Кто изобрёл электричество? — История изобретений
Как и другие великие изобретения, открытие электричества заняло тысячи лет, так как было достаточно сложно разработать правильную теорию, объясняющую суть феномена. Учёные-физики объединили магнетизм и электричество, пытаясь выяснить, как эти силы способны притягивать предметы, вызывать онемение частей тела и даже вызвать пожары. В этой статье вы узнаете, когда изобрели электричество и историю электричества.
Было три основных факта проявления электрических сил, которые привели учёных к изобретению электричества: электрические рыбы, статическое электричество и магнетизм. Древнеегипетские врачи знали об электрических разрядах, которые генерировал нильский сом. Они даже пытались использовать измельчённого до порошка сома как лекарство. Платон и Аристотель в 300-х годах до н.э. упоминали об электрических скатах, которые оглушают электричеством людей. Преемник их идей Теофраст знал, что электрические скаты могут оглушить человека, даже не прикасаясь к нему напрямую, посредством мокрых конопляных сетей рыбаков или их трезубцев.
Плутарх добавил новую информацию о скатах (читайте также статью о животных, способных чувствовать и генерировать электромагнитное поле):
те, кто экспериментировал с ним, сообщают, что если его выбрасывает на берег живым, а вы будете лить на него воду сверху, то можете почувствовать онемение, восходящее по руке, и притупление чувствительности от прикосновения воды. Кажется, будто рука оказалась чем-то инфицирована.
Плиний Старший продвигается дальше в изучении скатов и отмечает новую информацию, связанную с проводимостью электричества различными веществами. Так, он обратил внимание на то, что металл и вода проводят электричество лучше, чем всё остальное. Также он обратил внимание на ряд целебных свойств при поедании скатов. Такие римские врачи, как Скрикониус Ларгус, Диоскуридес и Гален, начали использовать скатов, чтобы лечить хронические головные боли, подагру и даже геморрой. Гален полагал, что электричество ската как-то связано со свойствами магнетита.
Около 1000 шода нашей эры ибн Сина также выяснил, что электрические удары скатов могут излечить хроническую головную боль. В 1100-х годах ибн Рушд в Испании писал о скатах и о том, как они могут вызвать онемение у рук рыбаков, даже не трогая сеть. Ибн Рашд пришёл к выводу, что эта сила оказывает такой эффект лишь на некоторые предметы, в то время как другие могли спокойно пропускать её через себя. Абд аль-Латиф, работавший в Египте около 1200 года н.э., сообщил, что электрический сом в Ниле может делать то же самое, что и скаты, но намного сильнее.
Другие учёные начали изучать статическое электричество. Греческий учёный Фалес около 630 года до нашей эры знал, что если потереть янтарь о шерсть, а затем коснуться его, то можно получить электрический разряд.
Само слово «электричество», вероятно, происходит из финикийского языка от слова, означающего «светящийся свет» или «солнечный луч», которое греки использовали для обозначения янтаря (др.
-греч. ἤλεκτρον: электрон). Теофраст в 300-х годах до нашей эры знал другой особый камень — турмалин, который притягивает к себе небольшие предметы, такие как кусочки ясеня или меха, если его разогреть. В 100-х годах н.э. в Риме Сенека сделал несколько замечаний о молниях и феномене огней святого Эльма. Уильям Гилберт в 1600 году узнал, что стекло может получить статический заряд, также как и янтарь. По мере колонизации Европа становилась всё богаче, происходило развитие образования. В 1660 году Отто фон Герике создал вращающуюся машину для производства статического электричества.
Огни святого Эльма
Первая электрическая машина Отто Герике. Большой шар из застывшей серы вращается, а учёный прижимает к нему руку или шерсть, чтобы наэлектризовать его.
В третьем направлении изучения электричества учёные работали с магнитами и магнетитом. Фалес знал, что магний способен намагнитить железные прутья. Индийский хирург Сушрута около 500 г. до н.э. использовал магнетит для хирургического удаления железных осколков.
Около 450 г. до н.э. Эмпедокл, работавший в Сицилии, считал, что, возможно, невидимые частицы каким-то образом тянули железо к магниту, подобно реке. Он сравнивал это с тем, как невидимые частицы света проникают к нам в глаза, чтобы мы могли видеть. Философ Эпикур последовал за идеей Эмпедокла. Между тем в Китае учёные тоже не сидели без дела. В 300-х годах н.э. они также работали с магнитами, используя недавно изобретённую швейную иглу. Они разработали способ изготовления искусственных магнитов, а около 100 г. до н.э. они изобрели магнитный компас.
Магнетит
В 1088 году н.э. Шэнь Го в Китае писал о магнитном компасе и его способности находить север. К 1100-м годам китайские корабли были оснащены компасами. Около 1100 года н.э. исламские астрономы также переняли технологию изготовления китайских компасов, хотя в Европе к этому времени это уже было нормальным явлением, когда их упоминал Александр Некем в 1190 году. В 1269 году, вскоре после создания Неаполитанского университета, когда Европа стала ещё более развитой, Питер Перегрин на юге Италии написал первое европейское исследование о магнитах.
Ульиям Гилберт в 1600 году понял, что компасы работают потому, что сама Земля представляет из себя магнит.
Примерно в 1700 году эти три направления исследований начали объединяться, поскольку учёные увидели их взаимосвязь.
В 1729 году Стивен Грей показывает, что электричество можно передавать между вещами, соединяя их. В 1734 году Шарль Франсуа Дюфе понял, что электричество способно притягивать и отталкивать. В 1745 году в городе Лейден учёным Питером ван Мушенбруком и его учеником Кюнеусом создана банка, которая может хранить электроэнергию и сразу же разряжать её, тем самым став первым в мире конденсатором. Бенджамин Франклин начинает свои собственные эксперименты с батареями (как он их называет), которые способны хранить электричество, постепенно разряжая их. Также он начал свои эксперимент с электрическими угрями и прочим. В 1819 году Ганс Христиан Эрстед понял, что электрический ток может влиять на стрелку компаса. Изобретение электромагнита в 1826 году начинает эру электрических технологий, таких как телеграф или электрических двигатель, способный экономить нам массу времени и изобретать другие машины.
Лейденская банка
история возникновения, век и год изобретения
Электричество — это вид энергии, которую не требовалось изобретать, а только обнаружить и изучить. История отдает должное первооткрывателю Бенджамину Франклину, именно его эксперименты помогли установить связь между молнией и электричеством. Хотя на самом деле, правда об открытии электроэнергии намного сложнее, поскольку в ее истории не существует единого определяющего момента, дающего прямой ответ на вопрос, кто изобрёл электричество.
История
То, как люди стали производить, распределять и использовать электроэнергию и устройства, на которых протекают процессы генерации, является кульминацией почти 300 летней истории исследований и разработок электричества.
История открытияСегодня ученые считают, что человечество начало использовать электроэнергию намного раньше. Примерно в 600 году до н.
Кроме того, исследователи и археологи в 1930-х годах обнаружили горшки с листами меди внутри, и объяснили их происхождение, как древние батареи, предназначенные для получения света в древнеримских местах. Подобные устройства также были найдены в археологических раскопках возле Багдада, а это означает, что древние персы также могли открыть конструкцию ранней формы батарей.
Кто изобрёл электричествоК 17 веку было сделано много открытий, связанных с электричеством, таких как изобретение раннего электростатического генератора, разграничение положительных и отрицательных зарядов и классификация материалов в качестве проводников или изоляторов.
Важно! В 1600 году английский врач Уильям Гилберт использовал латинское слово «electricus», чтобы описать силу, которую некоторые вещества создают, если их потереть друг с другом.
Чуть позже другой английский ученый Томас Браун, написал несколько книг с использованием термина «электричество», чтобы описать свои исследования, основанные на работе Гилберта.
Кто изобрел электричество
Изобретение электричества в 19 веке стало возможным благодаря открытиям целой плеяды великих ученых. В 1752 году Бен Франклин провел свой эксперимент с воздушным змеем, ключом и штормом. Это просто доказало, что молния и крошечные электрические искры — это одно и то же.
Эксперимент Бена ФранклинаИтальянский физик Алессандро Вольта обнаружил, что определенные химические реакции могут производить электричество, а в 1800 году он создал гальванический элемент, раннюю электрическую батарею, вырабатывающую постоянный электроток. Он также выполнил первую передачу тока на расстояние, связав положительно и отрицательно заряженные разъемы и создав между ними напряжение. Поэтому многие историки считают, что 1800 — это год изобретения электричества.
В 1831 году электричество стало возможно использовать в технике, когда Майкл Фарадей создал электродинамо, решившее на практике проблему генерирования постоянного электротока.
Довольно простое изобретение с использованием магнита, перемещавшегося внутри катушки из медного провода, создавал небольшой ток, протекающий через провод. Оно помогло американцу Томасу Эдисону и британскому ученому Джозефу Свону, каждому в отдельности, примерно в одно время в 1878 году изобрести лампу накаливания. Сами лампочки для освещения были изобретены другими исследователями, но лампа накаливания была первым практичным устройством, дававшем свет в течение нескольких часов подряд.
В 1800-х и в начале 1900-х годов, сербско-американский инженер, изобретатель и мастер электротехники Никола Тесла стал одним из авторов зарождения коммерческого электричества. Он работал совместно с Эдисоном, сделал много революционных разработок в области электромагнетизма и хорошо известен своей работой с двигателями переменного тока и многофазной системой распределения энергии.
Обратите внимание! Русский ученый и инженер А. Н. Лодыгин изобрел и запатентовал в 1874 г.
лампу освещения, где функцию нити накаливания выполнял угольный стержень, размещенный в вакуумной среде сосуда, изготовленного из стекла. Это были первые лампочки освещения в России. Только через 16 лет в 1890-х гг. он применил нить из тугоплавкого металла — вольфрама.
Однозначно нельзя заявить в каком году появился свет. Несмотря на то, что многие историки считают что лампочка была изобретена американцем Эдисоном, тем не менее первая лампа с платиновой нитью накаливания в вакуумном стеклянном сосуде была изобретена в 1840 изобретателем из Англии Де ла Рю.
Дополнительная информация. Российскому ученому П. Н. Яблочкову россияне были благодарны за возникновение электродуговой лампы и хотя ресурс ее работы не превышал 4 часов, осветительный прибор широко использовался на территории Зимнего дворца почти 5 лет.
Электродуговая лампа П.Н.ЯблочковаКто является основоположниками науки об электричестве
Вот список некоторых известных ученых, сделавших свой вклад в развитии электроэнергии.
Основоположниками науки об электричестве являются:
- Французский физик Андре Мари Ампер, 1775-1836, работавший по электромагнетизму. Единица тока в системе СИ — ампер, названа в его честь.
- Французский физик Чарльз Августин из Кулона, 1736-1806, который был пионером в исследованиях трения и вязкости, распределения заряда на поверхностях и законов электрической и магнитной силы. Его именем названа единица заряда в системе СИ — кулон и закон Кулона.
- Итальянский физик Алессандро Вольта, 1745-1827, тот кто изобрел источник постоянного тока, награжден Нобелевской премией по физике 1921 года, в системе СИ единица напряжения — вольт, названа в его честь.
- Георг Симон Ом, 1789-1854, немецкий физик, первооткрыватель, оказавший влияние на развитие теории электричества, в частности закона Ома. В системе СИ единица сопротивления — ом, названа в его честь.
- Густав Роберт Кирхгоф, 1824-1887, немецкий физик, внесший вклад в фундаментальное понимание электрических цепей, известен своими двумя законами по теории цепей.

- Генрих Герц, 1857-1894, немецкий физик, демонстрирующий существование электромагнитных волн. В системе СИ единица частоты — Герц названа в его честь.
- Джеймс Клерк Максвелл,1831-1879, шотландский математик и физик, сформулировал систему уравнений об основных законах электричества и магнетизма, названную уравнениями Максвелла.
- Майкл Фарадей, 1791-1867, английский химик и физик, основоположник закона индукции. Один из лучших экспериментаторов в истории науки, его обычно считают отцом электротехники. Единица емкости в системе СИ — постоянная Фарадея, названа в его честь.
- Томас Эдисон, 1847-1931, американский изобретатель, имеющий более 1000 патентов, наиболее известен разработкой лампы накаливания.
Теории и законы электричества
Общие законы, регулирующие электричество, немногочисленны и просты и применяются неограниченным количеством вариантов.
Закон ОмаЗакон Ома — ток, проходящий через проводник между двумя точками, прямо пропорционален напряжению между ними.
I = V / R или V = IR или R = V / I
Где:
I — ток через провод в амперах;
V — напряжение, измеренное на проводнике в вольтах;
R — сопротивление провода в Ом.
В частности, он также гласит, что R в этом отношении постоянна, не зависит от тока.
Закон Ватта, подобно закону Ома, подтверждает связь между мощностью (ваттами), током и напряжением: P = VI или P = I 2 R.
Закон Кирхгофа (KCL) доказывает, что суммарный ток или заряд, поступающий в соединение или узел, в точности равен заряду, покидающему узел, поскольку ему некуда деться, кроме как уйти, поскольку внутри узла заряд не может быть поглощён. Другими словами, алгебраическая сумма всех токов, входящих и выходящих из узла, должна быть равна нулю.
Закон Фарадея гласит о том, что индуцированная электродвижущая сила в любой замкнутой цепи равна отрицательному значению временной скорости изменения магнитного потока, заключенного в ней.
Закон Ленца утверждает, что направление тока, индуцированного в проводе изменяющимся магнитным полем по фарадеевскому закону, создаст магнитное поле, противостоящее изменению, которое его вызвало.
Проще говоря, размер эдс, индуцированной в цепи, пропорциональна скорости изменения потока.
Закон Гаусса гласит, что суммарный электрический поток с замкнутой поверхности равен вложенному заряду, деленному на диэлектрическую проницаемость.
Какое было первое электрическое изобретение
В 1731 году в «Философских трудах», издании «Королевского общества», появилась статья, сделавшая гигантский скачок вперед для молодой электротехники. Ее автор английский ученый Стивен Грей (1670-1736), проводя эксперименты по передаче электрического тока на расстояние, случайно обнаружил, что не все материалы обладают способностью передавать электричество одинаково.
Создание Лейденской банкиДалее произошло создание аккумулятора — «Лейденской банки», устройства для хранения статического электричества. Процесс был случайно обнаружен и исследован голландским физиком Питером Ван Мюссенбруком из Лейденского университета в 1746 году и независимо от него немецким изобретателем Эвальдом Георгом фон Клейстом в 1745 году.
Примерно в этот же период русские учёные Г. В. Рихман и М. В. Ломоносов проводили работы по изучению атмосферного электричества.
Когда появилось электричество на территории России
Практически электрическое освещение в России появилось в 1879 на Литейном мосте в Петербурге, а официально — в 1880, с созданием 1-го электротехнического отдела, занимавшегося внедрением электричества в экономику государства. В 1881 Царское село было освещено электрическими фонарями. Лампы накаливания в Кремле в 1881 г осветили вступления на трон Александра III.
Энергетика России 2018Прообраз российской энергосистемы был создан в 1886 г с основанием промышленно-коммерческого общества. В его планы входила электрификация населенных пунктов: улиц, заводов, магазинов и жилых домов. Первая крупная электрическая станция начала свою работу в 1888 г. в Зимнем дворце и на протяжении 15 лет считалась самой мощной в Европе. К 1917 г. в столице уже было электрифицировано около 30% домов. Далее развитие энергетики в СССР шло по плану ГОЭЛРО принятого 22 декабря 1920 года.
Этот день до сих пор отмечается в России и странах СНГ, как День энергетика. План во многом позаимствовал наработки российских специалистов 1916 года. Благодаря ему была увеличена выработка электроэнергии, а к 1932 г. она возросла с 2 до 13,5 млрд кВт.
В 1960 г. уровень выработки электроэнергии составил 197.0 млрд. кВт-часов, и далее он продолжал неуклонно расти. Ежегодно в стране вводились новые энергетические мощности: ГРЭС, ТЭЦ, КЭС, ГЭС и АЭС. Суммарная их мощность к концу 1980 составила 266.7 тыс. МВт, а выработка электрической энергии в СССР достигла рекордных 1293.9 млрд. кВт∙ч.
После развала СССР, Россия продолжала наращивать темп развития энергетики, по результатам 2018 года выработка электроэнергии в стране составила −1091 млрд. кВт∙ч, что позволило стране войти в четверку мировых лидеров после Китая, США и Индии.
Кто изобрел электричество?.
Читайте также
9.4. Электричество
9.4. Электричество Существует закон, который гласит, что в квартире все материалы, приспособления, оборудование и электроприборы должны быть выполнены и установлены точно в соответствии с техническими требованиями. Чтобы иметь гарантии безопасности, необходимо
ЭЛЕКТРИЧЕСТВО У ЖИВОТНЫХ
ЭЛЕКТРИЧЕСТВО У ЖИВОТНЫХ Ко второй половине восемнадцатого века изучение электрических явлений уже дало материал для вывода о важной роли электричества в биологии. Опыты Джона Уолша и Ларошеля доказали электрическую природу удара ската, а анатом Гунтер дал точное
Электричество
Электричество
Напряжение в сети составляет 220 V.
Для электрических приборов с другим напряжением, которые невозможно перенастроить, вам понадобится
Электричество
Электричество Напряжение 220 вольт, переменный ток 50 Гц, розетки европейского
8 ЭЛЕКТРИЧЕСТВО
8 ЭЛЕКТРИЧЕСТВО Весь наш современный мир живёт благодаря электричеству. Без электричества мир стал бы другим. Мы не смогли бы пользоваться освещением, лифтами, слушать радио, наслаждаться системами кондиционирования, гулять по всемирной сети Интернета или даже завести
Что такое электричество?
Что такое электричество?
Человек открыл действие электричества довольно давно.
Древние греки знали, что кусочек янтаря, натертый тканью или шерстью, притягивает к себе пылинки.Ты и сам можешь это проверить, если потрешь карандаш о рукав своей шерстяной рубашки, а затем
Кто изобрел электричество?
Кто изобрел электричество? Что касается электричества, то любопытно, что оно изучается в течение многих тысяч лет, а мы до сих пор не знаем точно, что это такое! Сегодня считают, что оно состоит из крошечных заряженных частиц. Электричество, согласно этой теории, движущийся
1.1. Электричество
1.1. Электричество
Электрические явления знакомы человеку с более древних времен, чем магнитные. Вместе с этим очевидно, что люди не объединяли магнитные и электрические явления, не догадывались об их близкой физической природе.
Из электрических явлений, которые были
2.2. Электричество
2.2. Электричество Исследований, которые открыли бы новые явления в области электричества с 1000 по 1599 гг. не было. Упоминавшийся мной большой труд итальянца Джамбаттиста делла Порта [2] содержит описательные разделы, относящиеся к электричеству — но это изложение
Электричество
Электричество Напряжение в сети – 220 В. Розетки европейского образца, поэтому советуем захватить переходник, чтобы не остаться с разряженным
Электричество
Электричество Напряжение в сети – 220 вольт, ток переменный. Для того, чтобы воспользоваться итальянскими розетками, вам понадобится
Электричество
Электричество
Напряжение в сети 220В, розетки предназначены для потребителей с двумя плоскими вилками и не подходят к нашей аппаратуре.
К счастью, проблема легко решается покупкой переходников за символическую сумму, которые продаются в любом
Электричество
Электричество Розетки, соответствующие евростандарту, запитаны переменным током с напряжением 220
Электричество
Электричество Напряжение в сетях равно 220 В, но для розетки необходим переходник. Возьмите лучше всего универсальный, они сейчас представлены в торговле достаточно широко. В Египте также необходимо иметь при себе карманный фонарик, так как здесь бывают перебои с
Эпоха освещения – Власть – Коммерсантъ
Новости вроде объявленного неделю назад решения компаний «Газпром» и «Ренова» объединить электроэнергетические активы и создать крупнейшего производителя электричества традиционно вызывают в России интерес.
Как считает обозреватель «Власти» Сергей Минаев, причина в том, что Россия — самая неосвещенная страна.
Государством, где впервые в истории нашел практическое применение электрический ток, стала Россия. В 1832 году по повелению императора Николая I русский изобретатель Павел Шиллинг фон Канштатт соединил в Петербурге телеграфной линией Зимний дворец и здание Министерства путей сообщения. Если бы императору пришло в голову соединить дворец с Министерством иностранных дел, то служивший там Александр Пушкин мог бы стать первым человеком в мире, с помощью электричества получившим информацию от другого человека, в данном случае от государя. Изобретатель не успел исполнить повеление Николая I соединить электрическим способом также Зимний дворец с Кронштадтом только потому, что умер в 1837 году.
Результат экономического развития Индии хорошо виден из космоса: скоро полуостров Индостан — родина просветления может стать ярче Северной Америки — пионера электроосвещения
Фото: NASA
Однако телеграфия основана на слабом токе. Дальнейшее развитие электротехники в мире пошло по пути использования тока большой силы, и здесь первыми стали другие страны, не полагающиеся на императорское волеизъявление. В 1866 году немец Вернер Сименс изобрел динамо-машину, позволяющую просто и дешево превращать механическую энергию в электрическую и вырабатывать ток прежде невиданной силы. А в 1878 году француз Камилл Фор придумал аккумулятор, позволяющий электроэнергию накапливать. Заметим, что изобретение аккумулятора вызвало у публики невиданный энтузиазм. В технической энциклопедии, изданной в России в 1904 году, указывалось: «Как обычно бывает с новыми изобретениями, о которых много говорят, значение изобретения аккумуляторов оказалось слишком преувеличенным. Его сразу стали считать уже созревшим и законченным, тогда как на это могло потребоваться несколько десятков лет. Мечтали уже о том, что вскоре электричество будет продаваться, как керосин, в мелочных лавках, что экипажи, железнодорожные поезда и т. п. будут приводиться в движение запасом электричества, скопленного в аккумуляторах, что керосиновые лампы будут заменены электрическими, причем резервуар для керосина будет заменен аккумулятором,— словом, выдумывались тысячи различных применений, которые все были бы превосходны, если бы только аккумуляторы были в состоянии выполнить все то, что рассчитывали получить от них».
Как мы видим, идея заменить керосиновое и газовое освещение электричеством к началу 1880-х годов уже овладела массами. И сильный ток позволил ее реализовать. Всех здесь опередили американцы: когда изобретатель Томас Эдисон в 1881 году сделал практически применимой свою лампу накаливания, группа предприимчивых американских финансистов немедленно приобрела в Нью-Йорке участок земли и построила первую в мире центральную электростанцию, обеспечивающую электрическое освещение целого городского района площадью 2,5 кв. км. Для выработки электроэнергии использовались шесть сконструированных Эдисоном паровых динамо-машин мощностью 125 л. с. каждая — такая мощность по тем временам считалась гигантской. К середине 1890-х годов компания Эдисона построила шесть центральных электростанций, дававших ток для 500 тыс. лампочек силой света 16 свечей каждая.
В 1884 году началось электрическое освещение Берлина, им занялось акционерное Немецкое общество Эдисона. Оно купило у городского управления Берлина право прокладки проводов по улицам города и построило одну паровую электростанцию на Маркграфенштрассе, а другую на Мауэрштрассе. Каждая из этих станций снабжала током ограниченный район, но, так как станции были соединены системой проводов, они могли работать через день, поочередно освещая два района сразу. Районы освещения постепенно расширялись, и к концу 1890-х годов вся центральная часть Берлина была покрыта сетью лампочек (в 1885 году было установлено 4880 лампочек, к 1890 году их было уже 92 000, а в 1898 году число берлинских лампочек достигло 615 820).
Коммунистический лозунг электрификации всей страны был реализован в основном в крупных городах. Казань
Фото: NASA
Наконец, в 1889 году американцы придумали вместо пара использовать для приведения в действие динамо-машин падающую воду. К этому их подтолкнули природные условия — наличие Ниагарского водопада. Компания Cataract Construction Co. приобрела право на использование из водопада с американской стороны 200 000 л. с. и с канадской — 205 000 л. с. Вся эта мощность была поделена на динамо-машины мощностью 5000 л. с. каждая. Вырабатываемый ток передавался в различные города, например в Баффало. В итоге к 1897 году в США было уже 5 млн электрических лампочек.
В 1909 году американский инженер Эзра Скаттергуд придумал построить гидроэлектростанцию на реке Колорадо, создав таким образом искусственный водопад для снабжения электричеством Калифорнии. В итоге к 1912 году Калифорния занимала второе место в США по потреблению электроэнергии после Нью-Йорка. К 1924 году в США электрическое освещение имели в среднем 35% домов, в Калифорнии этот показатель составлял 83%. Стоимость киловатт-часа электроэнергии в США в среднем равнялась $2,17, в Калифорнии — $1,42. Власти Калифорнии выдвинули лозунг «Электричество — это путь к здоровью, богатству и счастью человечества». Именно из-за дешевизны электричества американская киноиндустрия, для которой этого электричества нужно очень много, переместилась из Нью-Йорка в калифорнийский Голливуд.
В России электрическое освещение также постепенно развивалось. Российское Министерство финансов в 1900 году с гордостью отметило: «В 1898 и 1899 годах устроилось в Петербурге еще три громадных центральных станций, и в настоящее время мощность всех центральных станций, не считая частных, достигает до 30 000 киловаттов. Число уличных фонарей с дуговыми лампами доходит до 600. Общее число дуговых фонарей, установленных не для уличного освещения и питаемых от частных станций, превосходит 2500».
Коммунистический лозунг электрификации всей страны был реализован в основном в крупных городах. Москва
Фото: NASA
Главную роль в потреблении электрического тока, на этот раз большой силы, сыграл государь император. Голландский предприниматель Антон Филипс (младший сын Фредерика Филипса, основавшего в мае 1891 года в Эйндховене фирму Philips & Co.) в 1898 году прибыл в Россию с целью продажи новомодных ламп накаливания. Через директора одной из петербургских электростанций он познакомился с распорядителем двора, и разговор с этим царедворцем принес ему заказ на 50 000 ламп. Когда он телеграфировал об этом в Эйндховен, там засомневались, не лишний ли один из нулей. Ответ был: «Fifty thousand, funfzig Tausend, cinquante mille». Завод пришлось расширять. Потом Филипс регулярно бывал в России, и русские даже начали звать его Антоном Федоровичем. Благодаря царским деньгам Philips & Co. из маленького голландского предприятия стала крупной европейской фирмой.
В 1919 году Владимир Ленин прочитал только что вышедшую книгу немецкого исследователя Карла Баллода «Государство будущего» («Der Zukunftstaat»), в которой тот проповедовал идею «полностью электрического государства», и в январе 1920 года написал письмо Глебу Кржижановскому, опубликовавшему в газете «Правда» статью «Задачи электрификации промышленности». В письме говорилось буквально следующее: «Нельзя ли добавить план не технический… а политический или государственный, т. е. задание пролетариату? Примерно: в 10 (5?) лет построить 20-30 (30-50?) станций, чтобы всю страну усеять… Начнем-де сейчас закупку необходимых машин… Через 10 (20?) лет сделаем Россию «электрической». Я думаю, подобный «план» — повторяю, не технический, а государственный — проект плана Вы бы могли дать. Его надо дать сейчас, чтобы наглядно, популярно для массы увлечь ясной и яркой (вполне научной в основе) перспективой: за работу-де, и в 10-20 лет мы Россию всю, и промышленную, и земледельческую, сделаем электрической. Доработаемся до стольких-то (тысяч или миллионов лошадиных сил или киловатт?? черт его знает) машинных рабов и проч. Повторяю, надо увлечь массу рабочих и сознательных крестьян великой программой на 10-20 лет».
То, что программа не техническая, а политическая и рассчитана исключительно на удержание большевиками государственной власти, лично выяснил Антон Филипс, который в 1922 году, когда уже был объявлен нэп, приехал в Москву и тут же отписал домой: «Коммунисты — ребята славные. Но только покупать никаких лампочек не хотят».
В 1932 году коммунисты с помощью американских инженеров построили свой аналог Ниагарского водопада — плотину на Днепре, соорудив Днепрогэс. Но когда Фредерик Филипс, сын Антона, в 1939 году прибыл в СССР, чтобы узнать, не поменялось ли после этого отношение советских властей к покупке лампочек, он выяснил, что ничего не изменилось. Как вспоминал Филипс, переговоры шли вяло. Собеседники оживлялись только тогда, когда узнавали, что Карл Маркс работал над «Капиталом» в доме, принадлежавшем деду Филипса. Они поднимали за «Капитал» бесчисленные стопки водки, но электроламп так и не купили.
В дальнейшем советские руководители уделяли развитию электроэнергетики первостепенное значение. В 1981 году на XXVI съезде КПСС Леонид Брежнев заявил: «В 70-е годы в два раза по сравнению с 60-ми годами возросла выработка электроэнергии. К единой энергетической системе страны присоединилась Объединенная энергосистема Сибири. Введены в эксплуатацию уникальные гидроагрегаты на Саяно-Шушенской, Усть-Илимской, Нурекской, Ингурской, Днепровской, Нижнекамской и других гидростанциях. Завершено строительство крупнейших тепловых электростанций — Запорожской и Углегорской. Высокими темпами растет атомная энергетика. В строй действующих вступили новые энергоблоки на Ленинградской, Курской, Белоярской, Армянской и Билибинской атомных электростанциях». Успехи в электроэнергетике товарищ Брежнев увязал с успехами в энергетике в целом, отметив, что в 1970 году в Северо-Западной Сибири было добыто нефти (включая газовый конденсат) 31 млн т, а в 1980 году добыча нефти превысила 312 млн т, добыча газа за этот период возросла с 9,5 млрд до 156 млрд куб. м.
И сейчас российские граждане могут заметить, что успехи того времени в нефтегазовой энергетике хорошо отражаются на нынешнем финансовом состоянии России, а вот тогдашние успехи в электроэнергетике на нынешнюю освещенность России видимого влияния не оказали.
Моя Энергия: История энергетики
/ Популярная энергетика / История энергетикиЭнергия в древности
Современную жизнь невозможно представить без электричества и тепла. Материальный комфорт, который окружает нас сегодня, как и дальнейшее развитие человеческой мысли накрепко связаны с изобретением электричества и использованием энергии.
С древних времен люди нуждались в силе, точнее в двигателях, которые давали бы им силу большую человеческой, для того, чтобы строить дома, заниматься земледелием, осваивать новые территории.
Первые аккумуляторы пирамид
В пирамидах Древнего Египта ученые нашли сосуды, напоминающие аккумуляторы. В 1937 году во время раскопок под Багдадом немецкий археолог Вильгельм Кениг обнаружил глиняные кувшины, внутри которых находились цилиндры из меди. Эти цилиндры были закреплены на дне глиняных сосудов слоем смолы.
Впервые явления, которые сегодня называют электрическими, были замечены в древнем Китае, Индии, а позднее в древней Греции. Древнегреческий философ Фалес Милетский в VI веке до нашей эры отмечал способность янтаря, натертого мехом или шерстью, притягивать обрывки бумаги, пушинки и другие легкие тела. От греческого названия янтаря – «электрон» – это явление стали называть электризацией.
Сегодня нам уже будет нетрудно разгадать «тайну» янтаря, натертого шерстью. В самом деле, почему янтарь электризуется? Оказывается, при трении шерсти о янтарь на его поверхности появляется избыток электронов, и возникает отрицательный электрический заряд. Мы как бы «отбираем» электроны у атомов шерсти и переносим их па поверхность янтаря. Электрическое поле, созданное этими электронами, притягивает бумагу. Если вместо янтаря взять стекло, то здесь наблюдается другая картина. Натирая стекло шелком, мы «снимаем» о его поверхности электроны. В результате на стекле оказывается недостаток электронов, и оно заряжается положительно. Впоследствии, чтобы различать эти заряды, их стали условно обозначать знаками, дошедшими до наших дней, минус и плюс.
Описав удивительные свойства янтаря в поэтических легендах, древние греки так и не продолжили его изучение. Следующего прорыва в деле покорения свободной энергии человечеству пришлось ждать много веков. Зато когда он все-таки был совершен, мир в буквальном смысле слова преобразился. Еще в 3 тысячелетии до н.э. люди использовали паруса для лодок, но только в VII в. н.э. изобрели ветряную мельницу с крыльями. Началась история ветряных двигателей. Водяные колеса использовали на Ниле, Эфрате, Янцзы для подъема воды, вращали их рабы. Водяные колеса и ветряные мельницы вплоть до ХVII века являлись основными типами двигателей.
Эпоха открытий
В истории попыток использования пара записаны имена многих ученых и изобретателей. Так Леонардо да Винчи оставил 5000 страниц научных и технических описаний, чертежей, эскизов различных приспособлений.
Джанбаттиста делла Порта исследовал образование пара из воды, что было важно для дальнейшего использования пара в паровых машинах, исследовал свойства магнита.
В 1600 году придворный врач английской королевы Елизаветы Уильям Гилберт изучил все, что было известно древним народам о свойствах янтаря, и сам провел опыты с янтарем и магнитами.
Кто придумал электричество?
Термин «электричество» ввел английский естествоиспытатель, лейб-медик королевы Елизаветы Уильям Гилберт. Впервые он употребил это слово в своем трактате «О магните, магнитных телах и о большом магните – Земле» в 1600 году. Ученый объяснял действие магнитного компаса, а также приводил описания некоторых опытов с наэлектризованными телами.
В целом практических знаний об электричестве за XVI – XVII столетия было накоплено не так уж много, но все открытия были предвестниками по-настоящему больших перемен. Это было время, когда опыты с электричеством ставили не только ученые, но и аптекари, и врачи, и даже монархи.
Одним из опытов французского физика и изобретателя Дени Папена было создание вакуума в закрытом цилиндре. В середине 1670-х годов в Париже он вместе с голландским физиком Кристианом Гюйгенсом работал над машиной, которая вытесняла воздух из цилиндра путём взрыва пороха в нем.
В 1680 году Дени Папен приехал в Англию и создал вариант такого же цилиндра, в котором получил более полный вакуум с помощью кипящей воды, которая конденсировалась в цилиндре. Таким образом, он смог поднять груз, присоединённый к поршню верёвкой, перекинутой через шкив.
Система работала, как демонстрационная модель, но для повторения процесса весь аппарат должен был быть демонтирован и повторно собран. Папен быстро понял, что для автоматизации цикла пар должен быть произведён отдельно в котле. Французский учёный изобрёл паровой котёл с рычажным предохранительным клапаном.
В 1774 году Уатт Джеймс в результате ряда экспериментов создал уникальную паровую машину. Для обеспечения работы двигателя он применил центробежный регулятор, соединённый с заслонкой на выпускном паропроводе. Уатт детально исследовал работу пара в цилиндре, впервые сконструировав для этой цели индикатор.
В 1782 году Уатт получил английский патент на паровой двигатель с расширением. Он же ввёл первую единицу мощности — лошадиную силу (позднее его именем была названа другая единица мощности — ватт). Паровая машина Уатта благодаря экономичности получила широкое распространение и сыграла огромную роль в переходе к машинному производству.
Итальянский анатом Луиджи Гальвани в 1791 году опубликовал труд «Трактат о силах электричества при мышечном движении».
Это открытие через 121 год дало толчок исследованиям человеческого организма с помощью биоэлектрических токов. Обнаруживались больные органы при исследовании их электрических сигналов. Работа любого органа (сердца, мозга) сопровождается биологическими электрическими сигналами, имеющими для каждого органа свою форму. Если орган не в порядке, сигналы изменяют свою форму, и при сравнении «здоровых» и «больных» сигналов обнаруживаются причины заболевания.
Опыты Гальвани натолкнули на изобретение нового источника электричества профессора Тессинского университета Алессандро Вольта. Он дал опытам Гальвани с лягушкой и разнородными металлами иное объяснение, доказал, что электрические явления, которые наблюдал Гальвани, объясняются только тем, что определенная пара разнородных металлов, разделенная слоем специальной электропроводящей жидкости, служит источником электрического тока, протекающего по замкнутым проводникам внешней цепи. Эта теория, разработанная Вольтой в 1794 году, позволила создать первый в мире источник электрического тока, который назывался Вольтов столб.
Он представлял собой набор пластин из двух металлов, меди и цинка, разделенных прокладками из войлока, смоченного в соляном растворе или щелочи. Вольта создал прибор, способный за счет химической энергии производить электризацию тел и, следовательно, поддерживать в проводнике движение зарядов, то есть электрический ток. Скромный Вольта назвал свое изобретение в честь Гальвани «гальваническим элементом», а электрический ток, получающийся от этого элемента – «гальваническим током».
Первые законы электротехники
В начале XIX века опыты с электрическим током привлекали внимание ученых из разных стран. В 1802 году итальянский ученый Романьози обнаружил отклонение магнитной стрелки компаса под влиянием электрического тока, протекавшего по расположенному вблизи проводнику. В 1820 году это явление в своем докладе подробно описал датский физик Ганс Христиан Эрстед. Небольшая, всего в пять страниц, книжка Эрстеда в том же году была издана в Копенгагене на шести языках и произвела огромное впечатление на коллег Эрстеда из разных стран.
Однако правильно объяснить причину явления, которое описал Эрстед, первым сумел французский ученый Андре Мари Ампер. Оказалось, ток способствует возникновению в проводнике магнитного поля. Одной из важнейших заслуг Ампера было то, что он впервые объединил два разобщенных ранее явления – электричество и магнетизм – одной теорией электромагнетизма и предложил рассматривать их как результат единого процесса природы.
Воодушевленный открытиями Эрстеда и Ампера, другой ученый, англичанин Майкл Фарадей предположил, что не только магнитное поле может воздействовать на магнит, но и наоборот – двигающийся магнит будет оказывать воздействие на проводник. Серия опытов подтвердила эту блестящую догадку – Фарадей добился того, что подвижное магнитное поле создало в проводнике электрический ток.
Позже это открытие послужило основой для создания трех главных устройств электротехники – электрического генератора, электрического трансформатора и электрического двигателя.
Начальный период использования электричества
У истоков освещения с помощью электричества стоял Василий Владимирович Петров, профессор медицинско-хирургической Академии в Петербурге. Исследуя световые явления, вызываемые электрическим током, он в 1802 году сделал свое знаменитое открытие – электрическую дугу, сопровождающуюся появлением яркого свечения и высокой температуры.
Жертвы ради науки
Русский учёный Василий Петров, первым в мире в 1802 году описавший явление электрической дуги, не жалел себя при проведении экспериментов. В то время не было таких приборов, как амперметр или вольтметр, и Петров проверял качество работы батарей по ощущению от электрического тока в пальцах. Чтобы чувствовать слабые токи, учёный срезал верхний слой кожи с кончиков пальцев.
Наблюдения и анализ Петровым свойств электрической дуги легли в основу создания электродуговых ламп, ламп накаливания и много другого.
В 1875 году Павел Николаевич Яблочков создает электрическую свечу, состоящую из двух угольных стержней, расположенных вертикально и параллельно друг другу, между которыми проложена изоляция из каолина (глины). Чтобы горение было более продолжительным, на одном подсвечнике помещалось четыре свечи, которые горели последовательно.
В свою очередь Александр Николаевич Лодыгин ещё в 1872 году предложил вместо угольных электродов использовать нить накаливания, которая при протекании электрического тока ярко светилась. В 1874 году Лодыгин получил патент на изобретение лампы накаливания с угольным стерженьком и ежегодную Ломоносовскую премию Академии наук. Устройство было запатентовано также в Бельгии, Франции, Великобритании, Австро-Венгрии.
В 1876 году Павел Яблочков завершил разработку конструкции электрической свечи, начатой в 1875 г. и 23 марта получил французский патент, содержащий краткое описание свечи в её первоначальных формах и изображение этих форм. «Свеча Яблочкова» оказалась проще, удобнее и дешевле в эксплуатации, чем лампа А. Н. Лодыгина. Под названием «русский свет» свечи Яблочкова использовались позже для уличного освещения во многих городах мира. Так же Яблочков предложил первые практически применявшиеся трансформаторы переменного тока с разомкнутой магнитной системой.
Тогда же в 1876 году в России была сооружена первая электростанция на Сормовском машиностроительном заводе, ее прародительница была построена в 1873 году под руководством бельгийско-французского изобретателя З.Т. Грамма для питания системы освещения завода, так называемая блок-станция.
В 1879 русские электротехники Яблочков, Лодыгин и Чиколев совместно с рядом других электротехников и физиков организовали в составе Русского технического общества Особый Электротехнический отдел. Задачей отдела было содействие развитию электротехники.
Уже в апреле 1879 года впервые в России электрическими фонарями освещен мост – мост Александра II (ныне Литейный мост) в Санкт-Петербурге. При содействии Отдела на Литейном мосту введена первая в России установка наружного электрического освещения (дуговыми лампами Яблочкова в светильниках, изготовленных по проекту архитектора Кавоса), положившая начало созданию местных систем освещения дуговыми лампами некоторых общественных зданий Петербурга, Москвы и других больших городов. Электрическое освещение моста устроенное В.Н. Чиколевым, где горело 12 свечей Яблочкова вместо 112 газовых рожков, функционировало всего 227 дней.
Трамвай Пироцкого
Вагон электрического трамвая изобрел Федор Аполлонович Пироцкий в 1880 году. Первые трамвайные линии в Санкт-Петербурге были проложены только зимой 1885 года по льду Невы в районе Мытнинской набережной, так как право на использование улиц для пассажирских перевозок имели только владельцы конок – рельсового транспорта, который передвигался при помощи лошадей.
В 80-е годы возникли первые центральные станции, они были более целесообразны и более экономичны, чем блок-станции, так как снабжали электричеством сразу много предприятий.
В то время массовыми потребителями электроэнергии были источники света – дуговые лампы и лампы накаливания. Первые электростанции Петербурга вначале размещались на баржах у причалов рек Мойки и Фонтанки. Мощность каждой станции составляла примерно 200 кВт.
Первая в мире центральная станция была пущена в работу в 1882 году в Нью-Йорке, она имела мощность 500 кВт.
В Москве электрическое освещение впервые появилось в 1881 году, уже в 1883 году электрические светильники иллюминировали Кремль. Специально для этого была сооружена передвижная электростанция, которую обслуживали 18 локомобилей и 40 динамо-машин. Первая стационарная городская электростанция появилась в Москве в 1888 году.
Нельзя забывать и о нетрадиционных источниках энергии.
Предшественница современных ветроэлектростанций с горизонтальной осью имела мощность 100 кВт и была построена в 1931 году в Ялте. Она имела башню высотой 30 метров. К 1941-му году единичная мощность ветроэлектростанций достигла 1,25 МВт.
План ГОЭЛРО
В России создавались электростанции в конце XIX и начале XX веков, однако, бурный рост электроэнергетики и теплоэнергетики в 20-е годы XX столетия после принятия по предложению В.И. Ленина плана ГОЭЛРО (Государственной электрификации России).
22 декабря 1920 года VIII Всероссийский съезд Советов рассмотрел и утвердил Государственный план электрификации России – ГОЭЛРО, подготовленный комиссией, под председательством Г.М. Кржижановского.
План ГОЭЛРО должен был быть реализован в течении десяти-пятнадцати лет, а его результатом должно было стать создание «крупного индустриального хозяйства страны». Для экономического развития страны это решение имело огромное значение. Недаром свой профессиональный праздник российские энергетики отмечают именно 22 декабря.
В плане много уделялось проблеме использования местных энергетических ресурсов (торфа, воды рек, местного угля и др.) для производства электрической энергии.
8 октября 1922 года состоялся официальный пуск станции «Уткина заводь» — первой торфяной электростанции в Петрограде.
Первая ТЭЦ России
Самая первая тепловая электростанция, построенная по плану ГОЭЛРО в 1922 году, называлась «Уткина заводь». В день пуска участники торжественного митинга переименовали ее в «Красный октябрь», и под этим именем она проработала до 2010 года. Сегодня это Правобережная ТЭЦ ПАО «ТГК-1».
В 1925 году запустили Шатурскую электростанцию на торфе, в тот же год на Каширской электростанции начали освоение новой технологии сжигания подмосковного угля в виде пыли.
Днем начала теплофикации в России можно считать 25 ноября 1924 года – тогда заработал первый теплопровод от ГЭС-3, предназначенный для общего пользования в доме номер девяносто шесть на набережной реки Фонтанки. Электростанция № 3, которую переоборудовали для комбинированной выработки тепловой и электрической энергии, является первой в России теплоэлектроцентралью, а Ленинград – пионером теплофикации. Централизованное снабжение горячей водой жилого дома функционировало без сбоев, и через год ГЭС-3 стало снабжать горячей водой бывшую Обуховскую больницу и бани, находящиеся в Казачьем переулке. В ноябре 1928 года к тепловым сетям государственной электростанции № 3 подключили здание бывших Павловских казарм, располагавшихся на Марсовом поле.
В 1926 году была пущена в эксплуатацию мощная Волховская ГЭС, энергия которой по линии электропередачи напряжением 110 кВ, протяженностью 130 км поступала в Ленинград.
Первая ГЭС по плану
Самая первая гидроэлектростанция, построенная по плану ГОЭЛРО – Волховская ГЭС. Ее ввели в эксплуатацию 19 декабря 1926 года. Станция и сегодня продолжает исправно работать, являясь неотъемлемой частью энергосистемы Северо-Запада.
Волховстрой стал первой школой советского гидроэнергостроительства.
Здесь впервые решались сложные инженерные и технические проблемы проектирования и строительства плотины, здания станции, линии электропередачи, электроподстанций, а также монтажа и наладки оборудования. Численность работающих доходила до 15 тысяч человек.
Строительство электростанции начиналось в трудные годы для еще молодой Советской республики. Поэтому часть необходимого оборудования приходилось закупать за границей.
Однако петроградский завод «Электросила» обратился с просьбой к Волховстрою передать им изготовление части оборудования. Это предложение рассматривалось как неслыханная дерзость. Завод «Электросила» совместно с другими заводами Петрограда–Ленинграда блестяще справился с поставленной задачей.
Даже эмигрантская газета «Накануне» досадливо признавала: «В России имеется три чуда: Красная Армия, Сельскохозяйственная выставка и Волховстрой». Четыре других генератора, высоковольтные трансформаторы, выключатели, электрооборудование для собственных нужд поставила шведская фирма «ASEA».
Все вопросы технического характера решались с широким привлечением ленинградских организаций: гидравлических лабораторий Ленинградского политехнического института, Института путей сообщений, Электротехнического института и др. По вопросам гидротехнических и строительных работ, а также по электротехническим вопросам, по которым не имелось достаточного отечественного опыта, обращались к иностранным специалистам.
Атомная энергетика XX века
20 декабря 1951 года, ядерный реактор впервые в истории произвел пригодное для использования количество электроэнергии — в нынешней Национальной Лаборатории INEEL Департамента энергии США. Реактор выработал достаточную мощность, чтобы зажечь простую цепочку из четырех 100-ваттных лампочек. После второго эксперимента, проведенного на следующий день, 16 участвовавших в нем учёных и инженеров «увековечили» свое историческое достижение, написав мелом свои имена на бетонной стене генератора.
Советские ученые приступили к разработке первых проектов мирного использования атомной энергии ещё во второй половине 1940-х годов. А 27 июня 1954 года в городе Обниск была запущена первая атомная электростанция.
Пуск первой АЭС ознаменовал открытие нового направления в энергетике, получившего признание на 1-й Международной научно-технической конференции по мирному использованию атомной энергии (август 1955, Женева). К концу ХХ века в мире насчитывалось уже более 400 атомных электростанций.
Современная энергетика. Конец XX века
Конец XX века ознаменован различными событиями, связанными как с высокими темпами строительства новых станции, началом развития возобновляемых источников энергии, ак и с появлением первых проблем от сформировавшейся огромной мировой энергосистемы и попытками их решить.
Блэкаут
Американцы называют ночь на 13 июля 1977 «Ночью страха». Тогда случилась огромная по своим размерам и последствиям авария на электрических сетях в Нью-Йорке. Из-за попадания молнии в линию электропередачи на 25 часов была прервана подача электричества в Нью-Йорк и 9 млн жителей оказались без электроснабжения. Трагедии сопутствовал финансовый кризис, в котором пребывал мегаполис, необыкновенно жаркая погода, и небывалый разгул преступности. После отключения электричества на фешенебельные кварталы города набросились банды из бедных кварталов. Считается, что именно после тех страшных событий в Нью-Йорке понятие «блэкаут» стало повсеместно использоваться применительно к авариям в электроэнергетике.
Так как современное сообщество всё больше зависит от электроэнергии, аварии на электросетях наносят ощутимые убытки предприятиям, населению и правительствам. Во время аварии выключаются осветительные приборы, не работают лифты, светофоры, метро. На жизненно важных объектах (больницы, военные объекты и т. д.) для функционирования жизнедеятельности во время аварий в энергосистемах используются автономные источники питания: аккумуляторы, генераторы. Статистика показывает значительное увеличение аварий в 90-е гг. XX — начале XXI вв.
В те годы продолжалось развитие альтернативной энергетики. В сентябре 1985 года состоялось пробное включение генератора первой солнечной электростанции СССР в сеть. Проект первой в СССР Крымской СЭС был создан в начале 80-х в рижском отделении института «Атомтеплоэлектропроект» при участии тринадцати других проектно-конструкторских организаций Министерства энергетики и электрификации СССР. Полностью станция вступила в строй в 1986 году.
В 1992 году началось строительство крупнейшей в мире ГЭС «Три ущелья» в Китае на реке Янцзы. Мощность станции — 22,5 ГВт. Напорные сооружения ГЭС образуют крупное водохранилище площадью 1 045 км², полезной ёмкостью 22 км³. При создании водохранилища было затоплено 27 820 га обрабатываемых земель, было переселено около 1,2 млн человек. Под воду ушли города Ваньсянь и Ушань. Полное завершение строительства и ввод в официальную эксплуатацию состоялся 4 июля 2012 года.
Развитие энергетики неотделимо от проблем, связанных с загрязнением окружающей среды. В Киото (Япония) в декабре 1997 года в дополнение к Рамочной конвенции ООН об изменении климата был принят Киотский протокол. Он обязывает развитые страны и страны с переходной экономикой сократить или стабилизировать выбросы парниковых газов в 2008 – 2012 годах по сравнению с 1990 годом. Период подписания протокола открылся 16 марта 1998 года и завершился 15 марта 1999 года.
По состоянию на 26 марта 2009 Протокол был ратифицирован 181 страной мира (на эти страны совокупно приходится более чем 61 % общемировых выбросов). Заметным исключением из этого списка являются США. Первый период осуществления протокола начался 1 января 2008 года и продлится пять лет до 31 декабря 2012 года, после чего, как ожидается, на смену ему придёт новое соглашение.
Киотский протокол стал первым глобальным соглашением об охране окружающей среды, основанным на рыночном механизме регулирования — механизме международной торговли квотами на выбросы парниковых газов.
Карта генерации России
XXI век, а точнее 2008 год, стал знаковым для энергетической системы России, было ликвидировано Российское открытое акционерное общество энергетики и электрификации «ЕЭС России» (ОАО РАО «ЕЭС России») — российская энергетическая компания, существовавшая в 1992—2008 годах. Компания объединяла практически всю российскую энергетику, являлась монополистом на рынке генерации и энерготранспортировки России. На её месте возникли государственные естественно-монопольные компании, а также приватизированные генерирующие и сбытовые компании.
В XXI веке в России строительство электростанций выходит на новый уровень, начинается эра применения парогазового цикла. Россия способствует наращиванию новых генерирующих мощностей — в 2018 году страна завершает строительство мощностей по программе ДПМ. Крупнейшие компании обсуждают необходимость вывода из эксплуатации старых станций, дополняя свои стратегии развития пунктами об увеличении эффективности использования текущих ресурсов.
Истории создания ксерографии | Xerox
Процесс ксерографии, который в 1938 году разработал Честер Карлсон (Chester Carlson), а корпорация Xerox впоследствии усовершенствовала и представила на рынке, широко используется в настоящее время для получения высококачественного текста и изображений на бумажных носителях.
Первоначально Карлсон называл этот процесс электрофотографией. В его основе лежат два природных явления, выражающихся в том, что материалы с противоположными электрическими зарядами притягиваются, и в том, что некоторые материалы лучше проводят электрический ток при воздействии света. Карлсон изобрел процесс, состоящий из шести этапов, для переноса изображения с одной поверхности на другую с использованием указанных эффектов.
Во-первых, фотопроводящей поверхности передается положительный электрический заряд. Затем на эту фотопроводящую поверхность экспонируется изображение документа. На участках с ярким освещением (где нет изображения) увеличивается проводимость тока, поэтому заряд на них рассеивается. Отрицательно заряженный порошок, нанесенный на эту поверхность, удерживается силами электростатического притяжения на участках изображения с положительным зарядом.
Бумажный носитель помещается на изображение, сформированное с помощью порошка, а затем этому носителю передается положительный электрический заряд. Отрицательно заряженный порошок притягивается к бумаге, отделяясь от фотопроводника. В завершении изображение, созданное на основе порошка, закрепляется на бумаге с помощью нагрева, воспроизводя оригинал.
Процесс из шести этапов
1. Заряд
В каждом копировальном устройстве и лазерном принтере имеется светочувствительная поверхность, называемая фоторецептором. Она состоит из тонкого слоя светопроводящего материала, который нанесен на гибкую ленту или барабан. В темноте фоторецептор является изолятором (не проводит ток), но при освещении превращается в проводник. В условиях темноты его заряжают, подавая переменный ток с высоким напряжением на расположенные рядом провода, в результате чего в пространстве вокруг проводов образуется сильное электрическое поле, что приводит к ионизации молекул воздуха. Ионы с той же полярностью, что и провода с током, распределяются по поверхности фоторецептора, создавая на нем электрическое поле.
2. Экспозиция
В цифровых копировальных устройствах и принтерах изображение экспонируется на фоторецепторе с помощью сканирующего модулированного лазера или панели из светодиодов, формирующих изображение. В старых аналоговых моделях копировальных устройств изображение с помощью подсветки проецировалось на фоторецептор. В любом случае на участках фоторецептора, куда попадет свет, заряд уменьшается, что приводит к соответствующему уменьшению величины электрического поля. На темных участках заряд сохраняется.
3. Проявление
Для формирования изображения применяется пигментный порошок, называемый тонером. Частицы тонера состоят из красителя и пластичного полимера, обладают точно управляемыми электростатическими характеристиками и имеют размер от 5 до 10 микрометров в диаметре. Они смешиваются со сферическими частицами носителя, получают от них заряд и переносятся в зону проявления. Эти частицы получают заряд за счет эффекта электризации трением (что часто обозначатся как статическое электричество). Электрическое поле, образуемое сформированным изображением на фоторецепторе, электростатически воздействует на заряженный тонер, который прилипает к этому изображению. Цветные документы печатаются принтером с четырьмя отдельными электрофотографическими узлами, которые по отдельности создают и проявляют изображения голубого, фиолетового, желтого и черного цветов. Совмещение этих изображений, полученных на основе соответствующего порошка, формирует цветные документы.
4. Перенос
Бумажный материал приводится в контакт с тонером, и изображение, сформированное с помощью порошка, переносится с фоторецептора на этот носитель за счет передачи ему заряда с противоположным знаком по отношению к заряду тонера. Величина этого заряда должна быть достаточно большой, чтобы преодолеть силу, удерживающую тонер на фоторецепторе. С помощью второго заряда с точно рассчитанной величиной бумажный носитель с изображением отделяется от фоторецептора.
5. Закрепление
В ходе процесса закрепления тонер, формирующий изображение, расплавляется и проникает внутрь бумажного материала. Это осуществляется путем пропускания бумаги между двумя валами. Нагретый вал расплавляет тонер, который внедряется внутрь бумажного носителя с помощью давления, создаваемого вторым валом.
6. Очистка
На этапе очистки выполняется две операции: разрядка фоторецептора и механическое удаление остатков тонера.
Автоматика и электричество | ЗАО «МПО Электромонтаж»
Слово автомат произошло от древнегреческого слова, означавшего — самодействующий. Автомат как некое устройство предполагает действие без участия человека. Одними из первых автоматов, изобретённых около 20 тысяч лет назад, можно считать капкан и петлю-самолов, привязанную к изогнутому дереву — устройства срабатывали в случае появления в их активной области инородного тела.
Во II веке до н. э. древнегреческий инженер Герон Александрийский в своей книге «Театр автоматов» описал изобретённые им самодействующие куклы и фонтаны. Архимед сконструировал «небесный глобус» — автоматический планетарий, демонстрировавший все видимые движения небесных тел. «По волшебству» сами открывались двери в храмах, работали автоматы по продаже святой воды.
Но кроме кукол, Герон сделал масляную лампу с автоматической подачей фитиля. А в Александрии механик Ктезибий придумал водяные часы, в которых водопадик через систему зубчатых колес приводил в движение стрелки. Это были первые прагматически ориентированные автоматы.
В средние века получила развитие «андроидная» автоматика — создание движущихся фигур (кукол), подражающих движениям человека, как сегодня на эстраде артисты подражают движениям роботов андроидов. Практические же приложения были не востребованы.
Лишь с началом развития в XVII—XVIII веках фабричной машинной техники — это были ткацкие, прядильные, лесопильные станки, работающие от ветряных и водяных двигателей — появились и первые автоматические устройства. Они позволяли облегчить управление техникой и поднять производительность работника — и это было одной из характерных тенденций начавшейся промышленной революции.
Особенно такое изменение образа мышления проявилось с изобретением паровой машины и агрегатов на её основе.
В 1765 г. горнозаводский механик И. И. Ползунов сконструировал поплавковый автомат поддержания уровня воды в паровом котле. В 1784 Дж. Уатт изобрел центробежный регулятор скорости вращения паровой машины. Француз Жаккар в 1808 г. разработал систему программного управления ткацким станком. В ХIХ веке появились регуляторы для паровых турбин, котлов, гидротурбин, причем они изменяли не только скорость, но и температуру, давление, расход воды и пара — так рождалась новая техническая дисциплина.
Но есть мнение, что родоначальником промышленной автоматики является английский мальчик Хэмфри Поттер, который в 1760 г. работал учеником оператора пароатмосферной машины — насоса. Он должен был монотонно поочерёдно открывать два клапана насоса в то время как его сверстники гоняли футбол. Х.Поттер связал ручки кранов и шток с помощью веревочки и палочки — теперь кранами управлял сам поршень (подробнее см. статью на нашем сайте и в № 24 электронной версии газеты).
Электротехника открывает новый этап развития автоматики.
В 1830—1832 гг. П. Л. Шиллинг изобрел электромеханическое реле и телеграфный аппарат. В 1841 г. Якоби и Ленц построили первый регулятор напряжения на основе реостата. Автоматы для дуговой лампы, которые подвигали выгорающие стержни навстречу друг другу, разработали В. П. Шпаковский — на основе часового механизма в 1850 г. и В. Н. Чиколев в 1869 — дифференциальный (на принципе отклонения от заданной величины). В 1854 г. К. И. Константинов предложил электромагнитный регулятор скорости вращения паровой машины.
Разумеется, электрические автоматы использовали и военные. В 1877 г. морской инженер А. П. Давыдов создал автоматическую систему управления артиллерийским огнем плавучей броненосной батареи «Не тронь меня».
Как и в случае с самой электротехникой, практика электроавтоматики намного опережала своё теоретическое обоснование. При этом регуляторы, сконструированные практиками, исправно действовали, а устройства, которые по расчетам создателей должны были быть очень точными, вообще переставали работать.
Нужна была новая наука — сегодня она называется теорией автоматического управления, регулирования (ТАР).
Дж. К. Максвелл в статье «О регуляторах» (1868 г.) и И. А. Вышнеградский в труде «О регуляторах прямого действия» (1876 г.), положивших начало ТАР, показали, что при проектировании автоматических систем необходимо руководствоваться не только статическими расчетами, но и рассчитывать поведение системы в динамике, что с увеличением точности снижается устойчивость системы. В 1892 г. вышла классическая работа А. И. Ляпунова «Общая задача об устойчивости движения». В стадии становления ТАР опиралась в основном на теоретическую механику и электротехнику.
В 1930 г. на Второй Мировой энергетической конференции в Берлине автоматика получила признание как самостоятельная область науки и техники, в эти годы появились учебные пособия по автоматическому регулированию в энергетике.
Особенно бурно стала развиваться теория и практика электроавтоматики, электронной автоматики, радиотехнических автоматических систем с 40 х г. г.ХХ века — создаются радиолокационные системы, автопилоты, беспилотные самолеты-снаряды и т. д.
Общие идеи ТАР оказались настолько плодотворными, что их стали применять повсюду — в управлении производственными процессами, энергетическими системами, транспортными объектами, для автоматизации инженерных расчетов при проектировании и даже в управленческой деятельности.
В СССР в 1930 г. был организован комитет для руководства работами по автоматизации в энергетике, создан Московский энергетический институт и основан Энергетический институт АН СССР, имеющие соответствующую специализацию, в 1935 г. в системе АН СССР стала работать Комиссия телемеханики и автоматики, которая занималась координацией НИР в этой области. В 1928—1941 гг. созданы первые заводы по производству приборов и аппаратуры автоматики.
Сегодня автоматизация — одно из направлений научно-технического прогресса. И хотя со времён петель-самоловов её оснащение заметно улучшилось, суть осталась та же: освободить человека от участия в в трудоёмких процессах получения, преобразования, передачи и использования энергии, материалов или информации.
Кто открыл электричество? | Вондрополис
Вы полагаетесь на электричество, как на еду и воду? Какой была бы жизнь без электричества, которое питало бы ваши любимые видеоигры, телешоу, телефоны и даже огни, у которых вы читаете по ночам?
Подумайте только… без электричества вы не смогли бы наслаждаться ежедневным «Чудом дня»! Какая ужасная мысль! Но не волнуйтесь. Электричество действительно существует, и оно позволяет нам радоваться жизни многими способами.
Поскольку электричество — это естественная сила, существующая в нашем мире, ее не нужно было изобретать. Однако это нужно было открыть и понять. Большинство людей отдают должное Бенджамину Франклину за открытие электричества.
У Бенджамина Франклина был один из величайших научных умов своего времени. Он интересовался многими областями науки, сделал много открытий и изобрел много вещей, в том числе бифокальные очки. В середине 1700-х годов он заинтересовался электричеством.
До этого времени ученые в основном знали и экспериментировали со статическим электричеством.Бенджамин Франклин сделал большой шаг вперед. Он придумал, что у электричества есть положительные и отрицательные элементы, и что электричество течет между этими элементами. Он также считал, что молния была формой протекающего электричества.
В 1752 году Франклин провел свой знаменитый эксперимент с воздушным змеем. Чтобы показать, что молния была электричеством, он запустил воздушного змея во время грозы. Он привязал металлический ключ к веревке воздушного змея, чтобы проводить электричество.
Как он и думал, электричество от грозовых облаков перешло к воздушному змею, а электричество потекло по струне и сотрясло его.Ему повезло, что он не пострадал, но он не возражал против шока, поскольку это подтвердило его идею.
Основываясь на работе Франклина, многие другие ученые изучали электричество и начали больше понимать, как оно работает. Например, в 1879 году Томас Эдисон запатентовал электрическую лампочку, и с тех пор наш мир стал ярче!
Но действительно ли Бенджамин Франклин был первым, кто открыл электричество? Может быть нет! На рубеже 17 века английский ученый Уильям Гилберт основал науку, лежащую в основе изучения электричества и магнетизма.Вдохновленный работой Гилберта, другой англичанин, сэр Томас Браун, провел дальнейшие исследования и написал книги о своих открытиях. Гилберту и Брауну приписывают то, что они первыми использовали термин «электричество».
Ученые нашли доказательства того, что древние люди тоже могли экспериментировать с электричеством. В 1936 году был обнаружен глиняный горшок, что свидетельствует о том, что первые батареи могли быть изобретены более 2000 лет назад. В глиняном горшке были медные пластины, оловянный сплав и железный стержень.
