и услуг могут использовать идентификационный подход так же, как они используют файлы cookie для отслеживания действий пользователей в Интернете и таргетинга рекламы. Что беспокоит в информации, поступающей от акселерометра, так это отсутствие контроля со стороны пользователя. Данные не могут быть разрешены или запрещены пользователем.

Что касается исследования, это не первая попытка изучить аспекты безопасности акселерометров в смартфонах.В 2010 году исследователи из Технологического института Джорджии, Хьюстонского университета, Университета Пуэрто-Рико и инженерного колледжа Франклина В. Олина под названием «Обнаружение действий пользователя с помощью акселерометра на смартфонах Android» высказали аналогичное мнение.

«Акселерометры могут использоваться для обнаружения движения и скорости изменения скорости движения … для использования акселерометров в приложениях Android не требуется, чтобы приложение имело разрешение на его использование. Таким образом, приложение может собирать данные акселерометра пользователя без ведома пользователя.При наличии данных акселерометра и использования сервера для сбора информации получение личной информации пользователя, его местоположения или выяснение того, что пользователь делает или набирает, представляет собой довольно простую задачу ».

В 2012 году в документе исследователей из Пенсильванского университета под названием «Практичность боковых каналов акселерометра на смартфонах» сообщалось, что путем анализа данных, собранных акселерометрами, они смогли получить хорошее представление о пине или шаблоне, используемом для защиты телефона.«В этой статье мы показываем, что датчик акселерометра может также использоваться в качестве бокового канала с высокой пропускной способностью; в частности, мы демонстрируем, как использовать датчик акселерометра для изучения пользовательского касания и ввода на основе жестов, необходимых для разблокировки смартфонов с помощью PIN-кода. / пароль или графический шаблон пароля Android «.

Что примечательно в выводах Божинова и его коллег, так это то, что не только акселерометр мог генерировать данные для отслеживания. Они также обратили внимание на микрофон и динамик, где они смогли создать уникальную «кривую частотной характеристики», основанную на том, как устройства воспроизводят и записывают общий набор частот.В ближайшие месяцы исследователи опубликуют свои результаты.


Исследователи обнаружили, что акселерометры могут представлять угрозу безопасности для смартфонов
Дополнительная информация: blog.sfgate.com/techchron/2013… hrough-sensor-flaws /

© 2013 Phys.орг

Цитата : Исследователи обнаружили, что акселерометр в телефоне обладает потенциалом отслеживания (14 октября 2013 г.) получено 14 декабря 2020 с https: // физ.org / news / 2013-10-Accelerometer-Tracking-Potential.html

Этот документ защищен авторским правом. За исключением честных сделок с целью частного изучения или исследования, нет часть может быть воспроизведена без письменного разрешения. Контент предоставляется только в информационных целях.

Датчики

«Вернуться к оглавлению

Содержание:

Датчик акселерометра

Невидимый компонент, который может определять тряску и измерять ускорение примерно за три размеры в единицах СИ (м / с 2 ).Компоненты:

  • xAccel : 0, когда телефон находится в состоянии покоя на плоской поверхности, положительный, когда телефон наклонен вправо (т. е. его левая сторона приподнята) и отрицательная, когда телефон наклонен к left (т.е. его правый размер увеличен).
  • yAccel : 0, когда телефон находится в покое на плоской поверхности, положительный, когда его нижняя часть поднята, и отрицательный, когда его вершина поднята.
  • zAccel : равно -9,8 (сила тяжести Земли в метрах в секунду в секунду, когда устройство в состоянии покоя параллельно земле дисплеем вверх, 0 — перпендикулярно земле, и +9.8 лицом вниз. На значение также можно повлиять, увеличив его с помощью или против сила тяжести.

Недвижимость

В наличии
Возвращает, доступно ли оборудование AccelerometerSensor на устройстве.
Включено
Указывает, должен ли датчик генерировать события. Если истинно , датчик будет генерировать события. В противном случае события не будут генерируется, даже если устройство ускоряется или встряхивается.
LegacyMode
До выпуска, в котором было добавлено это свойство, компонент AccelerometerSensor передавал значения датчиков непосредственно в том виде, в котором они были получены от системы Android. Однако эти значения не компенсируют планшеты, которые по умолчанию работают в ландшафтном режиме, что требует компенсации от программиста MIT App Inventor. Однако компенсация может привести к неверным результатам на устройствах с портретным режимом, таких как телефоны. Теперь мы обнаруживаем планшеты с альбомным режимом и выполняем компенсацию.Однако, если ваш проект уже компенсирует изменение, вы получите неверные результаты. Хотя мы предпочитаем вам обновить свой проект, вы также можете просто установить для этого свойства значение «true», и наш код компенсации будет деактивирован. Примечание. Мы рекомендуем вам обновить свой проект, поскольку мы можем удалить это свойство в следующем выпуске.
Минимальный интервал
Указывает минимальный интервал, необходимый между последовательными событиями встряхивания , в миллисекундах.Как только телефон начнет дрожать, все последующие события Shaking будут проигнорированы пока не истечет интервал.
Чувствительность
Задает чувствительность акселерометра. Допустимые значения: 1 (слабый), 2 (средний), и 3 (сильный).
XAccel
Возвращает ускорение по оси X в единицах СИ (м / с²). Датчик должен быть включен, чтобы возвращать значимые значения.
Ячел
Возвращает ускорение по оси Y в единицах СИ (м / с²). Датчик должен быть включен, чтобы возвращать значимые значения.
ZAccel
Возвращает ускорение по оси Z в единицах СИ (м / с²).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *