Для чего нужен статор: Для чего нужен статор?

Содержание

Для чего нужен статор?

Статор электродвигателей является их неподвижной частью, выполняющей роль несущей конструкции и магнитопровода.

У синхронного двигателя на нем располагается рабочая обмотка, а на силовом агрегате, питающемся от постоянного тока, находится индуктор. Состоит статор электродвигателей из станины и сердечника.

Станина представляет собой литой или сварной корпус, выполненный из чугуна или алюминия. Сердечник представляет собой цилиндр, созданный пакетами из листов предварительно обожженной электротехнической стали, изолированных лаком. Толщина используемой стали – от 0,35 до 0,5 мм, а скрепляются ее листы в пакет продольными швами или скобами.

В сердечнике выштампованы пазы для укладки статорной обмотки, состоящей из ряда изолированных и параллельно соединенных жил. Такая конструкция сердечника позволяет ослабить вихревые токи. К станине он крепится стопорными винтами, что предохраняет от проворачивания.

Обмотка статора электродвигателя: основные особенности

Размещение на статоре трехфазной обмотки позволяет создать вращающееся магнитное поле. В двигателе может быть различное число катушек, которые соединяются между собой.

Все они размещаются в пазах и состоят из одного или нескольких изолированных витков проводника. Обмотка статора электродвигателя может отличаться в различных типах двигателя своей изоляцией. Ее выбор зависит от таких факторов, как:

  • величина рабочего напряжения;
  • максимальная рабочая температура обмотки;
  • размер и форма паза обмотки;
  • тип обмотки.

Если в паз помещается только одна сторона катушки, то обмотка статора электродвигателя называется однослойной. В том случае, если в пазу размещены обе катушечные стороны, то обмотка называется двухслойной. Материал статора, а точнее его обмотки, чаще всего круглый медный провод.

Ремонт статора электродвигателя

Необходимость произвести ремонт статора электродвигателя может возникнуть после нескольких лет эксплуатации силового агрегата. Прежде чем к нему приступить, необходимо очистить статор от загрязнений, которые могли появиться на нем в процессе работы или перевозки к месту ремонтных работ.

Для этого можно использовать моющие растворы, а при необходимости – аппараты высокого давления, обычно использующиеся на автомойках. Приведя статор в порядок можно приниматься за извлечение его из корпуса. Для этого обрезается лобовая часть обмотки, для чего используется токарный станок, а в бытовых условиях – зубило.

После этого производится нагрев статора до температуры около 200 градусов для размягчения изоляции. После этого извлекается обмотка, производится очистка пазов. Выполняется перемотка статора электродвигателя с использованием специально подготовленных шаблонов. На него наматывается катушка, к которой припаиваются выводные концы.

Лучше всего для этого использовать многожильный медный провод, так как меньше уязвим перед изгибами и вибрацией. Готовая катушка укладывается в паз, формируют ее лобные части, после чего ее заливают лаком. Сушат лак при температуре 130-150 градусов на протяжении нескольких часов.

Двигатель проверяют только после того, как он высохнет, предварительно проверив сопротивление между корпусом и обмотками. В том случае, если двигатель необходим с теми же рабочими параметрами, перемотка статора электродвигателя осуществляется тем же типом провода. Если же требуется изменить рабочее напряжение или скорость вращения ротора, то этого можно добиться, изменив тип используемого для обмотки провода.

Тепловая защита электродвигателя

В процессе эксплуатации электродвигателя могут возникнуть неполадки, причиной которых являются тепловые перегрузки. Они появляются в результате пропадания одной из фаз, питающих двигатель. При этом ток в два раза превышает номинальный, что и приводит к перегреву обмотки статора. Еще одной причиной могут стать проблемы, в результате которых вал вращается с затруднением.

Это происходит, когда электродвигатель работает под большой нагрузкой или выходят из строя подшипники. В результате перегрева разрушается изоляция обмотки статора, следствием чего становится короткое замыкание и выход оборудования из строя. Чтобы этого не произошло, используется тепловая защита двигателя, позволяющая своевременно обеспечить технику при появлении больших токов.

Ротор и статор электродвигателя: определение, виды, назначение

Рано или поздно человек, интересующийся электротехникой, слышит упоминания о роторе и статоре, и задается вопросом: «Что это такое, и в чем отличие этих устройств?» Простыми словами, ротор и статор – это две основные части, расположенные в электродвигателе (устройстве по преобразованию электрической энергии в механическую). Без них существование современных двигателей, а значит и большинства электрических приборов на их основе, было бы невозможным. Статор является неподвижной частью устройства, а ротор – подвижной, они вращаются в разные стороны относительно друг друга. В этой статье мы подробно разберем конструкцию этих деталей и их принцип действия, чтобы после прочтения статьи у читателей сайта Сам Электрик больше не осталось вопросов по данному поводу.

Что такое ротор

Ротор, еще его иногда называют якорь, это подвижная, то есть вращающаяся часть в генераторе или электродвигателях, которые повсеместно применяются в бытовой и промышленной технике.

Если рассматривать ротор двигателя постоянного тока или универсального коллекторного двигателя, то он состоит из нескольких основных узлов, а именно:

  1. Сердечник. Он выполнен из множества штампованных тонких металлических пластин, изолированных друг от друга специальным диэлектриком или же просто оксидной пленкой, которая проводит ток гораздо хуже, чем чистый металл. Сердечник набирается из них и представляет собой «слоеный пирог». В результате электроны не успевают разогнаться из-за маленькой толщины металла, и нагрев ротора гораздо меньше, а эффективность всего устройства выше за счет уменьшения потерь. Данное конструктивное решение принято для уменьшения вихревых токов Фуко, которые неизбежно возникают при работе двигателя из-за перемагничивания сердечника. Этот же метод борьбы с ними используется и в трансформаторах переменного тока.
  2. Обмотки. Вокруг сердечника особым образом намотана медная проволока, покрытая лаковой изоляцией для предотвращения появления короткозамкнутых витков, которые недопустимы. Вся обмотка дополнительно пропитана эпоксидной смолой или лаком для фиксации обмоток, чтобы они не повреждались при вибрациях от вращения.
  3. Обмотки ротора могут подключаться к коллектору – специальному блоку с контактами, надежно закрепленному на валу. Эти контакты называются ламелями, они выполнены из меди или ее сплава для лучшей передачи электрического тока. По нему скользят щетки, обычно выполненные из графита, и в нужный момент на обмотки подается электрический ток. Это называется скользящий контакт.
  4. Сам вал является металлическим стержнем, на его концах расположены посадочные места под подшипники качения, он может иметь резьбу или выемки, пазы под шпонку для крепления шестерен, шкивов или других деталей, приводимых в движение электродвигателем.
  5. На валу также размещается крыльчатка вентилятора, чтобы двигатель охлаждал сам себя и не приходилось бы устанавливать дополнительное устройство для отвода тепла.

Стоит отметить, что не у всякого ротора есть обмотки, которые, в сущности, представляют собой электромагнит. Вместо них могут применяться постоянные магниты, как в бесщеточных двигателях постоянного тока. А у асинхронного двигателя с короткозамкнутым ротором обмоток в привычном виде вовсе нет, вместо них используются короткозамкнутые металлические стержни, но об этом ниже.

Что такое статор

Статор – это неподвижная часть в электродвигателе. Обычно он совмещен с корпусом устройства и представляет собой цилиндрическую деталь. Он так же состоит из множества пластин для уменьшения нагрева из-за токов Фуко, в обязательном порядке покрытых лаком. На торцах располагаются посадочные места под подшипники скольжения или качения.

Конструкция называется пакет статора, она впрессовывается в чугунный корпус устройства. Внутри этого цилиндра вытачиваются пазы под обмотки, которые, так же как и для ротора, пропитываются специальными составами, чтобы тепло равномернее распределялось по устройству, и обмотки не терлись друг об друга от вибрации.

Обмотки статора могут подключаться разными способами в зависимости от назначения и типа электрической машины. Для трехфазных электродвигателей применимы типы подключения звезда и треугольник. Они представлены на схеме:

Для выполнения подключений на корпусе устройства предусмотрена специальная распределительная коробка («борно»). В эту коробку выведены начала и концы трех обмоток и предусмотрены специальные клеммники различных конструкций, в зависимости от мощности и назначения машины.

Существуют серьезные отличия в работе двигателей при разном соединении обмоток. Например, при подключении звездой двигатель будет стартовать плавнее, однако нельзя будет развить максимальную мощность. При присоединении треугольником, электродвигатель будет выдавать весь крутящий момент, заявленный производителем, но пусковые токи в таком случае достигают высоких значений. Электросеть может быть просто не рассчитана на такие нагрузки. Использование устройства в этом режиме чревато нагревом проводов, и в слабом месте (это места соединения и разъемы) провод может отгореть и привести к пожару. Главным преимуществом асинхронных двигателей является удобство в смене направления их вращения, нужно просто поменять местами подключения двух любых обмоток.

Статор и ротор в асинхронных двигателях

Трехфазные асинхронные двигатели имеют свои особенности, ротор и статор в них отличаются от использованных в других типах электродвигателей. Например, ротор может иметь две конструкции: короткозамкнутый и фазный. Рассмотрим особенности строения каждого из них по подробнее. Однако для начала давайте вкратце разберемся, как работает асинхронный двигатель.

В статоре создается вращающееся магнитное поле. Оно наводит на роторе индуцируемый ток и тем самым приводит его в движение. Таким образом ротор всегда пытается «догнать» вращающееся магнитное поле.

Необходимо также упомянуть о такой важной особенности асинхронного двигателя, как скольжение ротора. Это явление заключается в разности частот вращения ротора и магнитного поля, создаваемого статором. Объясняется это как раз тем, что ток индуцируется в роторе только при его движении относительно магнитного поля. И если бы частоты вращения были одинаковы, то этого движения бы просто не происходило. В результате ротор пытается «догнать» по оборотам магнитное поле, и если это происходит, то ток в обмотках перестает индуцироваться и ротор замедляется. В этот момент сила, действующая на него, растет, он начинает опять ускоряться. Так и получается эффект стабилизации частоты вращения, за что эти электродвигатели и пользуются большой востребованностью.

Короткозамкнутый ротор

Он также представляет собой конструкцию, состоящую из металлических пластин, выполняющих функцию сердечника. Однако вместо медной обмотки там установлены стержни или пруты, не касающиеся друг друга и накоротко замкнутые между собой металлическими пластинами на торцах. При этом стержни не перпендикулярны пластинам, а направлены под углом. Это делается для уменьшения пульсаций магнитного поля и момента. Таким образом получаются витки, замкнутые накоротко, от сюда и название.

 

Фазный ротор

Главное отличие фазного ротора от короткозамкнутого заключается в наличии трехфазной обмотки, уложенной в проточки сердечника и соединяющейся в особом коллекторе с тремя кольцами вместо ламелей. Эти обмотки обычно соединяются «звездой». Такие электродвигатели более трудоемки в производстве за счет усложнения конструкции, однако их пусковые токи ниже, чем у двигателей с короткозамкнутым ротором, а также они лучше поддаются регулировке.

Надеемся, что после прочтения данной статьи у вас больше не осталось вопросов о том, что такое ротор и статор электродвигателя и какой у них принцип работы. Напоследок рекомендуем просмотреть видео, в котором наглядно рассмотрен данный вопрос:

Материалы по теме:

Статор электродвигателей | Полезные статьи

Статор электродвигателей является неподвижной частью, внутри которой на подшипниках вращается ротор (якорь). Конструктивно статор состоит из станины и сердечника, зафиксированного внутри нее винтами. Станина представляет собой литой или сварной корпус, выполненный из чугуна или алюминия. 

Сердечник статора синхронных и асинхронных двигателей имеет цилиндрическую форму и формируется из профилированных листов электротехнической стали толщиной от 0,35 до 0,5 мм, предварительно отожженных и изолированных лаком. Между собой такие пластины скрепляются продольными швами или скобами таким образом, чтобы профильные вырезы образовывали продольные пазы, в которые укладывается обмотка, состоящая из ряда изолированных и параллельно соединенных проводников. Такая конструкция сердечника позволяет ослабить вихревые токи. 

Статор двигателя постоянного тока большой и средней мощности называется индуктор и собирается из главных полюсов, сформированных из листов электротехнической стали, и монолитных добавочных полюсов. В ДПТ малой мощности функцию статора обычно выполняют постоянные магниты.

Обмотка статора электродвигателя: основные особенности 

Взаимное расположение и количество групп обмоток статора синхронных и асинхронных двигателей зависит от их типа и необходимой частоты вращения ротора. Если в каждый паз помещается только одна сторона катушки одной фазы, то такая обмотка называется однослойной. В том случае, если в одном пазу размещаются две катушечные стороны, принадлежащие разным фазам, то обмотка называется двухслойной. В двигателях может быть различное число групп катушек, которые между собой соединяются последовательно. 

В трехфазных синхронных и асинхронных электродвигателях обмотки статора расположены с шагом 120°, что позволяет создать вращающееся магнитное поле. В зависимости от величины питающего напряжения обмотки статора соединяются по схеме «звезда» или «треугольник».

В однофазных двигателях имеются две группы обмоток, сдвинутых в пространстве относительно друг друга на 90°. Сдвиг фаз осуществляется благодаря конденсаторам, установленным параллельно одной из обмоток.

Класс нагревостойкости

В зависимости от условий эксплуатации для выполнения обмоток статора используются провода с различной термической стойкостью изоляции:

Для оформления заказа позвоните менеджерам компании Кабель.РФ® по телефону +7 (495) 646-08-58 или пришлите заявку на электронную почту [email protected] с указанием требуемой модели электродвигателя, целей и условий эксплуатации. Менеджер поможет Вам подобрать нужную марку с учетом Ваших пожеланий и потребностей.  

Ротор и статор насоса — что это такое?

Самара

Абаза

Абакан

Абдулино

Абинск

Агидель

Агрыз

Адыгейск

Азнакаево

Азов

Ак-Довурак

Аксай

Алагир

Алапаевск

Алатырь

Алдан

Алейск

Александров

Александровск

Александровск-Сахалинский

Алексеевка

Алексин

Алзамай

Алупка

Алушта

Альметьевск

Амурск

Анадырь

Анапа

Ангарск

Андреаполь

Анжеро-Судженск

Анива

Апатиты

Апрелевка

Апшеронск

Арамиль

Аргун

Ардатов

Ардон

Арзамас

Аркадак

Армавир

Армянск

Арсеньев

Арск

Артем

Артемовск

Артемовский

Архангельск

Асбест

Асино

Астрахань

Аткарск

Ахтубинск

Ахтубинск-7

Ачинск

Аша

Бабаево

Бабушкин

Бавлы

Багратионовск

Байкальск

Баймак

Бакал

Баксан

Балабаново

Балаково

Балахна

Балашиха

Балашов

Балей

Балтийск

Барабинск

Барнаул

Барыш

Батайск

Бахчисарай

Бежецк

Белая Калитва

Белая Холуница

Белгород

Белебей

Белев

Белинский

Белово

Белогорск

Белогорск

Белозерск

Белокуриха

Беломорск

Белорецк

Белореченск

Белоусово

Белоярский

Белый

Бердск

Березники

Березовский

Березовский

Беслан

Бийск

Бикин

Билибино

Биробиджан

Бирск

Бирюсинск

Бирюч

Благовещенск

Благовещенск

Благодарный

Бобров

Богданович

Богородицк

Богородск

Боготол

Богучар

Бодайбо

Бокситогорск

Болгар

Бологое

Болотное

Болохово

Болхов

Большой Камень

Бор

Борзя

Борисоглебск

Боровичи

Боровск

Боровск-1

Бородино

Братск

Бронницы

Брянск

Бугульма

Бугуруслан

Буденновск

Бузулук

Буинск

Буй

Буйнакск

Бутурлиновка

Валдай

Валуйки

Велиж

Великие Луки

Великие Луки-1

Великий Новгород

Великий Устюг

Вельск

Венев

Верещагино

Верея

Верхнеуральск

Верхний Тагил

Верхний Уфалей

Верхняя Пышма

Верхняя Салда

Верхняя Тура

Верхотурье

Верхоянск

Весьегонск

Ветлуга

Видное

Вилюйск

Вилючинск

Вихоревка

Вичуга

Владивосток

Владикавказ

Владимир

Волгоград

Волгодонск

Волгореченск

Волжск

Волжский

Вологда

Володарск

Волоколамск

Волосово

Волхов

Волчанск

Вольск

Вольск-18

Воркута

Воронеж

Воронеж-45

Ворсма

Воскресенск

Воткинск

Всеволожск

Вуктыл

Выборг

Выкса

Высоковск

Высоцк

Вытегра

Вышний Волочек

Вяземский

Вязники

Вязьма

Вятские Поляны

Гаврилов Посад

Гаврилов-Ям

Гагарин

Гаджиево

Гай

Галич

Гатчина

Гвардейск

Гдов

Геленджик

Георгиевск

Глазов

Голицыно

Горбатов

Горно-Алтайск

Горнозаводск

Горняк

Городец

Городище

Городовиковск

Городской округ Черноголовка

Гороховец

Горячий Ключ

Грайворон

Гремячинск

Грозный

Грязи

Грязовец

Губаха

Губкин

Губкинский

Гудермес

Гуково

Гулькевичи

Гурьевск

Гурьевск

Гусев

Гусиноозерск

Гусь-Хрустальный

Давлеканово

Дагестанские Огни

Далматово

Дальнегорск

Дальнереченск

Данилов

Данков

Дегтярск

Дедовск

Демидов

Дербент

Десногорск

Джанкой

Дзержинск

Дзержинский

Дивногорск

Дигора

Димитровград

Дмитриев

Дмитров

Дмитровск

Дно

Добрянка

Долгопрудный

Долинск

Домодедово

Донецк

Донской

Дорогобуж

Дрезна

Дубна

Дубовка

Дудинка

Духовщина

Дюртюли

Дятьково

Евпатория

Егорьевск

Ейск

Екатеринбург

Елабуга

Елец

Елизово

Ельня

Еманжелинск

Емва

Енисейск

Ермолино

Ершов

Ессентуки

Ефремов

Железноводск

Железногорск

Железногорск

Железногорск-Илимский

Железнодорожный

Жердевка

Жигулевск

Жиздра

Жирновск

Жуков

Жуковка

Жуковский

Завитинск

Заводоуковск

Заволжск

Заволжье

Задонск

Заинск

Закаменск

Заозерный

Заозерск

Западная Двина

Заполярный

Зарайск

Заречный

Заречный

Заринск

Звенигово

Звенигород

Зверево

Зеленогорск

Зеленогорск

Зеленоград

Зеленоградск

Зеленодольск

Зеленокумск

Зерноград

Зея

Зима

Златоуст

Злынка

Змеиногорск

Знаменск

Зубцов

Зуевка

Ивангород

Иваново

Ивантеевка

Ивдель

Игарка

Ижевск

Избербаш

Изобильный

Иланский

Инза

Инкерман

Инсар

Инта

Ипатово

Ирбит

Иркутск

Иркутск-45

Исилькуль

Искитим

Истра

Истра-1

Ишим

Ишимбай

Йошкар-Ола

Кадников

Казань

Калач

Калач-на-Дону

Калачинск

Калининград

Калининск

Калтан

Калуга

Калязин

Камбарка

Каменка

Каменногорск

Каменск-Уральский

Каменск-Шахтинский

Камень-на-Оби

Камешково

Камызяк

Камышин

Камышлов

Канаш

Кандалакша

Канск

Карабаново

Карабаш

Карабулак

Карасук

Карачаевск

Карачев

Каргат

Каргополь

Карпинск

Карталы

Касимов

Касли

Каспийск

Катав-Ивановск

Катайск

Качканар

Кашин

Кашира

Кашира-8

Кедровый

Кемерово

Кемь

Керчь

Кизел

Кизилюрт

Кизляр

Кимовск

Кимры

Кингисепп

Кинель

Кинешма

Киреевск

Киренск

Киржач

Кириллов

Кириши

Киров

Киров

Кировград

Кирово-Чепецк

Кировск

Кировск

Кирс

Кирсанов

Киселевск

Кисловодск

Климовск

Клин

Клинцы

Княгинино

Ковдор

Ковров

Ковылкино

Когалым

Кодинск

Козельск

Козловка

Козьмодемьянск

Кола

Кологрив

Коломна

Колпашево

Колпино

Кольчугино

Коммунар

Комсомольск

Комсомольск-на-Амуре

Конаково

Кондопога

Кондрово

Константиновск

Копейск

Кораблино

Кореновск

Коркино

Королев

Короча

Корсаков

Коряжма

Костерево

Костомукша

Кострома

Котельники

Котельниково

Котельнич

Котлас

Котово

Котовск

Кохма

Красавино

Красноармейск

Красноармейск

Красновишерск

Красногорск

Краснодар

Красное Село

Краснозаводск

Краснознаменск

Краснознаменск

Краснокаменск

Краснокамск

Красноперекопск

Красноперекопск

Краснослободск

Краснослободск

Краснотурьинск

Красноуральск

Красноуфимск

Красноярск

Красный Кут

Красный Сулин

Красный Холм

Кременки

Кронштадт

Кропоткин

Крымск

Кстово

Кубинка

Кувандык

Кувшиново

Кудымкар

Кузнецк

Кузнецк-12

Кузнецк-8

Куйбышев

Кулебаки

Кумертау

Кунгур

Купино

Курган

Курганинск

Курильск

Курлово

Куровское

Курск

Куртамыш

Курчатов

Куса

Кушва

Кызыл

Кыштым

Кяхта

Лабинск

Лабытнанги

Лагань

Ладушкин

Лаишево

Лакинск

Лангепас

Лахденпохья

Лебедянь

Лениногорск

Ленинск

Ленинск-Кузнецкий

Ленск

Лермонтов

Лесной

Лесозаводск

Лесосибирск

Ливны

Ликино-Дулево

Липецк

Липки

Лиски

Лихославль

Лобня

Лодейное Поле

Ломоносов

Лосино-Петровский

Луга

Луза

Лукоянов

Луховицы

Лысково

Лысьва

Лыткарино

Льгов

Любань

Люберцы

Любим

Людиново

Лянтор

Магадан

Магас

Магнитогорск

Майкоп

Майский

Макаров

Макарьев

Макушино

Малая Вишера

Малгобек

Малмыж

Малоархангельск

Малоярославец

Мамадыш

Мамоново

Мантурово

Мариинск

Мариинский Посад

Маркс

Махачкала

Мглин

Мегион

Медвежьегорск

Медногорск

Медынь

Межгорье

Междуреченск

Мезень

Меленки

Мелеуз

Менделеевск

Мензелинск

Мещовск

Миасс

Микунь

Миллерово

Минеральные Воды

Минусинск

Миньяр

Мирный

Мирный

Михайлов

Михайловка

Михайловск

Михайловск

Мичуринск

Могоча

Можайск

Можга

Моздок

Мончегорск

Морозовск

Моршанск

Мосальск

Москва

Московский

Муравленко

Мураши

Мурманск

Муром

Мценск

Мыски

Мытищи

Мышкин

Набережные Челны

Навашино

Наволоки

Надым

Назарово

Назрань

Называевск

Нальчик

Нариманов

Наро-Фоминск

Нарткала

Нарьян-Мар

Находка

Невель

Невельск

Невинномысск

Невьянск

Нелидово

Неман

Нерехта

Нерчинск

Нерюнгри

Нестеров

Нефтегорск

Нефтекамск

Нефтекумск

Нефтеюганск

Нея

Нижневартовск

Нижнекамск

Нижнеудинск

Нижние Серги

Нижние Серги-3

Нижний Ломов

Нижний Новгород

Нижний Тагил

Нижняя Салда

Нижняя Тура

Николаевск

Николаевск-на-Амуре

Никольск

Никольск

Никольское

Новая Ладога

Новая Ляля

Новоалександровск

Новоалтайск

Новоаннинский

Нововоронеж

Новодвинск

Новозыбков

Новокубанск

Новокузнецк

Новокуйбышевск

Новомичуринск

Новомосковск

Новопавловск

Новоржев

Новороссийск

Новосибирск

Новосиль

Новосокольники

Новотроицк

Новоузенск

Новоульяновск

Новоуральск

Новохоперск

Новочебоксарск

Новочеркасск

Новошахтинск

Новый Оскол

Новый Уренгой

Ногинск

Нолинск

Норильск

Ноябрьск

Нурлат

Нытва

Нюрба

Нягань

Нязепетровск

Няндома

Облучье

Обнинск

Обоянь

Обь

Одинцово

Ожерелье

Озерск

Озерск

Озеры

Октябрьск

Октябрьский

Окуловка

Олекминск

Оленегорск

Оленегорск-1

Оленегорск-2

Оленегорск-4

Олонец

Омск

Омутнинск

Онега

Опочка

Орёл

Оренбург

Орехово-Зуево

Орлов

Орск

Оса

Осинники

Осташков

Остров

Островной

Острогожск

Отрадное

Отрадный

Оха

Оханск

Очер

Павлово

Павловск

Павловск

Павловский Посад

Палласовка

Партизанск

Певек

Пенза

Первомайск

Первоуральск

Перевоз

Пересвет

Переславль-Залесский

Пермь

Пестово

Петергоф

Петров Вал

Петровск

Петровск-Забайкальский

Петрозаводск

Петропавловск-Камчатский

Петухово

Петушки

Печора

Печоры

Пикалево

Пионерский

Питкяранта

Плавск

Пласт

Плес

Поворино

Подольск

Подпорожье

Покачи

Покров

Покровск

Полевской

Полесск

Полысаево

Полярные Зори

Полярный

Поронайск

Порхов

Похвистнево

Почеп

Починок

Пошехонье

Правдинск

Приволжск

Приморск

Приморск

Приморско-Ахтарск

Приозерск

Прокопьевск

Пролетарск

Протвино

Прохладный

Псков

Пугачев

Пудож

Пустошка

Пучеж

Пушкин

Пушкино

Пущино

Пыталово

Пыть-Ях

Пятигорск

Радужный

Радужный

Райчихинск

Раменское

Рассказово

Ревда

Реж

Реутов

Ржев

Родники

Рославль

Россошь

Ростов

Ростов-на-Дону

Рошаль

Ртищево

Рубцовск

Рудня

Руза

Рузаевка

Рыбинск

Рыбное

Рыльск

Ряжск

Рязань

Саки

Саки

Салават

Салаир

Салехард

Сальск

Санкт-Петербург

Саранск

Сарапул

Саратов

Саров

Сасово

Сатка

Сафоново

Саяногорск

Саянск

Светлогорск

Светлоград

Светлый

Светогорск

Свирск

Свободный

Себеж

Севастополь

Северо-Курильск

Северобайкальск

Северодвинск

Североморск

Североуральск

Северск

Севск

Сегежа

Сельцо

Семенов

Семикаракорск

Семилуки

Сенгилей

Серафимович

Сергач

Сергиев Посад

Сергиев Посад-7

Сердобск

Серов

Серпухов

Сертолово

Сестрорецк

Сибай

Сим

Симферополь

Сковородино

Скопин

Славгород

Славск

Славянск-на-Кубани

Сланцы

Слободской

Слюдянка

Смоленск

Снегири

Снежинск

Снежногорск

Собинка

Советск

Советск

Советск

Советская Гавань

Советский

Сокол

Солигалич

Соликамск

Солнечногорск

Солнечногорск-2

Солнечногорск-25

Солнечногорск-30

Солнечногорск-7

Соль-Илецк

Сольвычегодск

Сольцы

Сольцы 2

Сорочинск

Сорск

Сортавала

Сосенский

Сосновка

Сосновоборск

Сосновый Бор

Сосногорск

Сочи

Спас-Деменск

Спас-Клепики

Спасск

Спасск-Дальний

Спасск-Рязанский

Среднеколымск

Среднеуральск

Сретенск

Ставрополь

Старая Купавна

Старая Русса

Старица

Стародуб

Старый Крым

Старый Оскол

Стерлитамак

Стрежевой

Строитель

Струнино

Ступино

Суворов

Судак

Суджа

Судогда

Суздаль

Суоярви

Сураж

Сургут

Суровикино

Сурск

Сусуман

Сухиничи

Сухой Лог

Сызрань

Сыктывкар

Сысерть

Сычевка

Сясьстрой

Тавда

Таганрог

Тайга

Тайшет

Талдом

Талица

Тамбов

Тара

Тарко-Сале

Таруса

Татарск

Таштагол

Тверь

Теберда

Тейково

Темников

Темрюк

Терек

Тетюши

Тимашевск

Тихвин

Тихорецк

Тобольск

Тогучин

Тольятти

Томари

Томмот

Томск

Топки

Торжок

Торопец

Тосно

Тотьма

Трехгорный

Трехгорный-1

Троицк

Троицк

Трубчевск

Туапсе

Туймазы

Тула

Тулун

Туран

Туринск

Тутаев

Тында

Тырныауз

Тюкалинск

Тюмень

Уварово

Углегорск

Углич

Удачный

Удомля

Ужур

Узловая

Улан-Удэ

Ульяновск

Унеча

Урай

Урень

Уржум

Урус-Мартан

Урюпинск

Усинск

Усмань

Усолье

Усолье-Сибирское

Уссурийск

Усть-Джегута

Усть-Илимск

Усть-Катав

Усть-Кут

Усть-Лабинск

Устюжна

Уфа

Ухта

Учалы

Уяр

Фатеж

Феодосия

Фокино

Фокино

Фролово

Фрязино

Фурманов

Хабаровск

Хадыженск

Ханты-Мансийск

Харабали

Харовск

Хасавюрт

Хвалынск

Хилок

Химки

Холм

Холмск

Хотьково

Цивильск

Цимлянск

Чадан

Чайковский

Чапаевск

Чаплыгин

Чебаркуль

Чебоксары

Чегем

Чекалин

Челябинск

Чердынь

Черемхово

Черепаново

Череповец

Черкесск

Чермоз

Черноголовка

Черногорск

Чернушка

Черняховск

Чехов

Чехов-2

Чехов-3

Чехов-8

Чистополь

Чита

Чкаловск

Чудово

Чулым

Чулым-3

Чусовой

Чухлома

Шагонар

Шадринск

Шали

Шарыпово

Шарья

Шатура

Шахтерск

Шахты

Шахунья

Шацк

Шебекино

Шелехов

Шенкурск

Шилка

Шимановск

Шиханы

Шлиссельбург

Шумерля

Шумиха

Шуя

Щекино

Щелкино

Щелково

Щербинка

Щигры

Щучье

Электрогорск

Электросталь

Электроугли

Элиста

Энгельс

Энгельс-19

Энгельс-2

Эртиль

Юбилейный

Югорск

Южа

Южно-Сахалинск

Южно-Сухокумск

Южноуральск

Юрга

Юрьев-Польский

Юрьевец

Юрюзань

Юхнов

Юхнов-1

Юхнов-2

Ядрин

Якутск

Ялта

Ялуторовск

Янаул

Яранск

Яровое

Ярославль

Ярцево

Ясногорск

Ясный

Яхрома

Бесколлекторный двигатель постоянного тока: принцип работы, варианты конструкций

Содержание:

Бесколлкторные двигатели постоянного тока (бдпт) являются разновидностью синхронных двигателей с постоянными магнитами, которые питаются от цепи постоянного тока через инвертор, управляемый контроллером с обратной связью. Контроллер подаёт на фазы двигателя напряжения и токи, необходимые для создания требуемого момента и работы с нужной скоростью. Такой контроллер заменяет щёточно-коллекторный узел, используемый в коллекторных двигателях постоянного тока. Бесколлекторные двигатели могут работать как с напряжениями на обмотках в форме чистой синусоиды, так и кусочно-ступенчатой формы (например, при блочной коммутации).

Появились бесколлекторные двигатели постоянного тока как попытка избавить коллекторные двигатели постоянного тока с постоянными магнитами от их слабого места – щёточно-коллекторного узла. Этот узел, представляющий собой вращающийся электрический контакт, является слабым местом у коллекторных двигателей с точки зрения надёжности и в ряде случаев ограничивает их параметры.

Принцип работы и устройство бесколлекторного двигателя

Как и остальные двигатели, бесколлекторный двигатель состоит из двух основных частей – ротора (подвижная часть) и статора (неподвижная часть).  На статоре располагается трёхфазная обмотка. Ротор несёт на себе постоянный магнит, который может иметь одну или несколько пар полюсов. Когда к обмотке статора приложена трёхфазная система напряжений, то обмотка создаёт вращающееся магнитное поле. Оно взаимодействует с постоянным магнитом на роторе и приводит его в движение. По мере того как ротор поворачивается, вектор его магнитного поля проворачивается по направлению к магнитному полю статора. Управляющая электроника отслеживает направление, которое имеет магнитное поле ротора и изменяет напряжения, приложенные к  обмотке статора, таким образом чтобы магнитное поле, создаваемое обмотками статора, повернулось, опережая магнитное поле ротора. Для определения направления магнитного поля ротора используется датчик положения ротора, поскольку магнит, создающий это поле жёстко закреплён на роторе. Напряжения на обмотках бесколлекторного двигателя можно формировать различными способами: простое переключение обмоток через каждые 60° поворота ротора или формирование напряжений синусоидальной формы при помощи широтно-импульсной модуляции.

Варианты конструкции двигателя

 

Обмотка двигателя может иметь различную конструкцию. Обмотка классической конструкции наматывается на стальной сердечник. Другой вариант конструкции обмотки – это обмотка без стального сердечника. Проводники этой обмотки равномерно распределяются вдоль окружности статора. Характеристики обмотки получаются различными, что отражается и на характеристиках двигателя. Кроме того, обмотки могут быть выполнены на различное число фаз и с различным количеством пар полюсов.

Бесколлекторные двигатели также могут иметь конструкции, различающиеся по взаимному расположению ротора и статора. Наиболее распространена конструкция, когда ротор охватывается статором снаружи – двигатели с внутренним ротором. Но также возможна, и встречается на практике конструкция в которой ротор расположен снаружи статора – двигатели с внешним ротором. Третий вариант – статор расположен параллельно ротору и оба располагаются перпендикулярно оси вращения двигателя. Такие двигатели называют двигателями аксиальной конструкции.

Датчик положения, который измеряет угловое положение ротора двигателя — это важная часть приводной системы, построенной на бесколлекторном двигателе. Этот датчик может быть самым разным как по типу, так и по принципу действия. Традиционно используемый для этой цели тип датчиков – датчики Холла с логическим выходом, устанавливаемые на каждую фазу двигателя. Выходные сигналы этих датчиков позволяют определить положение ротора с точностью до 60° — достаточной реализации самых простых способов управления обмотками. Для реализации способов управления двигателем, предполагающих формирование на обмотках двигателя системы синусоидальных напряжений при помощи ШИМ необходим более точный датчик, например, энкодер. Инкрементные энкодеры, очень широко используемые в современном электроприводе, могут обеспечить достаточно информации о положении ротора только при использовании их вместе с датчиками Холла. Если бесколлекторный двигатель оснащён абсолютным датчиком положения – абсолютным энкодером или резольвером (СКВТ), то датчики Холла становятся не нужны, так как любой из этих датчиков обеспечивает полную информацию о положении ротора.

Можно управлять бесколлекторным двигателем, и не используя датчика положения ротора – бездатчиковая коммутация. В этом случае информация о положении ротора восстанавливается на основании показаний других датчиков, например, датчиков фазных токов двигателя или датчиков напряжения. Такой способ управления часто влечёт за собой ряд недостатков (ограниченный диапазон скоростей, высокая чувствительность к параметрам двигателя, специальная процедура старта), что ограничивает его распространение.

Преимущества и недостатки

Высокая надёжность вследствие отсутствия коллектора. Это основное отличие бесколлекторных двигателей от коллекторных. Щёточно-коллекторный узел, является подвижным электрическим контактом и сам по себе имеет невысокую надёжность и устойчивость к влиянию различных воздействий со стороны окружающей среды.

Отсутствие необходимости обслуживания коллекторного узла. Является особенно актуальным для двигателей среднего и крупного габарита. Для микроэлектродвигателей, проведение ремонта экономически оправдано далеко не во всех случаях, поэтому для них этот пункт не является актуальным.

Сложная схема управления. Прямое следствие переноса функции переключения токов обмотки во внешний коммутатор. Если в простейшем случае для управления коллекторным двигателем необходимо иметь только источник питания, то для бесколлекторного двигателя такой подход не работает – контроллер нужен даже для решения самых простых задач управления движением. Однако, когда речь идёт о решении для сложных случаев (например, задачи позиционирования), то контроллер становится необходим для всех типов двигателей.

Высокая скорость вращения. В коллекторных двигателях скорость перемещения щётки по коллектору ограничена, хотя и различна для различных конструкций этих двух деталей и различных используемых материалов. Предельная скорость перемещения щёток по коллектору сильно ограничивает скорость вращения коллекторных двигателей. Бесколлекторные двигатели не имеют такого ограничения, что позволяет выполнять их для работы на скоростях до нескольких сотен тысяч оборотов в минуту – цифра недостижимая для коллекторных двигателей.

Большая удельная мощность. Возможность  достичь большой удельной мощности является следствием высокой скорости вращения, доступной для бесколлекторного двигателя.

Хороший отвод тепла от обмотки. Обмотка бесколлекторных двигателей неподвижно закреплена на статоре и есть возможность обеспечить хороший тепловой контакт её с корпусом, который передаёт тепло, выделяемое в двигателе, в окружающую среду. У коллекторного двигателя обмотка установлена на роторе, и её тепловой контакт с корпусом гораздо хуже, чем у бесколлекторного двигателя.

Больше проводов для подключения. Когда двигатель расположен близко от контроллера, то это конечно не повод для огорчения. Однако если условия окружающей среды, в которых работает двигатель очень сложны, то вынесение управляющей электроники на значительное расстояние (десятки и сотни метров) от двигателя является подчас единственным доступным вариантом для разработчиков системы. В таких условиях каждая дополнительная цепь для подключения двигателя, будет требовать дополнительных жил в кабеле, увеличивая его размеры и массу.

Уменьшение электромагнитных помех, исходящих от двигателя. Щёточно-коллекторный контакт создаёт при работе достаточно сильные помехи. Частота этих помех зависит от частоты вращения двигателя, что осложняет борьбу с ними. У бесколлекторного двигателя единственным источником помех является ШИМ силовых ключей, частота которого обычно постоянна.

Присутствие сложных электронных компонентов. Электронные компоненты (датчики Холла, например) более остальных составных частей двигателя уязвимы для действия жёстких условий со стороны внешней среды, будь то высокая температура, низкая температура или ионизирующие излучения. Коллекторные двигатели не содержат электроники и у них подобная уязвимость отсутствует.

Где применяются бесколлекторные двигатели

К настоящему времени бесколлекторные двигатели получили широкое распространение, как благодаря своей высокой надёжности, высокой удельной мощности и возможности работать на высокой скорости, так и из-за быстрого развития полупроводниковой техники, сделавшей доступными мощные и компактные контроллеры для управления этими двигателями.

Бесколлекторные двигатели широко применяются в тех системах где их характеристики дают им преимущество перед двигателями других типов. Например, там, где требуется скорость вращения несколько десятков тысяч оборотов в минуту. Если от изделия требуется большой срок службы, а ремонт невозможен или ограничен из-за особенностей эксплуатации изделия, то и тогда бесколлекторный двигатель будет хорошим выбором.

Читать дальше:

Автомобильный генератор и как он работает.

Генератор авто. Устройство и как работает
Генератор – основной источник электроэнергии машины. Расскажем как он работает, из чего состоит и его устройство.

Как он работает?

При пуске двигателя основным потребителем электроэнергии является стартер, сила тока достигает сотен ампер, что вызывает значительное падение напряжения аккумулятора. В этом режиме потребители питаются только от аккумулятора, который интенсивно разряжается. Сразу после пуска двигателя генератор становится основным источником электроснабжения.

Генератор является источником постоянной подзарядки аккумуляторной батареи во время работы двигателя. Если он не будет работать, аккумулятор быстро разрядиться. Он обеспечивает требуемый ток для заряда АКБ и работы электроприборов. После подзарядки аккумулятора, генератор снижает зарядный ток и работает в штатном режиме.

При включении мощных потребителей (например, обогревателя заднего стекла, фар) и малых оборотов двигателя суммарный потребляемый ток может быть больше, чем способен отдать генератор. В этом случае нагрузка ляжет на аккумулятор и он начнет разряжаться.

Привод и крепление

Привод осуществляется от шкива коленчатого вала ременной передачей. Чем больше диаметр шкива на коленчатом валу и меньше диаметр шкива, тем выше обороты генератора, соответственно, он способен отдать потребителям больший ток.

На современных машинах привод осуществляется поликлиновым ремнем. Благодаря большей гибкости он позволяет устанавливать на генераторе шкив малого диаметра и, следовательно, получать высокие передаточные отношения. Натяжение поликлинового ремня осуществляется натяжными роликами при неподвижном генераторе.

Устройство и из чего состоит?

Любой генератор содержит статор с обмоткой, зажатый между двумя крышками — передней, со стороны привода, и задней, со стороны контактных колец. Генераторы крепятся в передней части двигателя болтами на специальных кронштейнах. Крепежные лапы и натяжная проушина находятся на крышках.

Крышки, отлитые из алюминиевых сплавов, имеют вентиляционные окна, через которые воздух продувается вентилятором. Генераторы традиционной конструкции снабжены вентиляционными окнами только в торцевой части, а “компактной” конструкции – еще на цилиндрической части над лобовыми сторонами обмотки статора. На крышке со стороны контактных колец крепятся щеточный узел, который объединен с регулятором напряжения, и выпрямительный узел. Крышки обычно стянуты между собой тремя или четырьмя винтами, причем статор оказывается зажат между крышками, посадочные поверхности которых охватывают статор по наружной поверхности.

Статор генератора: 1 – сердечник, 2 – обмотка, 3 – пазовый клин, 4 – паз, 5 – вывод для соединения с выпрямителем

Статор набирается из стальных листов толщиной 0.8…1 мм, но чаще выполняется навивкой “на ребро”. При выполнении пакета статора навивкой ярмо статора над пазами обычно имеет выступы, по которым при навивке фиксируется положение слоев друг относительно друга. Эти выступы улучшают охлаждение статора за счет более развитой наружной поверхности.

Необходимость экономии металла привела к созданию конструкции пакета статора, набранного из отдельных подковообразных сегментов. Скрепление между собой отдельных листов пакета статора в монолитную конструкцию осуществляется сваркой или заклепками. Практически все генераторы автомобилей массовых выпусков имеют 36 пазов, в которых располагается обмотка статора. Пазы изолированы пленочной изоляцией или напылением эпоксидного компаунда.

Ротор автомобильного генератора: а – в сборе; б – полюсная система в разобранном виде; 1,3- полюсные половины; 2 – обмотка возбуждения; 4 – контактные кольца; 5 – вал

Особенностью автомобильных генераторов является вид полюсной системы ротора. Она содержит две полюсные половины с выступами — полюсами клювообразной формы по шесть на каждой половине. Полюсные половины выполняются штамповкой и могут иметь выступы. В случае отсутствия выступов при напрессовке на вал между полюсными половинами устанавливается втулка с обмоткой возбуждения, намотанной на каркас, при этом намотка осуществляется после установки втулки внутрь каркаса.

Валы роторов выполняются из мягкой автоматной стали, однако, при применении роликового подшипника, ролики которого работают непосредственно по концу вала со стороны контактных колец, вал выполняется из легированной стали, а цапфа вала закаливается. На конце вала, снабженном резьбой, прорезается паз под шпонку для крепления шкива.

Во многих современных конструкциях шпонка отсутствует. В этом случае торцевая часть вала имеет углубление или выступ под ключ в виде шестигранника. Это позволяет удерживать вал от поворота при затяжке гайки крепления шкива, или при разборке генератора, когда необходимо снять шкив и вентилятор.

Щеточный узел – это конструкция, в которой размещаются щетки т.е. скользящие контакты. В автомобильных генераторах применяются щетки двух типов — меднографитные и электрографитные. Последние имеют повышенное падение напряжения в контакте с кольцом по сравнению с меднографитными. Однако они обеспечивают значительно меньший износ контактных колец. Щетки прижимаются к кольцам усилием пружин.

Выпрямительные узлы применяются двух типов. Это либо пластины-теплоотводы, в которые запрессовываются диоды силового выпрямителя, либо конструкции с сильно развитым оребрением и диоды припаиваются к теплоотводам. Диоды дополнительного выпрямителя имеют обычно пластмассовый корпус цилиндрической формы или в виде горошины или выполняются в виде отдельного герметизированного блока, включение в схему которого осуществляется шинками.

Наиболее опасным является замыкание пластин теплоотводов, соединенных с “массой” и выводом “+” генератора случайно попавшими между ними металлическими предметами или проводящими мостиками, образованными загрязнением, т.к. при этом происходит короткое замыкание по цепи аккумуляторной батареи и возможен пожар. Во избежание этого пластины и другие части выпрямителя генераторов частично или полностью покрывают изоляционным слоем. В монолитную конструкцию выпрямительного блока теплоотводы объединяются в основном монтажными платами из изоляционного материала, армированными соединительными шинками.

Подшипниковые узлы генераторов это, как правило, радиальные шариковые подшипники с одноразовой закладкой пластичной смазки на весь срок службы и одно или двухсторонними уплотнениями, встроенными в подшипник. Роликовые подшипники применяются только со стороны контактных колец и достаточно редко, в основном, американскими фирмами. Посадка шариковых подшипников на вал со стороны контактных колец – обычно плотная, со стороны привода – скользящая, в посадочное место крышки наоборот – со стороны контактных колец – скользящая, со стороны привода – плотная.

Охлаждение генератора осуществляется одним или двумя вентиляторами, закрепленными на его валу. При этом у традиционной конструкции генераторов воздух засасывается центробежным вентилятором в крышку со стороны контактных колец. У генераторов, имеющих щеточный узел, регулятор напряжения и выпрямитель вне внутренней полости и защищенных кожухом, воздух засасывается через прорези этого кожуха, направляющие воздух в наиболее нагретые места – к выпрямителю и регулятору напряжения.


Система охлаждения генераторов: а – устройства обычной конструкции; б – для повышенной температуры в подкапотном пространстве; в – устройства компактной конструкции. Стрелками показано направление воздушных потоковНа автомобилях с плотной компоновкой подкапотного пространства применяют генераторы со специальным кожухом, через который в него поступает холодный забортный воздух. У генераторов “компактной” конструкции охлаждающий воздух забирается со стороны как задней, так и передней крышек.
Для чего нужен регулятор напряжения?

Регуляторы поддерживают напряжение генератора в определенных пределах для оптимальной работы электроприборов, включенных в бортовую сеть автомобиля. Генераторы оснащаются полупроводниковыми электронными регуляторами напряжения, встроенными внутрь корпуса. Схемы их исполнения и конструктивное оформление могут различаться, но принцип работы одинаков.

Регуляторы напряжения обладают свойством термокомпенсации – изменения напряжения, подводимого к аккумуляторной батарее, в зависимости от температуры воздуха в подкапотном пространстве для оптимального заряда АКБ. Чем ниже температура воздуха, тем большее напряжение должно подводиться к батарее и наоборот. Величина термокомпенсации достигает до 0,01 В на 1°С. Некоторые модели выносных регуляторов имеют ручные переключатели уровня напряжения (зима/лето).

Электромагнитные дефекты | Спектральная вибродиагностика

«Диагностика дефектов вращающегося оборудования по вибрационным сигналам» 2012 г.

3.2. Дефекты оборудования уровня «механизм»

Анализируя сигналы с датчиков вибрации, установленных на опорных подшипниках электрических машин, можно выявить достаточно много специфических дефектов состояния, возникающих только в электродвигателях и генераторах различного типа. Причиной повышенной вибрации электрических машин могут являться как различные внутренние электромагнитные дефекты электрических машин, так некоторые специфические особенности проявления электромагнитных процессов в обмотках и сердечниках, т. е. это просто может отражать особенности нормальной работы электродвигателей и генераторов во вращающихся агрегатах.

Применение вибрационных методов диагностики дефектов состояния электродвигателей и генераторов обычно является первым этапом в оценке их состояния. Так происходит потому, что они позволяют оперативно анализировать состояние оборудования непосредственно во время его работы, или как это принято называть в литературе, реализуют диагностику и мониторинг технического состояния в режиме «on-line».

После применения вибрационного анализа для диагностики дефектов в электрических машинах, и выявления основных характерных признаков существования того или иного дефекта, можно, а иногда даже необходимо, применять другие, специализированные и, естественно, более точные методы диагностики состояния электрических машин.

Очевидно, что описание этих методов выходит за рамки данной работы, и ознакомиться с ними можно, если обратиться к другой, более специализированной литературе. Частично, но все равно более широко, чем это обычно делается в «обычной» литературе по вибрационной диагностике, эти методы рассмотрены в данном разделе. Некоторые аспекты диагностики электротехнического оборудования приведены ниже, в соответствующем разделе.

При выборе дефектов, которые мы описываем в данном разделе, мы исходили из простого определения. Если дефект можно диагностировать при помощи установки датчиков вибрации на опорных подшипниках, то его описание включено в данный раздел. Если же для диагностики необходимо устанавливать датчики вибрации в других точках контролируемой электрической машины, то описание диагностики таких дефектов вынесено в особый раздел данного методического руководства.

Обычные, достаточно широко распространенные причины повышенной вибрации электрических машин «не электромагнитного характера», такие как небаланс, проблемы подшипников, наличие изогнутого вала, и т. д. в данном разделе методического руководства никак не рассматриваются. По вопросам диагностики этих дефектов в двигателях и генераторах вибрационными методами следует обращаться к соответствующим разделам данного руководства.

Для проведения диагностики различных электромагнитных дефектов в электрических машинах необходимо использовать измерительное оборудование, имеющее достаточно высокие эксплуатационные параметры. Не все приборы, хорошо подходящие для диагностики дефектов механической природы возникновения, такие как небаланс, расцентровка, и т. д., могут быть использованы для анализа технического состояния электрических машин переменного тока.

Для успешной диагностики различных электромагнитных проблем в электрических двигателях и генераторах необходим анализатор спектров вибросигналов с очень высокой разрешающей способностью, с числом спектральных линий, не меньшем, чем 3200, а желательно и лучше. Кроме того, такой прибор должен иметь возможность проводить регистрацию вибрационных сигналов в течение достаточно длительного интервала времени, не менее 10 — 20 секунд. Это необходимо делать для эффективного разделения проблем механической и электромагнитной природы возникновения, что возможно сделать только в момент отключения контролируемого агрегата от питающей сети.

Измерение вибрации на подшипниках электродвигателей и генераторов нужно всегда проводить в трех направлениях — вертикальном, поперечном и осевом, иначе потом будет невозможно провести полную диагностику состояния. Идеальным является синхронная регистрация (не путать с синхронизированной регистрацией, которая гораздо менее эффективна) сразу шести вибросигналов с двух подшипников электрической машины. Обычно это повышает достоверность диагнозов дополнительно не менее чем на 10 %.

3.2.6.1. Описание физических процессов в электрических машинах

Вопросами диагностики текущего технического состояния и поиска дефектов в электрических машинах обычно занимаются специальные электротехнические службы, знакомые с особенностями физических процессов в двигателях и генераторах. Для тех, кто раньше не был практически связан с процедурой оценки состояния электротехнического оборудования, необходимо обязательно ознакомиться со специальной литературой, описывающей основные особенности его работы.

Дело в том, что существует несколько типов электрических машин, процессы в которых значительно отличаются друг от друга. Кроме того, в каждом типе электрических машин существует несколько специфических особенностей, не зная которые очень сложно проводить корректную оценку их технического состояния.

В самом начале данного раздела, на первом этапе описаний, кратко вспомним некоторые основные определения и понятия из минимального, по объему, курса электрических машин. Сделаем это для простоты объяснения причин возникновения вибрации в электрических машинах, а так же для того, чтобы не загромождать эти объяснения в дальнейшем, Знание этих основополагающих понятий совершенно необходимо для проведения корректного диагностирования дефектов электрических машин, для правильного толкования спектрального состава регистрируемых вибрационных сигналов.

По принципу действия различают три основных типа широко применяемых электрических машин:

  • Синхронные машины переменного тока, в которых частота вращения ротора совпадает с частотой вращения электромагнитного поля в зазоре. Эти машины могут работать в режимах двигателя и генератора, в практике встречаются и те, и другие.
  • Асинхронные машины переменного тока, в которых ротор вращается несколько медленнее. Величина отставания ротора от статора составляет несколько процентов, и характеризуется термином «скольжение». Теоретически также могут работать в режимах двигателя и генератора, но на практике встречаются практически одни двигатели.
  • Машины постоянного тока. Это также обратимые электрические машины, допускающие двигательный и генераторный режимы работы. На практике встречаются и те, и другие исполнения машин постоянного тока.

В данном разделе методического руководства будут рассмотрены основные способы диагностики состояния и поиска дефектов состояния электрических машин переменного тока, синхронных и асинхронных, как наиболее распространенных в промышленности и в быту. Электромагнитные проблемы машин постоянного тока очень сложно поддаются диагностике, в основе которой лежит анализ вибрационных сигналов с опорных подшипников, поэтому рассматриваться здесь не будут.

Синхронные и асинхронные машины являются по своему принципу действия обратимыми, т. е. могут работать в как режиме двигателя, так и в режиме генератора. В дальнейшем диагностика дефектов статоров синхронных и асинхронных машин, двигателей и генераторов, не будет подразделяться, т. к. они имеют одинаковые по конструкции статоры. Синхронные машины отличаются от асинхронных только конструкцией ротора, что найдет отражение в специальном подразделе, где будут описаны наиболее часто встречающиеся дефекты короткозамкнутых роторов.

Очень важно уже на самом первом этапе диагностики, заранее, определиться с диапазоном численных значений частоты вращения ротора и электромагнитного поля в зазоре. Для этого необходимо знать оборотную частоту вращения электромагнитного поля статора и оборотную частоту вращения ротора электрической машины переменного тока. Именно они определяют требования к приборам вибрационного контроля.

Максимальная частота вращения ротора электрической машины переменного тока определяется в размерности «обороты в минуту». В иностранной литературе широко используется термин RPM, что является сокращением стандартного параметра «Rotation Per Minute», т. е. те же «обороты в минуту». Эта максимальная частота вращения также является и номинальной, так как в нормальных условиях частота вращения машины переменного тока редко регулируется, а если и регулируется, то практически всегда с использованием преобразователей частоты.

Частота вращения ротора численно равна произведению частоты питающей сети, измеряемой в [Гц], умноженной на переводной коэффициент, равный 60 (количество секунд в одной минуте). В России принят стандарт частоты питающей сети в 50 Гц. Поэтому максимально возможная частота вращения роторов двигателей и генераторов переменного тока составляет 3000 об/мин. При частоте питающей сети в 60 Гц, что являющейся стандартной в Америке и в Японии, максимальная частота вращения ротора машины переменного тока составит 3600 об/мин.

В зависимости от особенностей конструкции статоров машин переменного тока частота вращения электромагнитного поля в зазоре может изменяться. Для определения этой частоты формула определения частоты вращения поля должна быть дополнена еще одним сомножителем «Р», находящимся в знаменателе:

N0 = 60 * F1 / P

Таким образом, частота вращения электромагнитного поля в зазоре электрической машины N0 равняется частному от деления максимальной частоты вращения электромагнитного поля в зазоре на число «пар полюсов статора – Р». Это конструктивный параметр обмотки статора, и он может принимать только целые значения, равные 1, 2, 3, 4, 5 и т. д. При этом частота вращения поля в зазоре электрической машины будет равна соответственно 3000 об/мин, 1500, 1000, 750, 600 и т. д.

При числе пар полюсов, отличном от единицы, частота вращения поля в зазоре электрической машины отлична от частоты питающей сети, причем в меньшую сторону от стандартных 3000 об/мин. Это очень важно учитывать при первой диагностике состояния «мало знакомых» электрических машин по спектрам вибросигналов.

В синхронных электрических машинах переменного тока частота вращения ротора всегда совпадает с частотой вращения электромагнитного поля в зазоре. Именно поэтому такие машины называются синхронными. Такие электрические машины имеют достаточно большую мощность, что связано с особенностями их конструкции. Можно смело утверждать, что «встретить» синхронную машину с мощностью менее 1000 кВт на практике очень сложно. Их мало, но они имеют большую единичную мощность, генераторы достигают мощностей до 800 МВт и более.

В асинхронных машинах переменного тока частота вращения ротора всегда меньше частоты вращения электромагнитного поля в зазоре на небольшую величину, ротор отстает от электромагнитного поля. Это отставание обычно называется скольжением «s» и измеряется в долях от единицы или в процентах. Имеющаяся небольшая разница в частотах вращения поля и ротора называется частотой скольжения ротора, которая измеряется в герцах или в процентах. В диагностике дефектов ротора асинхронного двигателя эта частота имеет большое значение.

Стандартный ряд рабочих частот вращения роторов асинхронных двигателей, в зависимости от числа пар полюсов обмотки статора, можно примерно представить в виде последовательности чисел — 2900 об/мин, 1450 об/мин, 970 об/мин.

Из этого ряда» хорошо видно, что частота вращения ротора асинхронной электрической машины всегда отстает от частоты вращения электромагнитного поля в зазоре электрической машины. Для сравнения напомним, что в синхронных машинах переменного тока, где частота вращения ротора совпадает с частотой вращения поля в зазоре,  этот ряд рабочих частот вращения электрических машин составляет 3000, 1500, 1000 об/мин.

Отдельно необходимо остановиться на термине, который практические диагносты достаточно широко используют на практике, но, может быть, не совсем корректно понимают его смысл. В самом общем случае этот термин звучит примерно как «электромагнитные вибрации и электромагнитные гармоники в спектре вибрационного сигнала».

В электрических машинах переменного тока возможно возникновение специфических вибраций двух типов. Конечно, реальных причин повышения вибрации в электродвигателях и генераторах может быть гораздо больше, но при измерении вибрационных сигналов на опорных подшипниках реально зарегистрировать можно только «отклики» от этих двух причин. В другом разделе нашего руководства мы частично затронем некоторые другие аспекты вибрационной диагностики состояния электротехнической составляющей электрических машин, здесь же мы рассмотрим только способы диагностики возможных «механических дефектов» электрических машин.

Для начала дадим определение основным электромагнитным вибрациям, которые можно зарегистрировать на опорных подшипниках синхронных и асинхронных электрических машин. Как мы уже говорили, они могут возникать по нескольким причинам.

Во-первых, это электромагнитные вибрации ферромагнитных сердечников и стальных конструктивных элементов электротехнического оборудования, по которым во время работы оборудования протекает переменный магнитный поток.

Эти вибрации возникают за счет специфического процесса, который в литературе называется магнитострикцией. Этот эффект обусловлен тем, что при перемагничивании ферромагнитных материалов сердечника происходит изменение внутренней ориентации элементарных намагниченных частиц, доменов. При каждом перемагничивании сердечника происходит поворот доменов на 180 градусов, что в итоге и приводит к небольшому «линейному расширению» ферромагнитного материала. Чем больше величина магнитного потока в сердечнике, тем больше размеры элементарных доменов в ферромагнитном сердечнике, и тем больше будут вибрации сердечника электрической машины.

Поскольку перемагничивание сердечника магнитным потоком происходит дважды за один период питающей сети, то и частота вибрации, обусловленная эффектом магнитострикции, равняется удвоенной частоте питающей сети, т. е. она равняется 100 Гц. Мы обращаем дополнительное внимание читателя на то, что вне зависимости от оборотной частоты вращения ротора электрической машины, частота вибрации сердечника (пакета стали статора) всегда равняется 100 Гц.

Если оборотная частота ротора равняется 50 Гц, то гармоника электромагнитной вибрации располагается на спектре «в том месте», где может находиться вторая гармоника оборотной частоты. Если же оборотная частота ротора равняется, например, 25 Гц, то гармоника электромагнитной вибрации на спектре будет располагаться на месте четвертой гармоники оборотной частоты. Этими двумя простыми примерами мы еще раз подчеркнули, что электромагнитная гармоника не связана с частотой вращения ротора электрической машины, а зависит только от частоты питающей сети.

Во-вторых, вибрации в электрической машине вызываются специфическими электродинамическими силами, которые в литературе принято называть «амперовыми силами», т. к. их величина определяется по закону Ампера. Смысл закона Ампера звучит следующим образом – на два проводника с током действует сила взаимного притяжения, пропорциональная квадрату протекающего по проводникам тока, и обратно пропорциональная расстоянию между проводниками. Если направление тока в обоих проводниках одинаковое, то проводники притягиваются друг к другу. Если токи в параллельных проводниках текут в разные стороны, то проводники отталкиваются друг от друга.

Самое важное для нас в этом законе заключается в том, что в числителе стоит произведение токов в проводниках, т. е. квадрат тока промышленной частоты. Из тригонометрии следует известное соотношение, гласящее, что квадрат синусоидального сигнала есть другой гармонический сигнал, но имеющий удвоенную частоту. Таким образом, мы аналогично получаем, что сила электродинамического воздействия между двумя проводниками с синусоидальными токами промышленной частоты имеет удвоенную частоту, относительно частоты питающей сети.

Таким образом, мы определили, что вибрации электрической машины, не вызванные механическими проблемами, имеют удвоенную частоту относительно частоты питающей сети, т. е. равную 100 Гц. Это определение относится как к электромагнитным причинам повышенной вибрации, возникающим в сердечниках электрических машин силами магнитострикции, так и к электродинамическим силам взаимодействия проводников друг с другом, возникающим при протекании токов по обмоткам электрической машины.

Все это можно сказать несколько иначе. Основная, или, говоря терминами, принятыми в вибрационной диагностике, оборотная частота электромагнитных сил и вибраций в электрической машине равна удвоенной частоте питающей сети. Это совершенно отдельная сила, не связанная с частотой вращения ротора, что может быть легко выяснено при помощи средств кепстрального анализа. Она просто имеет частоту, равную удвоенной частоте питающей сети. Гармоники основной частоты этой силы имеют значения 200 Гц, 300, 400 и т. д. В чистом виде эта сила очень явно проявляется в статическом электрооборудовании. Примером этого является трансформатор, в котором гармоника вибрации с частотой питающей сети в 50 Гц практически отсутствует, а максимальное значение имеет гармоника вибрации с частотой 100 Гц.

Есть еще и третья (по порядку нашего повествования, а не по порядковому номеру в спектре) гармоника вибрации, имеющая электромагнитную природу возникновения. Она называется зубцово – пазовой гармоникой. Она не всегда столь значительна, как первые две, но сказать о ней все равно нужно.

Зубцово – пазовая гармоника вызывается особенностями конструктивного исполнения электрической машины переменного тока. У нее на статоре и на роторе обмотка всегда укладывается в пазах. При вращении ротора в зазоре статора возникает периодическое чередование ферромагнитных зубцов и пазов на статоре и роторе. Это приводит к модуляции магнитного потока в зазоре частотой, связанной с количеством пазов на роторе и статоре электрической машины.

При разработке электрических машин принимаются все меры, чтобы исключить влияние зубцово — пазовой структуры на работу машины. На статоре и роторе всегда различное число пазов, на роторе применяется «скос» пазов, когда ось паза идет не вдоль оси ротора, а как бы немного закручена вокруг оси и т. д. Тем не менее, существуют типы электрических машин, в которых «пазовая» гармоника оборотной частоты ротора является явно выраженной на спектре.

Необходимо хорошо понимать, что все эти три гармоники в спектре вибросигнала, имеющие электромагнитную природу возникновения, не всегда являются признаками наличия дефектов в контролируемой электрической машине, они практически всегда сопровождают ее работу. Признаком наличия дефекта обычно является увеличение амплитуд электромагнитных гармоник выше некоторого уровня, являющегося порогом нормального состояния оборудования.

Основной признак того, что анализируемая гармоника в спектре сигнала вибрации имеет электромагнитную причину возникновения — мгновенное исчезновение этой гармоники сразу после отключения электрической машины от сети.

Очень важным является то, что диагностика причин повышенной вибрации электрических машин должна проводиться при возможно большей нагрузке двигателя. Если исследования будут проводиться на холостом ходу, или же при небольшой нагрузке, то диагностика дефектов будет затруднена.  

3.2.6.2. Сводка электромагнитных проблем ротора и статора

Приведем краткую сводку по электромагнитным проблемам электрических машин, которые можно эффективно диагностировать по спектрам вибросигналов. Здесь же приведем все характерные признаки каждого вида дефекта.

Для описания дефектов здесь и далее будем использовать термины:

F1 — частота питающей сети, в России равна 50 Гц.

FЭМ — частота электромагнитных сил в электрических машинах, равна удвоенной частоте сети, в России 100 Гц.

N0 — частота вращения поля в зазоре электрической машины, численно равна частному от деления 3000 на число пар полюсов Р, которое может принимать целые значения от единицы и более (об/мин).

F0 — частота электромагнитного поля в зазоре, Гц.

FP — собственная частота вращения ротора электрической машины. Для синхронных машин она равна частоте вращения поля. Для асинхронных машин она меньше на величину скольжения ротора.

FP = F0 (1 — s)

s - скольжение ротора относительно электромагнитного поля в асинхронных машинах, безразмерная величина, численно равняется разнице между частотой вращения поля в зазоре и частотой вращения ротора, отнесенной к частоте вращения поля в зазоре

s = (N0FP) / N0

FП — зубцово — пазовая частота вибрации, численно равная произведению числа пазов (на роторе или статоре) на частоту электромагнитного поля в зазоре. Может быть повышенной относительно статора, относительно ротора, может быть разностная или суммарная частота биений пазовых частот ротора и статора.

Наиболее важные проблемы статора, которые можно диагностировать на основе анализа вибрационных сигналов:

  • Ослабление прессовки пакета стали, обрыв или замыкание стержней, витков, или даже секций в обмотке статора. Соответствующие вибрации проявляются на частоте действия электромагнитных сил FЭМ, равной удвоенной частоте питающей сети. Особое внимание при диагностике такого дефекта следует уделять наличию дробных гармоник электромагнитной частоты — 1/2, 3/2, 5/2 и т. д. от основной частоты. По значению частоты эти гармоники соответствуют основной и нечетным гармоникам питающей сети. Появление этих гармоник в спектре вибрационного сигнала говорит об опасной степени развития дефекта, о необходимости оперативного принятия соответствующих мер. 
  • Эксцентриситет, эллипсность внутренней расточки статора относительно оси вращения ротора. Возникает обычно как дефект монтажа подшипниковых стоек, дефект состояния подшипниковых щитов или при общей деформации корпусных элементов самого статора. В вибрации проявляется на частоте вращения поля в зазоре, а также и на частоте действия электромагнитных сил в электрической машине, равной 100 Гц. Иногда сопровождается появлением боковых гармоник вблизи частоты 100 Гц. Дефект обычно сопровождается неравенством вертикальной и поперечной составляющих соответствующих гармоник. Пространственный максимум гармоник соответствует направлению эксцентриситета смещения оси статора. Наиболее просто направление смещения оси статора относительно оси ротора диагностируется при снятии «розы вибраций», когда датчик последовательно перемещается по огибающей вокруг подшипника со смещением при каждом измерении на угол 30 — 45  градусов.
  • Неправильный взаимный осевой монтаж активных пакетов ротора и статора. Иногда для данного дефекта используется термин: «неправильная установка электромагнитных осевых разбегов». При работе электрической машины, в результате сил магнитного притяжения, пакет ротора всегда стремится к положению точно под пакетом статора.

Если этому стремлению будут препятствовать неправильно смонтированные в осевом направлении подшипники, то в них будут возникать компенсирующие осевые усилия, которые и вызовут осевые вибрации подшипников. Подшипники достаточно быстро нагреются и выйдут из строя. Иногда ротор двигателя «утягивается» в осевом направлении валом механизма, что возможно при неправильном осевом монтаже приводного механизма, сопровождающемся малой осевой подвижностью в соединительной муфте.

Основные проблемы ротора, диагностируемые по вибрации:

  • Эксцентриситет внешней поверхности ротора относительно оси его вращения. На спектре вибросигнала этот дефект проявляется в усилении первой гармоники частоты вращения ротора. Усиливается частота действия электромагнитной силы, вокруг которой иногда появляются боковые гармоники, сдвинутые друг от друга на частоту скольжения ротора, умноженную на число полюсов.
  • Обрыв или нарушение контакта в стержнях или кольцах «беличьей клетки» в асинхронном двигателе. Обычно проявляется на спектре вибрационного сигнала вблизи частоты вращения вала ротора. Кроме того, этот дефект всегда сопровождается появлением вблизи основной гармоники частоты вращения ротора боковых гармоник, сдвинутых относительно гармоники частоты вращения ротора на интервал, равный произведению частоты скольжения на число полюсов двигателя. Очевидно, что этот дефект присущ только асинхронным двигателям, а в синхронных машинах он никак не проявляется.
  • Ослабление прессовки всего пакета стали ротора или только в области зубцов. Сопровождается усилением второй гармоники питающей сети или, при ослаблении стали в области зубцов, появлением пазовой частоты ротора с боковыми полосами, сдвинутыми друг от друга на частоту, равную двойной питающей частоте. Такой дефект на практике диагностируется достаточно сложно, так как его спектральные признаки напоминают признаки других дефектов, и проявляются не очень сильно, чаще всего неявно.

3.2.6.3. Диагностика электромагнитных проблем статора

При всех проблемах статора синхронной или асинхронной электрической машины, имеющих в своей основе первопричину электромагнитной природы, в спектре вибросигнала возникает весьма специфическая картина. В основном она сопровождается возникновением высокой амплитуды основной гармоники на частоте электромагнитных процессов FЭМ. Как уже неоднократно говорилось выше, ее частота равна удвоенной частоте питающей сети, т. е. всегда равняется 100 Гц. Еще раз напоминаем, что эта частота никак не связана с оборотной частотой вращения ротора.

Этот эффект достаточно хорошо объясняется с точки зрения физики происходящих в стали статора процессов. Силы взаимного притяжения, действующие между «распрессоваными» листами электротехнического железа или элементами крепления пакета стали, имеют максимум амплитуды дважды за один период изменения питающей сети — во время абсолютного минимума и максимума магнитного потока. Чем сильнее будет распрессован пакет статора электрической машины, тем большую амплитуду в спектре будет иметь основная электромагнитная гармоника.

Аналогично выглядит картина взаимодействия между элементами обмотки статора. Математически это объясняется тем, что электромагнитные силы пропорциональны квадрату тока или магнитного потока. Поскольку и тот и другой синусоидальны, то их произведение также пропорционально синусоиде, но изменяющейся уже с удвоенной частотой, относительно исходной частоты питающей сети.

На спектре вибрационного сигнала, приведенном на рисунке 3.2.6.1., картина появления электромагнитных проблем в статоре выражается в усилении пика на электромагнитной частоте. При значительных дефектах в стали могут появиться и вторая (200 Гц) гармоника электромагнитной частоты FЭМ, и даже третья (300 Гц).

Кроме того, в спектре может появиться также целый ряд дробных гармоник, имеющих кратность 1/2 от электромагнитной гармоники. В данной ситуации, по своей частоте, эти гармоники будут численно соответствовать нечетным целым гармоникам частоты питающей сети. Такое совпадение двух семейств гармоник усложняет их разделение частоте, требуя большей внимательности и применения дополнительных диагностических средств.

Очень важно хорошо понимать и помнить основное различие синхронных и асинхронных электрических машин, значительно влияющих на диагностику дефектов по спектрам вибрационных сигналов.

Гармоники вибрации от электромагнитных процессов в статоре синхронной машины, по своей физической природе, являются синхронными относительно частоты вращения ротора. В асинхронном двигателе эти же семейства гармоник являются несинхронными, т. к. частота вращения ротора и частота питающей сети не кратны между собой, а различаются между собой пропорционально частоте скольжения. В данном определении под коэффициентом кратности соотношений частот мы понимаем влияние числа пар полюсов обмотки, уложенной в пазах статора.

Ослабление прессовки активного железа статора в электрической машине обуславливается, в основном, двумя часто встречающимися причинами — или общим ослаблением элементов крепления железа статора, или же явлением «отслоения» крайних листов и пакетов стали.

При этих локализациях дефекта железа статора важную роль начинает играть место установки вибродатчика. Чем ближе он устанавливается к дефектному месту пакета статора, чем короче будет путь прохождения «полезного» вибрационного сигнала, тем более корректно можно будет проводить диагностирование и, достаточно часто, удается даже локализовать место проявления дефекта. Наиболее эффективно датчик вибрации устанавливать не на опорных подшипниках ротора, а непосредственно на корпусе сердечника статора, а еще лучше и на самом пакете активной стали.

Аналогично обстоит дело и с особенностями проявления в спектрах вибросигналов различных дефектов обмоток статора, но поиск их и локализация происходят гораздо сложнее. Более подробно мы рассмотрим этот вопрос в другом разделе данного руководства, однако основные требования к месту установки датчика вибрации останутся прежними – как можно ближе к возможному месту возникновения предполагаемого дефекта пакета или обмотки статора.

Самое главное, что нужно помнить при диагностике дефектов, что различить тип диагностируемого в статоре электрической машины дефекта, имеет — ли он «чисто электрическую природу возникновения», или же он обусловлен одними «магнитными проблемами», методами спектральной вибрационной диагностики практически невозможно. Единственный, достаточно корректный признак наличия короткозамкнутого витка в обмотке статора (электрическая причина возникновения повышенных вибраций) — наличие боковой гармоники вблизи частоты 100 Гц, и ее чаще всего обнаружить не удается. В большинстве практических случаев необходимо применение более специализированных методов диагностики состояния электрических машин.

3.2.6.4. Проблемы эксцентричности пакета статора

Эксцентриситет статора возникает чаще всего как дефект изготовления «шихтованного» пакета стали статора, или как дефект монтажа статора. Очень высока вероятность возникновения эксцентриситета статора в процессе монтажа электрической машины, особенно, если статор и подшипниковые опоры монтируются раздельно. Данный дефект статора может возникнуть в результате ослабления фундамента или как итог тепловых и иных деформаций в агрегате и фундаменте.

Для примера на рисунке 3.2.6.2. приведен спектр вибросигнала, зарегистрированного на подшипнике асинхронного двигателя, имеющего номинальную  частоту вращения ротора,  равную  n0 = 1480 об/мин. Этот спектр соответствует наличию в электрической машине достаточно развитого дефекта типа «эксцентриситет статора».

Эксцентриситет статора приводит, с точки зрения физики протекания электромагнитных процессов, к периодическому изменению магнитной проводимости воздушного зазора, к ее пульсации, или, говоря иными словами, к ее модуляции. Эта пульсация  происходит с удвоенной частотой сети, т. е. с частотой воздействия электромагнитных сил.

Удвоение частоты пульсации относительно питающей сети возникает из — за того, что мимо зоны окружности статора, где произошло изменение величины зазора, поочередно проходят и северный, и южный полюса электромагнитного поля, вращающегося в зазоре электрической машины. Удвоенные пульсации магнитной проводимости приводят к такой же пульсации магнитного потока и, как результат, к пульсации электромагнитной силы и вибрации с частотой 100 Гц.

Дополнительно несколько возрастает амплитуда гармоники на частоте вращения электромагнитного поля в зазоре. Это позволяет в асинхронных двигателях хорошо дифференцировать эксцентричность статора от эксцентричности ротора, где вибрация идет с частотой вращения ротора. Для выявления этого различия необходимо наличие спектроанализатора с хорошим разрешением.

Для разделения эксцентриситетов статора и ротора в синхронной машине между собой, при диагностике следует помнить, что эксцентриситет статора неподвижен в пространстве и различен по амплитуде вибрации в направлениях измерения вибрации. Благодаря такой локализации эксцентриситет статора приводит к возникновению направленной в пространстве вибрации. Это можно выявить при помощи последовательного перемещения вибродатчика по контролируемому подшипнику «вокруг вала». Эксцентриситет же ротора всегда «вращается» вместе с ротором, поэтому он не имеет стационарного максимума при определенном значении угла установки датчика. При эксцентриситете статора такой максимум явно выражен.

Для исключения проявления эксцентриситета в вибрации электрических машин необходимо, чтобы воздушный зазор между статором и ротором должен быть неизменным по окружности. Обязательно должно соблюдаться требование к качеству взаимного монтажа статора и ротора, что различие в величине воздушного зазора вдоль окружности не должно превышать значение в 5% для асинхронных двигателей и генераторов, и не превышать 10 % для синхронных двигателей. Значение этого параметра жестко контролируется при помощи специальных щупов при монтаже электрической машины. Такая процедура измерения должна производиться при нескольких взаимных положениях ротора и статора.

3.2.6.5. Эксцентричный ротор

Это достаточно часто встречающаяся в практике причина повышенной вибрации асинхронных электрических машин. У синхронных электрических машин переменного тока этот дефект менее заметен из-за больших рабочих зазоров.

При наличии эксцентриситета ротора в характере распределения электромагнитного поля в зазоре двигателя возникает ряд особенностей. Плотность электромагнитного поля вдоль окружности зазора изменяется вместе с поворотом ротора. Это приводит, из-за переменного зазора, к неравномерности тягового усилия двигателя. При совпадении оси поля статора с зоной увеличенного зазора тяговое усилие несколько уменьшается, при этом возрастает величина частоты скольжения. При смещении оси поля в зону меньшего зазора тяговое усилие растет, частота скольжения падает. При числе пар полюсов статора, большем единицы, такой процесс повторяется «Р» раз.

Если бы мы имели очень чувствительные приборы для измерения частоты вращения ротора, то мы бы обнаружили следующее. В интервале перемещения ротора от зоны, с увеличенным зазором в сторону зоны, с уменьшенным зазором, ротор бы ускорился в своей частоте вращения на небольшое значение. На интервале перехода ротора обратно, к зоне с увеличенным зазором, ротор бы замедлился на то же значение. Конечно, таких приборов у нас нет, но это видно на спектре с большой разрешающей способностью, где появляются признаки таких изменений скорости.

На спектре вибросигнала, показанном на рисунке 3.2.6.3., вокруг основной частоты вращения ротора, должны появиться симметрично расположенные боковые пики, гармоники, напоминающие зубцы короны. Симметрия пиков относительно основной частоты достаточно хорошо понятна — это следствие «мини ускорений и мини замедлений» частоты вращения ротора вокруг своего среднего значения. Аналогичные зубцы, даже еще большей интенсивности, появляются и вокруг пика электромагнитной силы, на частоте, равной второй гармонике питающей сети.

Необходимо пояснить причины проявления эксцентричности ротора на этой частоте.

Вращение эксцентричного ротора модулирует проводимость зазора с удвоенной частотой. При числе пар полюсов, равном единице частота вращения поля равна 50 Гц, удвоенная частота сети, частота электромагнитной вибрации равна 100 Гц. Эксцентричность ротора приводит к модуляции электромагнитной силы. При уменьшении числа пар полюсов частота вращения поля в зазоре уменьшится в Р раз. Переменный зазор ротора за один свой оборот будет модулировать электромагнитную силу 2 х Р раз больше частоты своего вращения, что как раз и соответствует частоте электромагнитной силы.

Эксцентричный ротор генерирует вокруг FP и вокруг FЭМ семейства гармоник, представляющих из себя пики, сдвинутые на одинаковый шаг по частоте. Сдвиг между этими гармониками равен произведению частоты скольжения на число полюсов обмотки статора

DF = FS * 2 * P

Причина такого шага между зубцами на спектре по частоте достаточно корректно объясняется. Частота скольжения есть разностная частота биений между частотой вращения поля и частотой вращения ротора. В течении одного оборота эксцентриситет ротора влияет «2 х Р» раз на тяговое усилие двигателя, которое связано с частотой скольжения ротора. Сама частота скольжения FS иногда видна на спектре, на начальном участке, на самой низкой частоте. Она проявляется обычно в диапазоне от 0,3 до 2,0 Гц. Для ее регистрации нужен низкочастотный датчик.

Необходимо помнить, что во временном сигнале эксцентриситет ротора проявляется в виде пульсирующей вибрации, средняя частота которой располагается в диапазоне частот (или вблизи него) между FЭМ и гармоникой оборотной частоты ротора, по частоте чуть меньшей, чем у электромагнитной силы (порядковый номер этой гармоники ротора равен удвоенному числу пар полюсов статора). Разделить эти гармоники на спектре можно только при высоком частотном разрешении используемого анализатора вибрационных сигналов.

Эксцентричность ротора обычно проявляется и в вертикальной, и в поперечной проекции вибрации. Иногда ее удается обнаружить даже и в осевой проекции. Так бывает при наличии эксцентричности ротора не по всей его длине, а только в районе одного, если смотреть вдоль оси ротора, края пакета электротехнической стали.

Эксцентричность ротора часто носит нестационарный характер, когда в спектре работающего двигателя имеется характерная картина, а практические измерения зазора не подтверждают диагноз. Причина здесь обычно в термических процессах, когда по тем или иным причинам ротор несимметрично нагревается, изгибается и дает картину эксцентриситета.

После останова двигателя, в процессе его разборки для измерения зазора, температуры быстро выравниваются и диагноз не подтверждается. Часто так бывает при обрывах стержней или «частичных задеваниях» ротора об неподвижные элементы, когда ротор так же начинает односторонне нагреваться.

3.2.6.6. Неправильный осевой монтаж двигателя

Принцип действия всех электрических машин переменного тока примерно одинаков - вращающий момент создается за счет взаимодействия магнитного поля статора с магнитным полем ротора (синхронные машины) или с роторными проводниками с током (асинхронные машины).

Простейший аналог, характеризующий работу синхронной электрической машины переменного тока – притяжение двух постоянных магнитов, из которых один есть вращающееся магнитное поле статора, а второй жестко зафиксирован на роторе. В асинхронной машине переменного тока все выглядит немного иначе – вращающееся магнитное поле статора увлекает за собой проводники с током, которыми являются стержни короткозамкнутой клетки ротора.

В синхронном электродвигателе машине энергия подается одновременно в ротор от источника постоянного тока, и в статор из питающей промышленной сети. В асинхронном электродвигателе внешняя энергия подается только из питающей сети в статор, поэтому для работы двигателя часть энергии должна быть передана (трансформирована) через зазор во вращающийся ротор. Только в этом случае возникает электромагнитное взаимодействие между полями ротора и статора. Наличие передачи энергии через зазор объясняет необходимость максимального уменьшения воздушного зазора в асинхронных машинах, а так же их большую чувствительность этого типа электрических машин к нелинейности величины зазора между ротором и статором.

Сила взаимного притяжения между ротором и статором является векторной величиной и состоит из трех составляющих — радиальной составляющей, касательной, полезной, и осевой. Касательная составляющая электромагнитной силы в зазоре является полезной, т. к. именно она создает вращающий момент. Радиальная составляющая есть сила притяжения ротора к статору и при постоянстве величины воздушного зазора эти силы, диаметрально противоположно, взаимно компенсируются.

Рассмотрим чуть подробнее осевую составляющую сил взаимного притяжения в зазоре электрической машины. Если магнитные сердечники ротора и статора в осевом направлении расположены непосредственно друг против друга, то и суммарная осевая составляющая силы электромагнитного притяжения ротора и статора равна нулю. Иначе будет происходить в том случае, когда произойдет взаимное осевое смещении сердечников ротора и статора. При этом итоговая осевая сила не будет равна нулю, она будет стремиться вернуть ротор в исходное нейтральное положение. Чем больше будет величина осевого смещения, тем больше будет величина осевого усилия, втягивающего ротор внутрь статора.

Величина допустимого свободного осевого перемещения ротора относительно статора определяется особенностями монтажа опорных подшипников ротора. Она максимальна при использовании подшипников скольжения, и минимальна при использовании подшипников качения, особенно радиально – упорного типа.

Если осевая подвижность ротора достаточна для перемещения его в нейтральное положение, то проблем с увеличением вибраций не будет. Если же возникнет препятствие к такому осевому перемещению, то на нем возникнет значительная осевая вибрация. Частота этой вибрации, как это показано на рисунке 3.2.8.4., обычно равняется частоте электромагнитных сил. Иногда гармоники вибрации возникают и частоте вращения ротора, это зависит от состояния поверхностей в месте препятствии к осевому смещению. Наиболее часто такая проблема возникает у асинхронных электродвигателей с подшипниками качения, осевая подвижность которых почти нулевая.

Осевая вибрация в электродвигателях, оборудованных подшипниками качения, обычно возникает при следующих основных причинах:

  • При осевом смещении магнитных пакетов статора и ротора, обусловленном особенностями их взаимного первичного монтажа.
  • При неполной посадке подшипников на вал, или в подшипниковых щитах, после проведения ремонтных работ.
  • При смещении подшипниковых щитов, или посадочных мест подшипников после выполнения ремонтных и восстановительных работ.

Вне зависимости от причины возникновения повышенных осевых усилий на опорные подшипники качения, это довольно опасный дефект. Большинство подшипников качения не предназначены для компенсации осевых усилий, и поэтому в такой ситуации достаточно быстро выходят из строя.

У подшипников скольжения обычно существует больший конструктивный «осевой разбег», поэтому осевые вибрации в них возникают гораздо реже. Кроме того, подшипники скольжения обычно используются в крупных синхронных электрических машинах, в которых вопрос компенсации осевых усилий, по причине наличия больших воздушных зазоров, стоит менее остро.

Тем не менее, и в таких условиях осевая подвижность подшипников скольжения может оказаться недостаточной для компенсации дефектов монтажа. В таком случае возникает осевая вибрация, обычно выражающаяся в возникновении трения галтели вала о торцевую поверхность подшипникового вкладыша.

Для устранения осевой вибрации в насосных агрегатах необходимо корректно и комплексно выставлять при монтаже все три так называемых в практике «осевых разбега», расположенных в насосе, в муфте и в электродвигателе.

Достаточно часто вал электродвигателя «утягивается в осевые вибрации» валом насоса при дефектах системы осевой разгрузки рабочего колеса насоса. Парадокс диагностики — дефект в насосе, а вибрация в двигателе.

На практике бывают случаи, когда для борьбы с осевыми вибрациями ротор в подшипниках скольжения, перед пуском, принудительно смещают в осевом направлении, например, при помощи лома, и после этого двигатель некоторое время хорошо работает. С течением времени, в процессе работы, ротор смещается обратно, и осевые вибрации агрегата снова возрастают до прежнего значения.

3.2.6.7. Обрыв стержней ротора

Наиболее распространенным конструктивным исполнением обмотки ротора асинхронного двигателя является короткозамкнутый ротор с «беличьей клеткой». У такого ротора в пазах, без изоляции, забиваются медные или латунные стержни, или же пазы полностью залиты сплавом алюминия. Концы стержней, по торцам ротора, объединяются замыкающими кольцами из такого же материала.

В процессе работы, а особенно при пуске асинхронного электродвигателя, по стержням беличьей клетки протекает большой ток, и они сильно нагреваются. Частой причиной выхода из строя двигателя является нарушение контакта стержней с замыкающими кольцами, называемые в практике «отгоранием стрежней». Появление такого дефекта в отдельных стержнях приводит к увеличению нагрузки на оставшиеся стержни, дополнительному перегреву их, и также к последующему «отгоранию», и т. д. Весь этот лавинообразный процесс разрушения обмотки ротора сопровождается потерей мощности электродвигателя, к его постепенному перегреву и выходу из строя.

Выявление начальных признаков повреждений стержней клетки ротора является очень актуальной задачей и позволяет повысить надежность работы асинхронных двигателей с короткозамкнутой клеткой на роторе.

Рассмотрим особенности физических процессов и вибрационных признаков этого в роторе, имеющем характерные признаки начальной стадии данного дефекта. Будем считать, что повредился один стержень короткозамкнутой клетки.

Необходимо сразу же сказать, что спектр вибрации асинхронного электродвигателя с отгоревшим стержнем во многом похож на спектр вибрации двигателя, имеющего эксцентричный ротор. На первый взгляд между этими дефектами мало общего, но при ближайшем рассмотрении можно выявить причины возникновения сходства вибрационных сигналов, зарегистрированных на опорных подшипниках.

Как и при эксцентричном роторе, отгоревший стержень приводит к модулированию величины тягового усилия двигателя. В момент прохождения зоны отгоревшего стержня мимо электромагнитного полюса (скорее наоборот, т. к. поле асинхронного электродвигателя обгоняет ротор) тяговое усилие импульсно уменьшиться, ротор чуть-чуть замедлится. В это время под полюс поля подойдет зона бездефектного стержня, в нем за счет возросшего скольжения будет несколько больший ток, тяговое усилие также импульсно возрастет, и ротор чуть-чуть ускорится.

Эти импульсные мини ускорения и мини замедления ротора на спектре будут характеризоваться  возникновением боковых зубцов вокруг основной гармоники частоты вращения ротора. Такой спектр для двигателя с частотой вращения ротора 2920 об/мин показан на рис 3.2.6.5. Понятно, что зубец (гармоника) с чуть меньшей частотой будет соответствовать моменту времени с замедлением, а зубец (гармоника) с чуть большей частотой будет принадлежать участку времени с ускорением ротора.

Сразу же напрашивается аналогия, что если поврежденных стержней в роторе будет не один, а два, то боковых гармоник будет по две с каждой стороны оборотной частоты, если будет три дефектных стержня – три пары боковых гармоник, и так далее. Это так, и не так. Примерно в половине практических случаев такой эффект соответствия количества дефектных стержней и боковых гармоник будет соблюдаться, а в половине случаев такого количественного соответствия не будет.

Корректное описание такой особенности картины спектрального отображения «дефектных» стержней на спектре вибрационных сигналов является очень сложным, и мы его здесь опустим. Мы ограничимся простой констатацией факта, что если боковых гармоник на спектре более двух (пар), то на роторе находится больше двух отгоревших стержней, или, говоря точнее, стержней с дефектами контакта. Если боковых гармоник всего две, то количество стержней с дефектами точно не определено.

Разделить две причины повышенной вибрации, о которых мы начали рассуждение, это эксцентриситет ротора и отгоревшие стержни беличьей клетки, возможно, но только при наличии у диагноста «хорошего анализатора спектров вибрационных сигналов». В данном случае речь идет о хорошем спектральном разрешении прибора, он должен рассчитывать спектры с разрешением не хуже 3200 частотных линий. В этом случае дефекты можно разделить, учитывая особенности различия их спектрах вибрационных сигналов.

Это следующие различия:

  • Характерная «корона» из зубцовых гармоник вокруг пика электромагнитной частоты FЭМ проявляется на спектре различно — при эксцентриситете ротора она имеется во всех режимах работы диагностируемой электрической машины. При наличии в роторе дефекта типа «дефектный стержень», корона на спектре появляется только при значительной нагрузке электрической машины, на холостом ходу она отсутствует.
  • При эксцентриситете ротора «корона» практически симметрична по величинам зубцовых гармоник относительно центрального пика, а при дефектах стержней пик на меньшей частоте всегда меньше «зеркального» пика на большей частоте. Этот факт достаточно хорошо сообразуется с картиной физических процессов. Уменьшение скорости происходит при нормальном скольжении и нормальном токе в последнем (перед дефектным) «хорошем» стержне клетки. Ускорение же ротора происходит при увеличенном скольжении, большем токе в первом «хорошем» стержне и, как результат, с большим ускорением.
  • За счет колебательного «успокоения» пульсации частоты вращения ротора, после прохождения стержня с дефектом, что может возникать при определенных параметрах нагрузки на валу электродвигателя, на спектре вибрационного сигнала может возникнуть несколько гармоник частоты вращения ротора, и обычно все они окружены «коронами». Такая же картина может возникать при наличии механических или электромагнитных ослаблений в электрической машине. Параметр «электромагнитное ослабление» раскрывать мы не будем из-за его специфичности, оставив его для исследования специалистам по электрическим машинам.

В качестве численного ограничения степени проявления этого дефекта можно считать, что «короны» у исправного двигателя быть не должно. Если она появилась, и наибольший пик «короны» превысил 10 % от центрального пика — вероятность существования отгоревших стержней в обмотке ротора очень большая. Для контроля количественного значения признаков этого дефекта лучше использовать спектры с логарифмической шкалой по амплитуде. Если на нем пики «короны» будут меньше основного пика менее, чем на 20 dВ, то предполагаемый дефект имеет место. 

В заключение, подчеркивая особенности диагностики данной причине повышенной вибрации, необходимо еще раз указать, что такая диагностика возможно только с применением анализаторов спектров с высокой разрешающей способностью. Это нужно для разделения на спектре частот вращения поля, ротора и боковых гармоник. Центральный пик «короны» должен соответствовать частоте вращения ротора, а не быть равным частоте вращения поля в зазоре.

3.2.6.8. Дефекты зубцово — пазовой структуры

Такая неисправность не очень часто встречается в практике, но, тем не менее, ее можно достаточно просто описать и успешно диагностировать.

Условно эту неисправность можно представить в виде ротора, у которого отсутствует один ферромагнитный зуб. Это приводит к тому, что мимо пазов статора перемещается «магнитный непериодический» элемент, наводящий в обмотке статора импульсы, число которых за один оборот будет численно равно числу пазов на статоре. На спектре вибрационного сигнала это будет представлено пиком на частоте, равной произведению частоты вращения ротора на число пазов статора.

Не вдаваясь в тонкости физического описания, следует также сказать, что дефектный зуб будет модулировать и электромагнитную силу статора. Это будет происходить потому, что дважды за свой один оборот вращающееся поле «будет натыкаться» на дефект магнитной проводимости воздушного зазора двигателя, на «отсутствующий» зуб ротора. На спектре вблизи пика зубцовой частоты появятся два зеркально расположенных пика, сдвинутых относительно своего «главного пика» на частоту электромагнитной силы FЭМ, как уже неоднократно говорилось равную удвоенной частоте питающей сети.

Наиболее сложным для диагностики будет спектр вибрации при наличии магнитных дефектов на роторе и статоре одновременно, причем дефектов множественных. На спектре будут присутствовать зубцовые частоты ротора и статора, а также будут частоты их биения, зашумленные множественными «зеркальными» пиками.

«Положительным» при этом будет то, что при таком дефекте обычно сильно падает тяговое усилие, возрастает потребляемый ток и двигатель очень быстро выходит из строя, обычно раньше, чем персоналу удается записать спектры и выявить множественный магнитный дефект методами вибрационной диагностики.

Приборы нашего производства для диагностики электромагнитных дефектов

  • ViAna-4 – универсальный 4-хканальный регистратор и анализатор вибросигналов, диагностика электромагнитных дефектов по току

Что такое статор? (что это такое, что он делает, часто задаваемые вопросы)

Что такое статор?
Если у вас есть велосипед, вы можете сказать, что это то же самое, что и автомобильный генератор, поскольку он вырабатывает электроэнергию.

В каком-то смысле это правда.
Однако статор на самом деле всего лишь часть механизма, стоящего за этим.

Итак, что именно делает статор?

В этой статье мы углубимся в изучение этого электромагнитного компонента.Мы также рассмотрим некоторые связанные часто задаваемые вопросы, чтобы лучше понять статор.

Эта статья содержит

Начнем.

Что такое статор?

Статор — это неподвижная часть вращающихся электромагнитных устройств, таких как генератор переменного тока, электродвигатель или генератор.

Вы могли слышать, что термин «статор» взаимозаменяемо используется с «генератором переменного тока» или «генератором», даже если он составляет только часть этих более крупных устройств.Особенно это заметно, когда речь идет о генераторе мотоцикла, который чаще называют статором.

Его основная конструкция состоит из внешней рамы, сердечника и обмотки.

Внешняя рама статора поддерживает сердечник статора. Сердечник статора обычно представляет собой тонкие стальные пластины, вставленные в обмотку статора, а обмотка статора (или катушка статора) изготовлена ​​из изолированного медного провода.

При подаче электрического тока сердечник статора и обмотка статора вместе становятся электромагнитом.

Далее, давайте посмотрим, что делает этот электромагнитный компонент.

Что делает статор?

Энергия течет через статор к вращающемуся ротору и обратно.

Статор всегда неподвижен , пока ротор вращается внутри него или вокруг него.
Таким образом, статор может действовать как:

  • Обмотка возбуждения (катушка возбуждения или магнит возбуждения), в которой вращающееся магнитное поле статора приводит в движение якорь ротора для создания движения .
  • Якорь, в котором катушки движущегося поля на роторе воздействуют на статор до , создавая выход .

Вот что делает статор в обычном оборудовании:

  • Электродвигатель: В двигателе (двигателе переменного тока или двигателе постоянного тока) обмотка возбуждения статора создает сильное магнитное поле для привода вращающегося ротора, производящего рабочее движение.
  • Генератор переменного тока или генератор: В этих устройствах статор преобразует вращающееся магнитное поле ротора в электрический ток.

Статор не ограничивается электродвигателями, хотя его конструкция может немного отличаться в других системах. В гидродинамических системах (таких как гидротрансформатор) статор направляет поток жидкости к вращающемуся ротору турбины системы или от него.

А в некоторых устройствах статор представляет собой массив постоянных магнитов вместо электрической катушки. Вы можете увидеть это в некоторых типах автомобильных стартеров.

Мы рассмотрели основы статора.
Теперь давайте рассмотрим некоторые часто задаваемые вопросы по статору.

Вот ответы на некоторые вопросы о статоре, которые могут у вас возникнуть:

1. Как работают статор и ротор?

Чтобы получить общее представление о совместной работе статора и ротора в электрической машине, давайте рассмотрим типичный асинхронный двигатель:

A. Как работает статор

В раме статора находится сердечник статора, на который намотана катушка статора.

Обмотка катушки статора обычно изготавливается из магнитопровода (обычно изолированного алюминиевого или медного провода).Электромагнитное поле создается, когда переменный ток (AC) подается на обмотку катушки.

Переменный характер тока изменяет полярность полюсов статора в магнитном поле, заставляя магнитное поле (а не статор) вращаться. В зависимости от устройства обмотки катушки статор обычно может иметь 2, 4 или 6 полюсов статора.

B. Как работает ротор

Ротор — это подвижный электрический компонент двигателя.
Как и статор, вращающийся ротор также имеет сердечник ротора и обмотку ротора.

Наиболее распространенный тип конструкции ротора электродвигателя называется беличьей клеткой из-за его формы.
В роторе с короткозамкнутым ротором сердечник ротора представляет собой цилиндр из стальных пластин с заделанными в его поверхность медными или алюминиевыми проводниками (представляющими собой обмотку ротора).

Когда движущееся магнитное поле статора пересекает проводники ротора, оно индуцирует ток. Этот ток создает магнитное поле вокруг проводников ротора. Поскольку магнитное поле в статоре смещает полюса, то же самое происходит и с магнитным полем в роторе, и именно это взаимодействие приводит во вращение ротор.

2. Является ли статор мотоцикла таким же, как автомобильный генератор?

Почти то же самое, но не совсем.
Автомобильный генератор переменного тока представляет собой автономный компонент , установленный снаружи, который создает выход постоянного тока (DC). Это универсальный блок, который вырабатывает необходимую мощность автомобиля.

Для меньшего мотоцикла требуется более простая система, чем для обычных автомобильных генераторов. «Генератор» мотоцикла чаще называют «статором» и сопровождается регулятором/выпрямителем.

Для выработки электроэнергии переменного тока статор работает с ротором, известным как маховик. Мощность переменного тока преобразуется в постоянный ток через выпрямитель, а регулятор регулирует напряжение на аккумуляторе.

Статор мотоцикла обычно расположен внутри двигателя и считается его частью . Регулятор/выпрямитель обычно находится в другом месте. Регулятор/выпрямитель может быть двумя отдельными частями в старых велосипедах, но в более современных конструкциях они объединены в один блок.

До статора (и систем генератора) на мотоциклах использовалось магнето. Магнето выполняло ту же функцию, что и статор, в том числе обеспечивало питание свечи зажигания двигателя, но имело более простую форму.

3. Что может вызвать отказ статора мотоцикла?

Вот две наиболее распространенные причины выхода из строя статора мотоцикла:

A. Использование и износ с течением времени

Как и любой электрический компонент, статор подвержен износу.Воздействие вибрации, окружающей среды и меняющихся температур влияет на срок службы статора.

B. Перегрузка по напряжению

Перегрузка по напряжению — еще одна основная причина отказа статора.

Это происходит, когда одновременно работает слишком много электрических аксессуаров — например, одновременное использование фар, GPS, обогреваемых ручек и стереосистемы. Статор должен работать усерднее, чтобы не отставать от потребляемой мощности, и в конечном итоге сгорает.

4. Что такое двигатель переменного тока?

Двигатель переменного тока преобразует переменный ток в механическую энергию .
В двигателе переменного тока мощность переменного тока поступает от магнитных полей, генерируемых обмотками катушки вокруг выходного вала.

Обычно существует два типа двигателей переменного тока:

  • Синхронный: Синхронный двигатель вращается с той же скоростью, что и частота подаваемого электрического тока. Его обмотка якоря питается от источника переменного тока, а обмотка возбуждения — от источника постоянного тока.
  • Асинхронный (асинхронный): Асинхронный двигатель — простейший электродвигатель.Электрический ток, необходимый для создания крутящего момента в якоре ротора, индуцируется вращающимся магнитным полем обмотки возбуждения статора.

Двигатель переменного тока может иметь трехфазную или однофазную конфигурацию.
Трехфазные двигатели обычно используются для промышленного преобразования мощности, в то время как однофазные двигатели переменного тока часто используются дома и в офисе, например, в водонагревателях или садовом оборудовании.

5. Что такое двигатель постоянного тока?

Двигатель постоянного тока преобразует постоянный ток в механическую энергию .
Двигатель постоянного тока обычно состоит из статора, ротора, якоря и коллектора со щетками.

В двигателе постоянного тока массив магнитов работает как статор, якорь размещен на роторе, а коммутатор переключает поток постоянного тока с одной катушки на другую.

Существует два типа двигателей постоянного тока:

  • Коллекторный двигатель постоянного тока: В этих двигателях заряд и полярность щеток на коллекторе определяют скорость и направление вращения двигателя.
  • Бесщеточный двигатель постоянного тока. Бесщеточные двигатели новее, чем щеточные двигатели постоянного тока, но устроены так же — без щеток.Они используют специализированную схему для управления скоростью и направлением двигателя.

Двигатели постоянного тока питаются от батарей или другого источника питания, генерирующего постоянное напряжение, и обеспечивают лучшее изменение скорости и управление с большим крутящим моментом, чем двигатели переменного тока.

Вы найдете их в самых разных бытовых приборах, от электрических бритв до окон электромобилей.

Заключительные мысли

Статор может иметь несколько иное значение, в зависимости от того, рассматривается ли он с точки зрения владельца мотоцикла или чисто электрического двигателя.Владелец автомобиля может вообще не знать об этом, так как это просто часть более известного генератора переменного тока.

Несмотря на это, очевидно, что статор имеет решающее значение для общей работы любого электродвигателя.
Хотя это не электрический компонент, который легко выходит из строя, в следующий раз, когда ваш автомобильный генератор выйдет из строя, это вполне может быть больной статор.

Но не волнуйтесь.
При любых проблемах с автомобилем вы всегда можете рассчитывать на помощь RepairSmith.

RepairSmith — это мобильное решение для ремонта и технического обслуживания автомобилей, доступно 7 дней в неделю . Онлайн-бронирование без проблем , все ремонты и исправления проводятся с использованием высококачественных инструментов и запчастей , а также 12-месячный | Гарантия 12 000 миль .

Просто свяжитесь с ними, и их сертифицированный ASE механик будет прямо у вашего подъезда, чтобы помочь вам!

Что такое статор? — РевЗилла

Если вы нажмете на эту статью, я предполагаю, что у вас возникла проблема с электричеством, и вы хотите понять, что пошло не так (возможно, чтобы вы могли ее починить).Если нет, то поздравляю с активностью!

Ваш статор является довольно важной частью электрической системы вашего велосипеда. Проще говоря, если вы едете на современном велосипеде, ему нужно много электричества. Освещение, зажигание, топливный насос и стартер потребляют различное количество энергии. Проще говоря, эту мощность обеспечивает батарея. Батарея бы быстро разрядилась, если бы не звезда шоу системы зарядки, статор. Думайте о своем статоре как об элементе, который вырабатывает электричество для поддержания заряда аккумулятора, чтобы все электрические устройства на вашем велосипеде работали.

Краткая версия этой статьи

В мире мотоциклов:

«Статор» часто используется для обозначения «вещи, которая выбрасывает электричество переменного тока на современном велосипеде, которое обычно сгорает, потому что магнит на стальном маховике на самом деле не портится».

«Генератор» означает «цилиндрическую банку, которая обычно приводится в движение косвенно от кривошипа (но иногда вращается с помощью ремня), которая вырабатывает энергию постоянного тока и имеет внутри якорь, коммутатор и катушки возбуждения постоянного магнита, с дискретный регулятор, расположенный в другом месте.

«Альтернатор» обычно небрежно называют «электрическим блоком с ременным или цепным приводом, который выглядит как автомобиль и вырабатывает огромное количество электроэнергии постоянного тока со статором, ротором, регулятором и выпрямителем, заключенными в одном компактном корпусе». Корпус.»

А «магнето» — это, как правило, «автономная вещь на старом байке или чоппере, которая упрощает проводку и дает искру, поэтому можно отказаться от батареи, если мотоцикл также оснащен генератором.

Более длинная версия

Как видно из приведенного выше раздела, вы можете слышать, как термины «генератор», «статор» и «генератор переменного тока» используются с большой небрежностью. Все эти предметы использовались на мотоциклах, и все они выполняют (вроде) одну и ту же функцию. Давайте быстро совершим экскурс в историю и поговорим о различиях между ними, чтобы вы знали, почему у вас есть статор, и чем он отличается от других устройств, вырабатывающих электричество, и почему связанный с ним жаргон немного сбивает с толку.

Магнето. Думайте об этом как об автономном искровом ящике с механическим приводом. Это более поздний магнето, установленный на более ранний мотоцикл, который когда-то был оснащен таймером, но когда-то магнето были оригинальными деталями. Фото Лемми.

В самых ранних мотоциклах использовалось магнето (небольшая изолированная система, управляемая двигателем) для создания искры, необходимой для подачи электричества, необходимого свече зажигания для зажигания. Эта очень ограниченная система работала, потому что на мотоцикле того времени не было большого спроса на электроэнергию.В то время не существовало огней, а позже они работали на ацетилене.

Тем не менее, электрические гиго не могли не перебраться на мотоциклы. Тогда райдеры хотели первоклассные технологии, как и сегодня. Добавление звуковых сигналов и электрического освещения, например, сделало добавление батареи и системы зарядки почти необходимостью. Аккумуляторы заряжались от генераторов — устройств, вырабатывающих энергию постоянного тока. Они выполняют свою задачу, вращая якорь, компонент, состоящий из катушек медной проволоки, внутри фиксированного магнитного поля.(Генераторы на самом деле вырабатывают энергию переменного тока, но она «выпрямляется» или преобразуется в постоянный ток с помощью коммутатора и внутренних щеток.) ​​Внешне генераторы полагаются на «реле отключения» или переключатель, который отключает генератор от батареи, чтобы не перезарядка. Когда напряжение батареи падает ниже установленного значения, переключатель снова замыкает контакт, позволяя генератору заряжаться.

Забавный факт: катушки возбуждения в генераторе технически являются типом статора, потому что статор относится к неподвижной части генератора электричества.

До начала 1960-х годов большинство мотоциклов имели шестивольтовые системы, но после этого многие мотоциклы стали оснащаться 12-вольтовыми электрическими элементами. Причина этого была связана в первую очередь с возросшей мощностью двигателя. Чтобы сделать мотоциклы более мощными, степень сжатия была увеличена. Стартерам требовалась большая мощность для вращения двигателей, и более высокое напряжение могло помочь обеспечить эту мощность. Затем в течение короткого времени производились генераторы в вариантах на 12 В.

Вот шестивольтовый генератор с крепежными болтами.Как видите, устройство несколько автономно. Фото Лемми.

Генераторы на мотоциклах часто представляют собой автономные устройства. Они довольно длинные и тяжелые, и в большинстве мотоциклов того времени они располагались дистанционно и обычно приводились в движение шестернями или ремнем. Для большинства мотоциклов генераторы были заменены генераторами в конце 1960-х — 1970-х годах.

Генератор переменного тока, который является типом генератора, производит электричество, вращая магнитное поле («ротор», часть, которая выполняет эквивалентную функцию якоря) внутри (или вокруг) статора, неподвижной части, которая содержит обмотки из меди. провод, помнишь? Это что-то вроде флипси-маргаритки от предмета, который в мотоциклетном мире называют генератором, если вы помните.

Это вторая часть генератора, ротор. Видите бутерброд из черных вещей по внешней окружности? Это магниты. Ревзилла фото.

В мире мотоциклов генераторы переменного тока производят переменный ток, и они немного более эффективны. Их упаковка позволяет устанавливать их непосредственно на выходной вал двигателя, что обеспечивает большую экономию веса, простоты и трудозатрат на сборку. Многие генераторы переменного тока (хотя далеко не все) используют магнитное поле, а не постоянные магниты, как в генераторе.Это означает, что выходную мощность можно варьировать, что обычно приводит к более сильному заряду при низких оборотах двигателя. Недостатком этого является то, что для производства электричества требуется электричество, поэтому вам нужно будет использовать аккумулятор на этих велосипедах. (Как сказал мой друг, когда я писал эту статью: «Чтобы делать деньги, нужно тратить деньги!»)

Поскольку генераторы переменного тока производят энергию переменного тока, ее необходимо преобразовать в постоянный ток с помощью… как вы уже догадались, выпрямителя! Современный выпрямитель представляет собой серию диодов, которые преобразуют переменный ток в постоянный.После этого электричество поступает на регулятор напряжения, который… готов к этому? Он регулирует напряжение, поэтому его можно использовать для зарядки 12-вольтовой батареи вашего мотоцикла.

И здесь у нас есть статор, спрятанный внутри ротора. Часть, обращенная к камере, здесь обычно прикручена к велосипеду, и ротор закрывает ее. Это был бы вид, который вы бы увидели, если бы стояли внутри двигателя. Ревзилла фото.

Обратите внимание, что эти четыре части — статор, ротор, регулятор и выпрямитель — могут быть упакованы вместе или по отдельности.Статор и ротор обычно расположены бок о бок из-за необходимости вращения одного вокруг другого. Обратите внимание, что вместе статор и ротор составляют генератор переменного тока, который является типом генератора. Кристально чистый, правда?

Регулятор и регистратор также часто упаковываются вместе, но эти два элемента могут жить отдельно — и перемещение хорошо работает на мотоциклах, потому что позволяет инженерам немного легче собрать «головоломку». Такая система с отдельным блоком reg/rec обычно называется «stator».

В некоторых велосипедах, особенно в туристических машинах, используется версия этой системы, в которой все хранится в одном контейнере, обычно называемом генератором переменного тока. Хотя предыдущая система, которую мы обсуждали, полностью представляет собой генератор переменного тока, эта номенклатура в мире мотоциклов часто зарезервирована для пакета «все в одном».

Теперь, когда вы прошли через всю эту историю, вы знаете, что на самом деле означают эти термины. Теперь, если кто-то скажет вам, что его статор сгорел, вы будете знать, что он просто имеет в виду, что штука, которая заряжает аккумулятор, взяла выходной, предполагая, что у него действительно есть статор.А если нет, то можно объяснить почему.

Конструкция, принцип работы и его применение

Мы знаем, что на рынке доступны различные типы двигателей, которые используются в различных приложениях в зависимости от их функции. День за днем ​​их производительность также может повышаться благодаря материалам, используемым в этих типах двигателей. Материалы, используемые во всех двигателях, не одинаковы, но меняются в зависимости от их типа.Но производительность двигателя можно улучшить с помощью методов оптимизации как статора, так и ротора. В электрических машинах, таких как двигатели и генераторы, статор является наиболее важной частью. Поток тока может подаваться от вращающейся части системы. В этой статье обсуждается обзор статора и его работы.


Что такое статор?

Определение: Двигатель с неподвижной частью называется статором с несколькими обмотками. Как только к нему подается переменный ток, полярность статора будет автоматически постоянно меняться.Всякий раз, когда на это подается питание, переменный ток будет подаваться через обмотки для создания электромагнитного поля на стержнях в роторе. Таким образом, магнитное поле будет вращаться из-за переменного тока. Это тонкие, а также многослойные пластины, намотанные с помощью изолированного провода. При этом сердцевина включает в себя количество уложенных друг на друга слоев. Схема статора показана ниже.

статор в двигателе

Статор двигателя может быть изготовлен из алюминия мощностью до 22 кВт, а двигатели высокой мощности имеют чугунный корпус.Основная функция этого заключается в обработке напряжений, различных частот, выходов и нестабильных полюсов.

Принцип работы

Принцип работы статора заключается в том, что из-за трехфазного питания он будет генерировать вращающееся магнитное поле. Функция этого будет меняться в зависимости от таких машин, как двигатель, генератор и устройства с гидравлическим приводом. В двигателе он создает вращающееся магнитное поле для привода вращающегося якоря. В генераторе он превращает вращающееся магнитное поле в электрический ток.Точно так же в устройствах с гидравлическим приводом он направляет поток жидкости в направлении вращающейся части системы.

Конструкция статора

Конструкция может быть выполнена с использованием пластин из легированной стали с высоким статусом для уменьшения потерь на вихревые токи. Наиболее важные части этого могут в основном включать следующее.

  • Внешняя рама
  • Ядро
  • Обмотки
конструкция статора
Внешняя рама

Эта рама является внешней частью двигателя, и ее основная функция состоит в том, чтобы поддерживать машину для основных и внутренних частей.На приведенной выше схеме показана его конструкция.

Ядро

Его сердечник может быть изготовлен из штамповки из кремнистой стали, и его основная функция заключается в удержании неуравновешенного магнитного поля для создания вихревых токов, а также гистерезисных потерь.

В моторе соединение штамповок можно сделать с рамой, где каждую штамповку можно изолировать через небольшое покрытие лаком. Обычно толщина штамповки изменяется от 0,3 мм до 0,5 мм. Соединения пазов могут быть выполнены внутри штамповки.

Обмотки

Сердечник в статоре включает трехфазные обмотки. Эти обмотки получают питание от трехфазной сети. Обмотки внутри него будут содержать шесть клемм, где две из каждой фазы могут быть подключены к клеммной коробке внутри машины.

Статор в двигателе можно ранить на точное число. полюсов в зависимости от скорости двигателя. Если число полюсов велико, скорость двигателя можно уменьшить. Аналогично, если нет.полюсов мало, то скорость двигателя улучшится.

Основное соотношение между скоростью и двигателем можно представить следующим образом. Соединение обмоток внутри двигателя может быть треугольником или звездой.