Его можно было использовать для создания электрического тока, наполнив его кислым раствором, например уксусом. Никто не знает, для чего использовалось это устройство, но оно проливает свет на тот факт, что люди, возможно, узнали об электричестве задолго до Бенджамина Франклина!
Никола Тесла, Томас Эдисон и история электричества
Мир не всегда был таким, каким он является сегодня. Электроэнергия, используемая внутри линий электропередачи, не всегда была доступна одним нажатием кнопки или щелчком переключателя.За годы до того, как ученым удалось использовать электроэнергию, люди, вероятно, задавались вопросом, как и можно ли использовать электричество. Даже в 18 веке изобретатели баловались электричеством, чтобы узнать об этом. Никола Тесла и Томас Эдисон были двумя учеными и изобретателями, которые сыграли ключевую роль на пути к использованию электроэнергии.
Никола Тесла
Никола Тесла родился в Хорватии в 1856 году. Интерес Теслы к электричеству, возможно, начался с его матери, которая баловалась изобретением небольших приборов, когда Тесла был мальчиком.Тесла учился в нескольких колледжах, а затем начал работать в телефонной компании в Будапеште. В это время он начал разрабатывать концепцию асинхронного двигателя, но не смог убедить кого-либо поддержать его идею. Тесла приехал в Соединенные Штаты в 1884 году и вместе с Томасом Эдисоном начал работать над некоторыми изобретениями Эдисона. Однако через короткое время два ученых обнаружили, что у них противоречивые личности, и они не могут работать вместе. Тесла колебался в течение нескольких лет, но затем смог найти поддержку инвесторов для своей компании Tesla Electric Company и их работы над его электрической системой переменного тока.Вскоре Тесла получил патенты на несколько своих изобретений, и люди начали обращать на это внимание. Джордж Вестингауз искал способ передачи энергии на большие расстояния и думал, что изобретения Теслы могут оказаться полезными. Westinghouse приобрела патенты Tesla, и это новое партнерство начало конкурировать с Томасом Эдисоном. Эдисон тем временем был занят работой над своей электрической системой постоянного тока.
Томас Эдисон
Томас Эдисон родился в Огайо в 1847 году.Мать Эдисона была учителем, и она оказала значительное влияние на сына. После того, как Эдисон столкнулся с проблемами в государственной школе, родители отозвали его, чтобы учить дома. У Эдисона была глубокая потеря слуха, которая повлияла на его образование и возможности трудоустройства на протяжении всей его жизни. Эдисон был любопытен и интересовался множеством разных предметов. У него также были сильные предпринимательские интересы, и он начал издавать газету в возрасте 12 лет. Эдисон работал на железной дороге и телеграфистом.Зарабатывая деньги на этой работе, Эдисон продолжал учиться и заниматься наукой. В конце концов, Эдисон решил заняться изобретением и переехал в Нью-Йорк. Его первым изобретением был биржевой тикер, который мог синхронизировать более одной транзакции биржевого тикера. Эдисон неустанно работал над своими изобретениями, в конце концов изобрел фонограф и внес изменения в лампочку.
Соперничающие токи
Вражда между Теслой и Эдисоном была ожесточенной и давней.У Теслы и Эдисона были принципиально разные стили и личности. Тесла был хорошо образован, а Эдисон не имел такого же формального образования. Поэтому Эдисон больше полагался на эксперименты, чтобы усовершенствовать изобретение, в то время как Тесла концептуализировал все в своем уме, прежде чем создать изобретение. Одним из основных источников соперничества между Теслой и Эдисоном была технология производства электроэнергии. Работа Теслы была связана с переменным током, а работа Эдисона — с постоянным током. Оба ученых считали, что их изобретения лучше.Технология переменного тока позволяет энергии течь и менять направление, что делает ее полезной для перемещения больших объемов энергии. Технология постоянного тока использует более низкое напряжение и имеет более ограниченные возможности, но это дает некоторые преимущества безопасности. В конце концов, технология переменного тока Tesla возобладала. Джордж Вестингауз даже построил электростанцию, чтобы обеспечить электричеством Нью-Йорк, используя эту технологию.
Современное электричество
Никола Тесла, изобретатель технологии переменного тока, сыграл первостепенную роль в производстве электроэнергии, используемой для питания всего мира.Тесла также усердно работал над мечтой о снабжении электроэнергией без проводов. Катушка Тесла, разработанная в 1891 году, преуспела в использовании электромагнитной силы и резонанса для получения энергии. Томас Эдисон своими изобретениями также сыграл важную роль в формировании современного общества. Его фонограф умел записывать голоса и воспроизводить их. Дизайн Эдисона внутренней части лампочки был решающим ключом к созданию света, который будет гореть в течение нескольких часов, а не гаснет почти сразу. Это сделало лампочку полезной и доступной.
Изобретение электрического освещения — электроэнергия и альтернативные источники энергии
Фазовые наконечники копья Хлодвига, используемые в современной Альберте.
острия фазового копья Хлодвига представляют собой старейшую охотничью технологию в Альберте, да и во всей Северной Америке. Эти рифленые, зазубренные каменные наконечники прикреплялись к кости или деревянному древку и использовались для охоты на огромную добычу, такую как мамонты и мастодонты.
Источник: Отдел управления историческими ресурсами, Археологическая служба
Технология Atlatl (метание копья) появляется в современной Альберте.
Атлатлы использовались ранними охотниками для увеличения скорости метательного оружия. Копья или дротики, брошенные атлатлем, могли нанести животному разрушительные раны, позволяя охотнику убить животное с безопасного расстояния.
Источник: любезно предоставлено Head-Smashed-In Buffalo Jump
Технологии лука и стрел достигают современной Альберты.
Технологии лука и стрел в Северной Америке, похоже, сначала развивались в Арктике, а затем распространились на юг по всему континенту.Лук и стрела идеально подходили для использования на широких открытых пространствах Великих равнин и получили широкое распространение по всему региону.
Источник: любезно предоставлено Head-Smashed-In Buffalo Jump
«Конная революция» начинается в современной Альберте.
Лошадей завезли в Северную Америку испанские колонисты в шестнадцатом веке. Из испанской колонии Нью-Мексико лошади распространились по Северной Америке, достигнув современной Альберты в 1730-х годах.Принятие лошади оказало значительное влияние на способы охоты / передвижения коренных народов равнин.
Источник: Королевский музей Альберты
Национальный парк Скалистых гор основан канадским правительством.
Одной из главных достопримечательностей нового парка были природные горячие источники. Роскошный отель Banff Springs, построенный канадской Тихоокеанской железной дорогой в 1888 году, закачивал воду из горячих источников в бассейны и процедурные кабинеты.Туристы стекались сюда, чтобы воспользоваться предполагаемыми лечебными свойствами воды.
Источник: Музей Уайта в канадских Скалистых горах, v263-na-3562
Calgary Water Power Company открывает первую гидроэлектростанцию в Альберте.
Компания принадлежала предпринимателю Питеру Принсу, который также управлял компанией Eau Claire & Bow River Lumber Company. С 1894 по 1905 год компания была основным поставщиком электроэнергии для города Калгари.
Источник: Архивы Гленбоу, NA-4477-44
Город Эдмонтон покупает компанию Edmonton Electric Lighting Company.
Решение в пользу государственной собственности было принято после неоднократных перебоев в работе частного коммунального предприятия. Эдмонтон был первым крупным городским центром Канады, у которого была собственная электроэнергетическая компания.
Источник: Архивы Гленбоу, NC-6-271
Образована Calgary Power Company.
Основатель компании Макс Эйткен изначально был привлечен в регион его огромным гидроэнергетическим потенциалом. Компания превратится в крупнейшее коммунальное предприятие Канады, принадлежащее инвесторам. В 1981 году компания сменила название на TransAlta Utilities Corporation, чтобы лучше отразить ее провинциальный охват.
Источник: Фото любезно предоставлено TransAlta
Первая гидроэлектростанция в Альберте открывается у водопада Подкова.
Принадлежащая и управляемая Calgary Power, плотина Horseshoe Falls была первым из двух подобных сооружений, построенных в системе Bow River до Первой мировой войны.Вторая гидроэлектростанция начала работу на водопаде Кананаскис в 1913 году.
Источник: Glenbow Archives NA-3544-28
Начало эксплуатации Призрачной плотины гидроэлектростанции
Это массивное сооружение было самой большой плотиной гидроэлектростанции в Альберте на момент ее строительства. Электростанция Ghost Power Plant более чем вдвое увеличила объем электроэнергии, вырабатываемой компанией Calgary Power, которая уже была основным поставщиком энергии в провинции.
Источник: Архивы Гленбоу, NA-5663-44
Первая Сельская Ассоциация Электрификации (REA) в Альберте основана в Спрингбанке.
В течение следующих двух десятилетий в провинции будет создано в общей сложности 416 REA. Эти организации сыграют решающую роль в распространении электроэнергии в сельских районах Альберты.
Источник: Архивы Гленбоу, NA-4160-20
Избиратели Альберты категорически отвергают предложение о государственной собственности на электроэнергетические предприятия.
Провинциальные выборы 1948 года включали плебисцит относительно владения электроэнергетическими предприятиями в Альберте.Сельские районы в основном проголосовали за государственную собственность, в то время как городские избиратели (особенно в южной Альберте) поддержали сохранение частной собственности. В конце концов, голосование было очень близким: общественная собственность проиграла всего лишь 151 голосом.
Источник: Изображение любезно предоставлено Peel ’Prairie Provinces, цифровой инициативой Библиотеки Университета Альберты
Ветряная электростанция Коули-Ридж начинает свою деятельность недалеко от Пинчер-Крик.
Cowley Ridge была первой коммерческой ветряной электростанцией в Канаде.Всего в 1993-94 гг. Было установлено 52 ветряных турбины. В 2000 году проект был расширен за счет добавления пятнадцати новых (и гораздо более мощных) турбин.
Источник: Фото любезно предоставлено TransAlta
Открытие солнечного сообщества Drake Landing около Окотокса, Альберта.
Drake Landing — первое полностью интегрированное солнечное сообщество в Северной Америке. В этой отмеченной наградами инициативе используется технология солнечного отопления, чтобы удовлетворить большинство потребностей населения в отоплении помещений и горячей воде.
Источник: Wikimedia Commons / CA-BY-SA-3.0
Город Эдмонтон объявляет о запуске проекта «Преобразование отходов в биотопливо».
В рамках проекта по превращению отходов в биотопливо мусор будет превращаться в биотопливо путем сбора углерода из отходов. В проект входит Центр перспективных энергетических исследований, который открылся в 2012 году.
Источник: Фото предоставлено Enerkem
Пять изобретателей, которые сделали возможным электричество сегодня
Майкл Фарадей и электромагнетизм
Майкл Фарадей сосредоточил свое внимание на электромагнетизме и сделал несколько ключевых открытий, таких как электромагнитная индукция, лежащая в основе генераторов и электродвигателей.Ему также приписывают получение электричества с помощью движущегося магнита и катушки.
Он также тщательно исследовал электролиз, открытый много лет назад Уильямом Николсоном. Вскоре после этого Фарадей разработал два закона, которые носят его имя: законов электролиза Фарадея. Это открытие сделало его основоположником электромагнетизма и электрохимии.
Фарадей показал, что магнетизм производит электричество движением.
Джеймс Клерк Максвелл и беспроводной телеграф
Джеймс Клерк Максвелл занялся работой Фарадея и расширил свои исследования электромагнитных полей.
Он разработал четыре дифференциальных уравнения, математически связывающих электрические и магнитные поля. Эти уравнения названы в его честь и известны как уравнения Максвелла .
Исследования физика позволили Генриху Рудольфу Герцу получить электромагнитные радиоволны. Кроме того, благодаря его достижениям на свет появились беспроводной телеграф и радио . Фактически, наследие Максвелла во всех областях является одним из самых значительных: на протяжении прошлого века многие другие ученые, такие как Эйнштейн.продолжил свои исследования.
Эдисон и первая лампочка
Хотя многие считают, что он был изобретателем лампочки , на самом деле то, что сделал Томас Альва Эдисон, улучшило ее работу, так что она стала коммерчески прибыльной.
Его достижения побудили города в Европе и США установить систем электрического освещения постоянного тока . Спустя годы эта система была заменена системой переменного тока, разработанной Tesla и Westinghouse, которая в конечном итоге оказалась более эффективной и безопасной.
Открытия и исследования Эдисона сыграли фундаментальную роль в создании радиоклапана и электроники. Кроме того, изобретатель работал в других сферах, таких как кино, электрический железнодорожный транспорт и телеграф.
Вестингауз прагматик
Джордж Вестингауз увидел свое будущее в системе переменного тока Николы Теслы. Он купил сербский проект и усовершенствовал его, включая улучшенный трансформатор и добавив генератор переменного тока.
Он основал Westinghouse Electric & Manufacturing Company, чтобы внедрить систему переменного тока, которая заменит систему постоянного тока Эдисона. Он также накопил около 400 патентов на свое имя, в том числе инновационную систему для транспортировки газа и другие.
200 лет назад Фарадей изобрел электродвигатель
Мы живем в новую эру космических полетов: национальные космические агентства больше не единственная игра в городе, и космос становится более доступным.Ракеты, построенные коммерческими игроками, такими как Blue Origin выводит на орбиту частных лиц. Тем не менее, Blue Origin, SpaceX и Virgin Galactic поддерживаются миллиардерами с огромными ресурсами, и все они выразили намерение продавать полеты на сотни тысяч и миллионы долларов. У Copenhagen Suborbitals совсем другое видение. Мы считаем, что космические полеты должны быть доступны для всех, кто хочет потратить время и силы.
Copenhagen Suborbitals была основана в 2008 году инженером-самоучкой и космическим архитектором, ранее работавшим в НАСА.С самого начала миссия была ясна: полет с экипажем в космос. Оба основателя покинули организацию в 2014 году, но к тому времени у проекта было около 50 волонтеров и большой импульс.
Группа взяла за основу принцип, что проблемы, связанные с дешевым созданием пилотируемого космического корабля, — это все инженерные проблемы, которые могут быть решены, по отдельности, прилежной командой умных и преданных делу людей. Когда люди спрашивают меня, почему мы это делаем, я иногда отвечаю: «Потому что мы можем.»
Добровольцы используют баллон с аргоном [слева], чтобы заполнить трубу, в которой элементы двигателя сплавлены вместе. Команда недавно изготовила топливный бак для ракеты Spica [справа] в своей мастерской.
Наша цель — достичь линии Кармана, которая определяет границу между атмосферой Земли и космическим пространством, на высоте 100 километров над уровнем моря. Космонавт, достигший такой высоты, после выключения двигателей получит несколько минут тишины и невесомости и насладится захватывающим видом.Но это будет нелегкая поездка. Во время спуска капсула будет испытывать внешнюю температуру 400 ° C и g с силой 3,5, поскольку она несется по воздуху со скоростью до 3500 километров в час.
Я присоединился к группе в 2011 году, после того как организация уже переехала из производственного помещения на списанном пароме в ангар недалеко от набережной Копенгагена. Ранее в том же году я наблюдал за первым запуском Copenhagen Suborbital, в котором ракета HEAT-1X взлетела с мобильной стартовой платформы в Балтийском море, но, к сожалению, совершила аварийную посадку в океане, когда большинство ее парашютов не раскрылось.Я принес в организацию некоторые базовые знания о спортивных парашютах, полученные за годы прыжков с парашютом, которые, как я надеялся, превратятся в полезные навыки.
Следующая веха для команды наступила в 2013 году, когда мы успешно запустили ракету Sapphire, нашу первую ракету с системами наведения и навигации. Его навигационный компьютер использовал 3-осевой акселерометр и 3-осевой гироскоп, чтобы отслеживать его местоположение, а его система управления тягой удерживала ракету на правильной траектории, перемещая четыре установленных на сервоприводе медных реактивных лопасти, которые были вставлены в выхлопную трубу. сборка.
Мы считаем, что космические полеты должны быть доступны всем, кто желает потратить время и силы.
Ракеты HEAT-1X и Sapphire были заправлены смесью твердого полиуретана и жидкого кислорода. Мы стремились разработать двухкомпонентный ракетный двигатель, который смешивал бы жидкий этанол и жидкий кислород, потому что такие жидкостные двигатели одновременно эффективны и мощны. Ракета HEAT-2X, запуск которой запланирован на конец 2014 года, должна была продемонстрировать эту технологию.К сожалению, его двигатель загорелся буквально во время статических испытаний за несколько недель до запланированного запуска. Этот тест должен был быть контролируемым 90-секундным прожигом; вместо этого из-за ошибки сварки большая часть этанола хлынула в камеру сгорания всего за несколько секунд, что привело к сильному пожару. Я стоял в нескольких сотнях метров и даже с такого расстояния чувствовал жар на лице.
Двигатель ракеты HEAT-2X был выведен из строя, и миссия была отменена.Хотя это было большим разочарованием, мы извлекли ценные уроки. До этого мы основывали наши проекты на наших существующих возможностях — инструментах в нашей мастерской и людях, участвующих в проекте. Провал заставил нас сделать шаг назад и подумать, какие новые технологии и навыки нам необходимо освоить для достижения нашей конечной цели. Это переосмысление привело нас к разработке относительно небольших ракет Nexø I и Nexø II для демонстрации ключевых технологий, таких как парашютная система, двухкомпонентный двигатель и узел регулирования давления для резервуаров.
Для запуска Nexø II в августе 2018 года наша стартовая площадка находилась в 30 км к востоку от Борнхольма, самого восточного острова Дании, в части Балтийского моря, используемой датским флотом для военных учений. Мы покинули гавань Борнхольма Нексё в час ночи, чтобы добраться до обозначенного участка океана как раз к запуску в 9 часов утра, время, утвержденное шведской службой управления воздушным движением. (Пока наши лодки находились в международных водах, Швеция осуществляет надзор за воздушным пространством над этой частью Балтийского моря.) Многие члены нашей команды провели весь предыдущий день, проверяя различные системы ракеты, и не спали перед запуском.Мы пили кофе.
Когда Nexø II взлетел, аккуратно отделившись от стартовой башни, мы все обрадовались. Ракета продолжала двигаться по траектории, сбрасывая носовой обтекатель, когда достигла апогея в 6500 метров, и все это время отправляла телеметрические данные обратно на наш корабль управления полетами. Когда он начал снижаться, он сначала развернул свой баллют, похожий на воздушный шар парашют, используемый для стабилизации космического корабля на больших высотах, а затем развернул свой главный парашют, который мягко опустил его к океанским волнам.
В 2018 году ракета Nexø II успешно стартовала [слева] и благополучно вернулась в Балтийское море [справа].
Запуск на шаг приблизил нас к освоению логистики запуска и посадки в море. Для этого запуска мы также проверяли нашу способность предсказывать траекторию ракеты. Я создал модель, которая оценила приводнение в 4,2 км к востоку от стартовой платформы; он фактически приземлился в 4,0 км к востоку. Эта управляемая посадка на воду — наша первая под полностью надутым парашютом — была для нас важным подтверждением концепции, поскольку мягкая посадка является абсолютным императивом для любой миссии с экипажем.
В апреле этого года команда провела статические испытания двигателя на своих новых топливных форсунках. Карстен Олсен
Двигатель Nexø II, который мы назвали BPM5, был одним из немногих компонентов, которые мы полностью не обработали в нашей мастерской; датская компания производила самые сложные детали двигателя. Но когда эти детали прибыли в нашу мастерскую незадолго до даты запуска, мы поняли, что выхлопное сопло немного деформировано. У нас не было времени заказать новую деталь, поэтому один из наших добровольцев, Джейкоб Ларсен, придал ей форму кувалдой.Двигатель выглядел некрасиво — мы прозвали его Franken-Engine — но он работал. С момента полета Nexø II мы более 30 раз запускали этот двигатель, иногда выходя за рамки проектных ограничений, но мы еще не заглушили его.
15-минутная поездка астронавта Spica к звездам станет результатом более чем двух десятилетий работы.
Эта миссия также продемонстрировала нашу новую систему регулирования динамического давления (DPR), которая помогла нам контролировать поток топлива в камеру сгорания.В Nexø I использовалась более простая система, называемая продувкой под давлением, в которой топливные баки на одну треть были заполнены сжатым газом для подачи жидкого топлива в камеру. В DPR резервуары заполнены топливом до отказа и соединены набором регулирующих клапанов с отдельным резервуаром газообразного гелия под высоким давлением. Эта установка позволяет нам регулировать количество газообразного гелия, поступающего в баки, чтобы протолкнуть топливо в камеру сгорания, что позволяет нам программировать различные величины тяги в разных точках во время полета ракеты.
Миссия Nexø II в 2018 году доказала, что наш дизайн и технологии в основе своей являются надежными. Пришло время начать работу над оценкой людей Ракета Spica.
Copenhagen Suborbitals надеется отправить астронавта в воздух на своей ракете Spica примерно через десять лет. Каспар Стэнли
Ракета Spica с капсулой экипажа будет иметь высоту 13 метров и полную стартовую массу 4000 кг, из которых 2600 кг будет топливом.Это будет со значительным отрывом самая большая ракета, когда-либо построенная любителями.
Ракета Spica будет использовать двигатель BPM100, который команда в настоящее время производит. Томас Педерсен
Его двигатель, 100 кН BPM100 использует технологии, которые мы освоили для BPM5, с некоторыми улучшениями. Как и в предыдущей конструкции, в нем используется регенеративное охлаждение, при котором часть топлива проходит через каналы вокруг камеры сгорания, чтобы ограничить температуру двигателя.Чтобы протолкнуть топливо в камеру, он использует комбинацию простого метода сброса давления на первом этапе полета и системы DPR, которая дает нам более точный контроль над тягой ракеты. Детали двигателя будут из нержавеющей стали, и мы надеемся сделать большинство из них сами из листового проката. Самая сложная часть, секция «горловины» с двойным изгибом, которая соединяет камеру сгорания с выхлопным соплом, требует машинного оборудования с компьютерным управлением, которого у нас нет. К счастью, у нас есть хорошие контакты в отрасли, которые могут нам помочь.
Одним из основных изменений стал переход от топливной форсунки Nexø II в стиле душевой лейки к топливной форсунке с коаксиальным вихрем. Инжектор для душа имел около 200 очень маленьких топливных каналов. Его было сложно изготовить, потому что если что-то пошло не так, когда мы делали один из этих каналов — скажем, сверло застревает — нам приходилось все выбросить. В инжекторе с коаксиальным вихревым движением жидкое топливо поступает в камеру в виде двух вращающихся жидких слоев, и когда листы сталкиваются, они распыляются, чтобы создать топливо, которое воспламеняется.В нашем вихревом инжекторе используется около 150 вихревых элементов, которые собраны в одну конструкцию. Эта модульная конструкция должна быть проще в изготовлении и тестировании для обеспечения качества.
Двигатель BPM100 заменит старую топливную форсунку типа «душевая лейка» [справа] на коаксиально-вихревую форсунку [слева], которую будет легче производить. Томас Педерсен
В апреле этого года мы провели статические испытания нескольких типов форсунок. Сначала мы провели испытание хорошо изученного инжектора для душевой лейки, чтобы установить базовый уровень, затем протестировали латунные вихревые форсунки, изготовленные традиционным фрезерованием, а также стальные вихревые форсунки, изготовленные с помощью 3D-печати.В целом мы остались довольны работой обоих вихревых форсунок, и мы все еще анализируем данные, чтобы определить, какая из них работает лучше. Тем не менее, мы видели некоторые нестабильность горения, а именно некоторые колебания пламени между форсункой и горловиной двигателя, потенциально опасное явление. У нас есть хорошее представление о причине этих колебаний, и мы уверены, что несколько изменений дизайна могут решить эту проблему.
Доброволец Джейкоб Ларсен держит латунную топливную форсунку, которая хорошо зарекомендовала себя при испытании двигателя в 2021 году. Карстен Олсен
Вскоре мы приступим к созданию полномасштабного двигателя BPM100, который в конечном итоге будет включать новую систему наведения для ракеты. У наших предыдущих ракет внутри выхлопных сопел двигателей были металлические лопатки, которые мы перемещали, чтобы изменить угол тяги. Но эти лопатки создавали лобовое сопротивление в выхлопном потоке и снижали эффективную тягу примерно на 10 процентов. В новом дизайне есть карданы, которые поворачивают весь двигатель вперед и назад для управления вектором тяги.В качестве дополнительной поддержки нашей уверенности в том, что сложные инженерные проблемы могут быть решены умными и преданными своему делу людьми, наша система карданного подвеса была разработана и протестирована 21-летним студентом из Нидерландов по имени Джоп Нийенхейс, который использовал конструкцию кардана в качестве своей диссертации. проект (за который получил высшую оценку).
Мы используем те же компьютеры наведения, навигации и управления (GNC), которые мы использовали в ракетах Nexø. Одна из новых проблем — капсула экипажа; как только капсула отделится от ракеты, нам придется управлять каждой частью самостоятельно, чтобы вернуть их обе на Землю в желаемой ориентации.Когда происходит разделение, компьютеры GNC для двух компонентов должны понимать, что параметры оптимального полета изменились. Но с точки зрения программного обеспечения это незначительная проблема по сравнению с теми, которые мы уже решили.
Бьянка Диана работает на дроне, который она использует для тестирования новой системы наведения для ракеты Spica. Карстен Олсен
Моя специальность — парашютный дизайн. Я работал над баллютом, который надувается на высоте 70 км, чтобы замедлить пилотируемую капсулу во время ее высокоскоростного начального спуска, и основных парашютах, которые надуваются, когда капсула находится на высоте 4 км над уровнем океана.Мы протестировали оба типа, заставив парашютистов выпрыгивать из самолетов с парашютами, последний раз в прыжке с парашютом. Тест баллута 2019 года. Пандемия вынудила нас приостановить испытания парашютов, но вскоре мы должны возобновить их.
Для парашюта, который будет разворачиваться из ракеты-носителя Spica, команда провела испытания небольшого прототипа ленточного парашюта. Мэдс Стенфатт
Что касается тормозного парашюта, который будет разворачиваться из ракеты-носителя, мой первый прототип был основан на конструкции под названием Supersonic X, которая представляет собой парашют, который чем-то похож на летающий лук, и его очень легко сделать.Однако я неохотно перешел на ленточные парашюты, которые были более тщательно протестированы в условиях высоких нагрузок и оказались более устойчивыми и надежными. Я говорю «неохотно», потому что знал, сколько работы потребуется, чтобы собрать такое устройство. Сначала я сделал парашют диаметром 1,24 метра, у которого было 27 лент, проходящих через 12 панелей, каждая из которых прикреплена в трех местах. Итак, на этом маленьком прототипе мне пришлось сшить 972 соединения. Полноценная версия будет иметь 7920 точек подключения. Я пытаюсь непредвзято отнестись к этой проблеме, но я также не буду возражать, если дальнейшие испытания покажут, что дизайн Supersonic X достаточен для наших целей.
Мы протестировали две капсулы экипажа в прошлых миссиях: Tycho Brahe в 2011 году и Tycho Deep Space в 2012 году. Капсула экипажа Spica следующего поколения не будет просторной, но она будет достаточно большой, чтобы вместить одинокий космонавт, который будет сидеть в течение 15 минут полета (и двух часов предполетных проверок). Первый космический корабль, который мы строим, представляет собой тяжелую стальную «шаблонную» капсулу, базовый прототип, который мы используем для разработки практической схемы и конструкции.Мы также будем использовать эту модель для проверки конструкции люка, общей устойчивости к давлению и вакууму, а также аэродинамики и гидродинамики формы, поскольку мы хотим, чтобы капсула упала в море с минимальным ударом для находящегося внутри астронавта. Как только мы будем довольны стандартным дизайном, мы сделаем облегченную летную версию.
Copenhagen Suborbitals в настоящее время имеет трех кандидатов в космонавты для своего первого полета: слева направо, Мэдс Стенфатт, Анна Олсен и Карстен Олсен. Мэдс Стенфатт
Три члена команды Copenhagen Suborbitals в настоящее время являются кандидатами на пост астронавта в нашей первой миссии с экипажем — я, Карстен Олсен и его дочь Анна Олсен. Мы все понимаем и принимаем риски, связанные с полетом в космос на самодельной ракете. В наших повседневных операциях мы, кандидаты в космонавты, не получаем никакого специального лечения или подготовки. Наша единственная дополнительная обязанность до сих пор заключалась в том, чтобы сидеть в кресле экипажа, чтобы проверить ее размеры.Поскольку до нашего первого полета с экипажем еще десять лет, список кандидатов вполне может измениться. Что касается меня, я считаю, что просто участвовать в миссии и помогать строить ракету, которая доставит первого астронавта-любителя в космос, заслуживает большой славы. Стану я этим космонавтом или нет, я всегда буду гордиться нашими достижениями.
Астронавт отправится в космос внутри небольшой капсулы экипажа на ракете Spica. Космонавт останется сидеть в течение 15-минутного полета (и для 2-часовой полетной проверки ранее). Карстен Брандт
Люди могут задаться вопросом, как мы проживаем скудный бюджет, составляющий около 100 000 долларов в год, особенно когда они узнают, что половина нашего дохода идет на оплату аренды нашей мастерской. Мы сокращаем расходы, покупая как можно больше стандартных готовых деталей, а когда нам нужны нестандартные конструкции, нам повезло работать с компаниями, которые предоставляют нам щедрые скидки для поддержки нашего проекта. Мы запускаем из международных вод, поэтому нам не нужно платить за пусковую установку.Когда мы едем на Борнхольм для запуска катеров, каждый волонтер оплачивает свою работу, и мы остаемся в спортивном клубе недалеко от гавани, спим на ковриках на полу и принимаем душ в раздевалках. Иногда я шучу, что наш бюджет составляет примерно одну десятую того, что НАСА тратит на кофе. Тем не менее, этого вполне может быть достаточно для выполнения работы.
Мы планировали впервые запустить Spica летом 2021 года, но наш график был отложен из-за пандемии COVID-19, из-за которой наш семинар был закрыт на много месяцев.Теперь мы надеемся на испытательный запуск летом 2022 года, когда условия на Балтийском море будут относительно спокойными. Для этого предварительного испытания Spica мы заполним топливные баки только частично и будем стремиться отправить ракету на высоту от 30 до 50 км.
Если этот полет будет успешным, в следующем испытании Spica увезет больше топлива и взлетит выше. Если рейс 2022 года не состоится, мы выясним, что пошло не так, устраним проблемы и попробуем еще раз. Примечательно думать, что возможная 15-минутная поездка астронавта Spica к звездам станет результатом более чем двух десятилетий работы.Но мы знаем свое Сторонники отсчитывают время до исторического дня, когда астронавт-любитель заберется на борт самодельной ракеты и помашет Земле на прощание, готовый совершить гигантский скачок в самодельном стиле.
Эта статья появится в печатном выпуске за декабрь 2021 года как «Первый космонавт, финансируемый за счет средств краудфандинга».
Парашютист, который шьет
HENRIK JORDAHN
Мэдс Стенфатт сначала связался с Copenhagen Suborbitals с некоторой конструктивной критикой.В 2011 году, просматривая фотографии последнего запуска ракеты «сделай сам», он заметил камеру, установленную рядом с парашютным аппаратом. Стенфатт отправил электронное письмо, в котором подробно описал свою озабоченность, а именно, что стропы парашюта могут легко запутаться вокруг камеры. «По сути, я получил ответ:« Если у тебя получится лучше, присоединяйся к нам и сделай это сам », — вспоминает он. Так он стал волонтером единственной в мире программы космических полетов с экипажем, финансируемой за счет краудфандинга.
Как парашютист-любитель, Стенфатт знал основы механики упаковки и развертывания парашюта.Он начал помогать Copenhagen Suborbitals в разработке и упаковке парашютов, а через несколько лет он также взял на себя работу по пошиву парашютов. Раньше он никогда не пользовался швейной машиной, но быстро учился по ночам и в выходные за своим обеденным столом.
Одним из его любимых проектов была разработка высотного парашюта для ракеты Nexø II, запущенная в 2018 году. Работая над прототипом и ломая голову над дизайном воздухозаборников, он обнаружил, что просматривает датский швейный сайт. на компонентах бюстгальтера.Он решил использовать косточки бюстгальтера, чтобы сделать воздухозаборники более жесткими и держать их открытыми, что сработало довольно хорошо. Хотя в конечном итоге он пошел в другом направлении дизайна, этот эпизод является классическим примером духа Copenhagen Suborbitals: черпайте вдохновение и ресурсы, где бы вы их ни находили, чтобы выполнить свою работу.
Сегодня Стенфатт является ведущим конструктором парашютов, частым представителем и кандидатом в космонавты. Он также продолжает прыгать с парашютом в свободное время, совершив сотни прыжков на свое имя.Имея богатый опыт масштабирования по небу, ему очень любопытно, каково было бы двигаться в другом направлении.
Статьи с вашего сайта
Статьи по теме в Интернете
лампочка Эдисона | Институт Франклина
К январю 1879 года в своей лаборатории в Менло-Парке, штат Нью-Джерси, Эдисон построил свою первую электрическую лампу накаливания с высоким сопротивлением. Он работал, пропуская электричество через тонкую платиновую нить в стеклянной вакуумной лампе, которая задерживала плавление нити.Тем не менее, лампа горела всего несколько коротких часов. Чтобы улучшить лампочку, Эдисону потребовалась вся настойчивость, которой он научился много лет назад в своей подвальной лаборатории. Он испытал тысячи и тысячи других материалов для изготовления нити. Он даже думал об использовании вольфрама, металла, используемого сейчас для нити накаливания лампочек, но он не мог работать с ним, учитывая инструменты, доступные в то время.
Однажды Эдисон сидел в своей лаборатории, рассеянно катая между пальцами кусок сжатого угля.Он начал обугливать материалы, которые будут использоваться для нити накала. Он проверил обугленные волокна всех мыслимых растений, в том числе лаврового дерева, самшита, гикори, кедра, льна и бамбука. Он даже связался с биологами, которые отправили ему растительные волокна из тропиков. Эдисон признал, что работа была утомительной и очень требовательной, особенно в отношении его рабочих, помогающих с экспериментами. Он всегда осознавал важность упорного труда и решимости.
«Прежде чем я закончил, — вспоминал он, — я проверил не менее 6000 наростов овощей и обыскал весь мир в поисках наиболее подходящего материала волокна.«
« Электрический свет вызвал у меня огромное количество исследований и потребовал самых сложных экспериментов, — писал он. — Я никогда не разочаровывался и не был склонен к безнадежному успеху ». Я не могу сказать то же самое обо всех моих сотрудниках. «
» Genius — это один процент вдохновения и девяносто девять процентов потоотделения. «
Эдисон решил попробовать карбонизованную хлопковую нить накаливания. Когда напряжение было подано на готовую лампочку , он начал излучать мягкое оранжевое свечение.Примерно через пятнадцать часов нить окончательно сгорела. Дальнейшие эксперименты позволили получить волокна, которые могли гореть все дольше и дольше с каждым испытанием. На электрическую лампу Эдисона был выдан патент № 223 898.
Лампа Эдисона с нашего чердака датирована 27 января 1880 года. Это продукт постоянных усовершенствований, которые Эдисон внес в лампу 1879 года. Несмотря на то, что ей более ста лет, эта лампочка очень похожа на лампочки, освещающие ваш дом прямо сейчас. Цоколь или цоколь этой лампы XIX века аналогичен тем, которые используются до сих пор.Это была одна из самых важных особенностей лампы и электрической системы Эдисона. Этикетка на этой лампе гласит: «Лампа Эдисона нового типа. Запатентована 27 января 1880 г. ДРУГИЕ ПАТЕНТЫ EDISON».
В начале 1880-х годов Эдисон спланировал и руководил строительством первой коммерческой центральной электростанции в Нью-Йорке. В 1884 году Эдисон начал строительство новой лаборатории в Вест-Ориндж, штат Нью-Джерси, где он жил и работал до конца своей жизни. Объект West Orange теперь является частью Национального исторического центра Эдисона, находящегося в ведении Службы национальных парков.
Перед своей смертью в 1931 году Эдисон запатентовал 1093 своих изобретения. Чудеса его разума включают микрофон, телефонную трубку, универсальный биржевой тикер, фонограф, кинетоскоп (используемый для просмотра движущихся изображений), аккумуляторную батарею, электрическую ручку и мимеограф. Эдисон также улучшил многие другие существующие устройства. На основе открытия, сделанного одним из его сотрудников, он запатентовал эффект Эдисона (теперь называемый термоэлектронным диодом), который является основой всех электронных ламп. Эдисона навсегда запомнят за его вклад в создание лампы накаливания.Несмотря на то, что он не придумал первую из когда-либо созданных лампочек, а технологии продолжают меняться каждый день, работа Эдисона с лампочками стала блестящей искрой на шкале времени изобретений. В самом начале своих экспериментов с лампой накаливания в 1879 году он сказал:
«Мы поражаем ее большим электрическим светом, лучше, чем мое живое воображение вначале могло представить. Где эта штука остановится, Господь знает. »
Примечание. Изображенный выше объект является частью защищенной коллекции объектов Института Франклина.Изображения принадлежат © Институт Франклина. Все права защищены.
Alliant Kids — Кто изобрел электричество? и другие факты об энергетике
Большинство отключений электроэнергии вызвано погодными условиями.
Сильный ветер, ледяная буря и сильный снегопад могут сломать деревья и опоры электропередач, которые упадут и сломают линии. Когда это происходит, энергетические компании работают быстро, чтобы восстановить подачу электроэнергии, как только это станет безопасным.
В случае отключения электричества линейные рабочие — герои.Это люди, которые устанавливают, обслуживают и ремонтируют линии электропередач. Они идут навстречу опасности — включая снежные бури и даже ураганы и торнадо — чтобы восстановить энергию.
Отключение электроэнергии никогда не бывает забавным (отвратительно от невозможности использовать телевизор для видеоигр), но в определенных ситуациях это особенно опасно. Подумайте о больницах, в которых нужно заботиться сотням людей и которым нужен свет, чтобы видеть. Или пожилые люди, которые живут одни и могут нуждаться в кислородных устройствах, чтобы выжить.
Иногда энергетическая компания планирует отключение электроэнергии в определенной области для выполнения необходимых работ.Этот тип сбоев встречается редко и затрагивает только небольшое количество людей одновременно. Люди, которых затронул этот тип отключения, уведомляются заранее.
Процесс восстановления электроэнергии Alliant Energy