Ns ∝ 1/p иначе Ns = 120f/p

приложений

Применение/использование статора включает следующее.

  • Работает как полевой магнит в двигателе на основе конструкции вращающегося электродвижущего устройства.
  • Он взаимодействует через якорь для создания движения, в противном случае он может работать как якорь, получая энергию от движущихся катушек ротора.
  • В двигателе создает вращающееся магнитное поле, приводящее в движение вращающийся якорь
  • В генераторе вращающееся магнитное поле превращается в электрический ток.
  • В устройствах с гидравлическим приводом он направляет поток жидкости к вращающейся части системы.

Часто задаваемые вопросы

1).Какова функция статора?

Статор используется для создания магнитного поля в воздушном зазоре электрической машины.

2). Чем отличается статор от ротора?

В двигателе или генераторе статор является неподвижной частью, тогда как двигатель является вращающейся частью.

3). Какой источник питания используется в статоре, а также в роторе?

В статоре используется трехфазное питание, тогда как в роторе используется питание постоянного тока.

4). Какая изоляция в статоре и роторе?

В статоре изоляция тяжелая, а в роторе изоляция слабая.

Итак, это обзор статора, используемого в электрической машине. Это неактивная часть машины. Основная функция этого заключается в создании магнитного поля в воздушном зазоре электрической машины. Как только источник питания подается внутри катушек, может генерироваться магнитное поле, которое подается через воздушный зазор и соединяется с проводником ротора, индуцируя напряжение внутри ротора машины.Из-за связи тока ротора и основного потока может быть создан крутящий момент. Вот вам вопрос, что такое сердечник статора?

Разница между статором и ротором (со сравнительной таблицей)

Статор и ротор являются частями электродвигателя. Существенная разница между ротором и статором заключается в том, что ротор является вращающейся частью двигателя, тогда как статор является неподвижной частью двигателя. Другие различия между статором и ротором показаны ниже в сравнительной таблице.

Корпус статора , сердечник статора и обмотка статора являются частями статора . Рама поддерживает сердечник статора и защищает их трехфазную обмотку. Сердечник статора несет вращающееся магнитное поле, которое индуцирует из-за трехфазного питания.

Ротор расположен внутри сердечника статора . Беличья клетка и ротор с фазовой обмоткой являются типами ротора. Обмотка ротора возбуждается источником постоянного тока. Обмотка возбуждения индуцирует постоянное магнитное поле в сердечнике ротора.

Содержание: статор и ротор

  1. Сравнительная таблица
  2. Определение
  3. Ключевые отличия
  4. Заключение

Сравнительная таблица

Основание для сравнения Статор Ротор
Определение Стационарная часть машины Это вращающаяся часть двигателя.
Детали Внешняя рама, сердечник статора и обмотка статора. Обмотка ротора и сердечник ротора
Источник питания Трехфазный источник питания Источник постоянного тока
Схема обмотки Сложная Простая
Изоляция Тяжелая Менее
Потери на трение Высокая Низкая
Охлаждение Простой Сложный

Определение статора

Статор — это статическая часть двигателя.Основная функция статора заключается в создании вращающегося магнитного поля. Каркас статора, сердечник статора и обмотка статора являются тремя частями статора. Сердечник статора поддерживает и защищает трехфазную обмотку статора. Штамповка из высококачественной кремнистой стали делает сердечник статора.

Определение ротора

Вращающаяся часть двигателя называется ротором. Сердечник ротора и обмотка ротора являются частью ротора. Обмотка ротора возбуждается источником постоянного тока.Беличья клетка и фазовая обмотка являются типами ротора.

Сердечник короткозамкнутого ротора изготовлен из цилиндрического железного сердечника. Сердечник имеет на своей внешней поверхности полукруглую прорезь, на которую надеваются медные или алюминиевые жилы. Проводники замыкаются на концах с помощью алюминиевых или медных колец.

Работа ротора и статора

Статор создает вращающееся магнитное поле из-за трехфазного питания.Если ротор находится в состоянии покоя, то в них индуцируется электромагнитная сила из-за явлений электромагнитной индукции.

Электромагнитная индукция – это явление, при котором ЭДС индуцируется в проводнике с током из-за переменного магнитного поля. В роторе индуцируется ток, который заставляет ротор двигаться.

Ключевые различия между статором и ротором

  1. Статор является неподвижной частью машины, тогда как ротор является подвижной частью машины.
  2. Сердечник статора, обмотка статора и внешняя рама являются тремя частями статора, тогда как сердечник ротора и обмотка возбуждения являются частями ротора.
  3. Трехфазное питание подается на обмотку статора. Ротор возбуждается источником постоянного тока.
  4. Устройство обмотки статора более сложное по сравнению с ротором.
  5. Обмотка статора хорошо изолирована, так как в ней индуцируется высокое напряжение. Принимая во внимание, что ротор имеет низкую изоляцию.
  6. Размер обмотки статора больше для пропускания сильного тока по сравнению с обмоткой возбуждения.
  7. Система охлаждения статора хороша по сравнению с ротором. Поскольку статор неподвижен.
  8. Потери на трение в роторе меньше, чем в статоре из-за его малого веса.

Заключение

Статическая часть машины известна как статор. А вращающаяся часть машины известна как ротор. Ротор размещен внутри сердечника статора.Трехфазный ток подается на обмотку статора, которая создает вращающееся магнитное поле. Ротор вращается внутри вращающегося магнитного поля. Таким образом, ЭДС индуцируется из-за взаимодействия магнитных полей ротора и статора.

Статор — обзор | ScienceDirect Topics

6.3.1 Управление DFIG с обмоткой ротора

Статор DFIG напрямую подключен к сети, а его ротор подключен через преобразователь силовой электроники, рис. 89.Целью контроллера является регулирование активной и реактивной мощности статора посредством переменной частоты и величины напряжения ротора, подаваемого на токосъемные кольца.

Рис. 89. Схема управления ветряной турбиной DFIG.

Силовой преобразователь, как обычно, состоит из двух преобразователей, т. е. преобразователя со стороны машины и преобразователя со стороны сети. Конденсатор звена постоянного тока помещается между ними в качестве накопителя энергии, чтобы поддерживать небольшие колебания напряжения (или пульсации) в напряжении звена постоянного тока. С помощью преобразователя со стороны машины можно управлять крутящим моментом или скоростью DFIG, а также коэффициентом мощности на клеммах статора, в то время как основной задачей преобразователя со стороны сети является поддержание постоянного напряжения в звене постоянного тока.

DFIG описывается дифференциальным уравнением. (48). Для разработки эффективных регуляторов полезно, как упоминалось выше, преобразовать эти уравнения в подходящую несвязанную форму. Это достигается использованием системы отсчета ( d , q ), которая синхронизирована с потоком статора, т. е. ось d совмещена с вектором потока статора. Следовательно:

ψds=ψs,ψqs=0

, а электромагнитный момент определяется выражением:

(76)Te=−pLmLsiqrψs

Динамика потока статора контролируется только напряжением статора.Напряжение статора определяется сетью; поток статора устанавливается очень быстро. Таким образом, можно вывести следующие упрощающие соотношения, учитывая, что поток статора развивается статически и, следовательно, согласно системе отсчета, переносимой векторным напряжением статора, и пренебрегая влиянием сопротивления статора:

ψds=Vs =Vqs=Vgrid voltageVds=ψqs=0

Кроме того, активная и реактивная мощность статора теперь определяется как:

(77)Pst=−VstLmLsiqrt

(78)Qst=Vs2tLs−VstLmLsidr

(7

while:

)ψdrt=Lr−Lm2Lsidrt+VstLmωsLsψqrt=Lr−Lm2Lsiqrt

Ур.(76)–(78) показывают, что в расчете реактивная мощность статора зависит от i dr , а активная мощность статора только от i qr . Затем уравнение (33) упрощается до:

(80)i̇drti̇qrt=-RRσLRωS-pωσ-ωS+pωσ-RRσLRidrtiqrt+01σLR0-LmσLSLR01σLRVstVdrtVqrt

Если уравнение. (80) расширяется:

(81)i̇drt=−RRσLRidrt+ωS−pωσiqrt+1σLRVdrti̇qrt=−ωS+pωσidrt−RRσLRiqrt+1σLRVqrt−LmσLSLRVst

можно отметить, что уравнения по-прежнему разделены.Однако условия связи можно рассматривать как возмущения. Преобразования Лапласа обеих частей уравнения (81) дают:

(82)s+RRσLRIdrs=ωS−pωσIqrs+1σLRVdrs⇒Idrs=s+RRσLR−11σLRVdrs+s+RRσLR−1ωS−pωσIqrs⇒Idrs=HsVVdrs+HIQsIqrs

и

6 (8)0026 +RRσLRIqrs=−ωS+pωσIdrs+1σLRVqrs−LmσLSLRVss⇒Iqrs=s+RRσLR−11σLRVqrs+s+RRσLR−1−ωS+pωσIdrs−LmσLSLRVss⇒Iqrs=HVsVqrs+HIDsIdrs+HVSsVss

Сохранение первых элементов кольца EHSqs . (82) и (83), отдельные ПИ-регуляторы для i qr и i dr могут быть разработаны, что приводит к индивидуальному управлению активной и реактивной мощностью с помощью уравнений.(77) и (78) (Петерссон, 2003; Бадрельдиен и др., 2014).

Для расчета текущих точек статора, I I QR 1 и I DR DR , первое обратите внимание, что реактивная мощность обычно поддерживается на 0. Таким образом, от уравнения. (78) мы получаем:

idr⁎=−VsLm

Чтобы установить задание квадратурного тока статора, уравнение. (76) используется. Это дает:

(84) TET = -Plmlsiqrtψst ⇒ queqr⁎ = -lsplmψste⁎

Следовательно, I QR qr получают через T E .Поток статора не может быть измерен непосредственно и обычно оценивается следующим образом: (9):

ITDDωTDT = TMT-TET

в устойчивом состоянии, производное время исчезает, отсюда, T M = T E = P M / ω м . Подставляя в уравнение(84), дает:

(85)iqr⁎=−LspLmψˆsPm⁎ωm⁎

, где P m определяется уравнением. (50) и ω * по уравнению. (53).

Примечательно, что электрика ( Ω E = ω S ) и Механический ( Ω м = ω ) Скорость должна быть доступна для система управления (измеренная), поскольку они необходимы в соответствующих преобразованиях парка (Sarwar Kaloi et al., 2016). Кроме того, напряжение статора, В S , также необходимо, чтобы завершить член возмущения в уравнении. (81).

Полная система управления мощностью DFIG показана на рис. 90.

Рис. 90. Блок-схема управления DFIG (график v от ω* подробно показан на рис. 77).

Статор против ротора | Отличие статора от ротора

В этой статье описываются различия между статором и ротором. Перед сравнением давайте посмотрим на их определения.

Что такое статор?

Статор — сборка неподвижных частей, выполняющих функцию поддержки, хотя бы частично, двигателя, но в основном составляющая часть магнитопровода, включающая обмотки индуктора, размещенные в специальных пазах, выполненных в соответствии с его внутренней поверхностью .

Статор состоит из сплава кремнистой стали или стальных пластин, изолированных друг от друга. От его структуры зависит, насколько сильно на него влияют переменные во времени магнитные потоки, вызывающие потери из-за гистерезиса (связанного с нелинейным намагничиванием материала) и индуцированных «вихревых токов».

В прорези, полученные в структуре пластин, вставляются три первичные обмотки (каждая из которых состоит из большего количества катушек, по-разному соединенных между собой), к которым прикладывается напряжение питания и которые генерируют магнитное поле. Обмотки трехфазного статора могут быть соединены звездой или треугольником; это может быть достигнуто с двигателями, оснащенными клеммной коробкой с 6 клеммами, чтобы можно было питать один и тот же двигатель с разными напряжениями трехфазной сети.Примером двойной индикации может быть 230VΔ – 400VY или 400VΔ – 690VY, где символ Y или Δ относится к соединению обмоток статора; например, при рассмотрении второго случая (400VΔ – 690VY) указание означает, что обмотки двигателя треугольником можно подключать к трехфазной сети на 400В (фазные напряжения), тогда как, если для того же двигателя обмотки соединены звездой, сам двигатель может быть подключен к сети напряжением 690В (обмотки звезды должны быть подвергнуты уменьшенному в 3 раза сетевому напряжению).

Что такое ротор?

Ротор является вращающейся частью двигателя и находится внутри статора.

Как и статор, сердечник ротора состоит из стальных листов, ламинированных электрически. Внутри пазов ротора находятся алюминиевые обмотки, отлитые вместе с короткозамыкающими кольцами.

Это делается путем проделывания отверстий в пластинах, чтобы при их укладке в сердечник ротора образовывались каналы. Во время литья эти каналы заполнятся алюминием и образуют обмотки, которые вместе с кольцами короткого замыкания имеют форму беличьей клетки.Отсюда и название асинхронный двигатель с короткозамкнутым ротором.

Обмотки внутри ротора не идут прямо, а нанизываются для уменьшения электрического шума и вибрации. Сердечник ротора помогает проводить магнитное поле от статора к обмоткам ротора.

Между статором и ротором имеется воздушный зазор, а поскольку известно, что воздух плохо проводит магнитные поля, зазор не может быть слишком большим. Воздушный зазор также не может быть слишком маленьким, так как металлические предметы расширяются при нагревании, и по мере нагревания ротора не будет достаточно места для его вращения внутри статора.Обмотки ротора также можно назвать стержнями ротора.

Различия между статором и ротором

Особенность

Статор

Ротор

Определение

Неподвижная часть двигателя.

Это вращающаяся часть двигателя.

Запчасти

Три основные части статора включают сердечник статора, обмотку статора и внешнюю раму.

Две основные части ротора включают сердечник ротора и обмотку возбуждения.

Поставка

Трехфазное питание подается на обмотку статора.

Ротор подключен к источнику постоянного тока
.

Устройство обмотки

Схема обмотки статора более сложная.

Устройство обмотки ротора простое.

Изоляция обмотки

Обмотка статора хорошо изолирована, так как в ней индуцируется высокое напряжение.

Обмотка ротора имеет плохую изоляцию.

Потери на трение

Высокие потери на трение статора.

Низкие потери на трение ротора.

Охлаждение

Система охлаждения статора простая.

Система охлаждения ротора сложная.

Размер

Размер обмотки статора велик для пропускания сильного тока.

Размер обмотки ротора мал.

Продолжить чтение

Что такое статор? (с картинками)

Статор — это статическая часть вращающихся электромагнитных устройств, таких как электродвигатели, генераторы переменного тока и генераторы.Он представляет собой один из двух основных компонентов устройства, второй — движущийся ротор, обеспечивающий рабочий выход. В зависимости от конструкции устройства статор может выполнять роль якоря или обмотки возбуждения конкретного устройства. В любом случае он все время остается неподвижным, пока ротор вращается либо вокруг него, либо внутри него.

Вращающиеся электромагнитные машины, такие как электродвигатели и генераторы, состоят из двух основных компонентов, которые, в зависимости от рассматриваемой конкретной конструкции, выполняют одну из двух важнейших функций.Двумя основными компонентами являются вращающийся ротор и неподвижный статор. В случае двигателя ротор является частью устройства, обеспечивающего рабочее движение, которое машина должна производить. В генераторах переменного тока и генераторах ротор является элементом, к которому прикладывается рабочее движение внешнего источника энергии, как это видно в автомобильном генераторе переменного тока. В обоих случаях статор остается неподвижным по отношению к вращающемуся ротору все время во время работы.

Независимо от того, является ли соответствующая машина устройством вывода движения, таким как двигатель, или источником выходной электрической энергии, таким как генератор, статор и ротор выполняют одну из двух основных функций в рабочем цикле.Первый — это полевой прибор или полевая катушка, как его часто называют. Эта часть машины создает сильное магнитное поле благодаря массиву постоянных магнитов или электрической катушке. Функция второго элемента рабочего цикла — арматура. Это часть машины, с которой взаимодействует магнитное поле, чтобы обеспечить выход устройства.

Во многих устройствах обе части могут выполнять роль полевого устройства или арматуры.Например, большой промышленный двигатель будет иметь катушку возбуждения, расположенную внутри статического внешнего компонента статора, а якорь представлен многослойным стальным сердечником, окружающим ротор, который вращается внутри статора. С другой стороны, небольшой бесщеточный двигатель постоянного тока (DC), приводящий в действие вентилятор охлаждения компьютера, будет иметь катушку возбуждения, намотанную вокруг центрального статора. Компонент ротора, в отличие от предыдущего примера, будет вращаться вокруг статического компонента снаружи.Однако в обоих случаях статор всегда является статическим элементом машины.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *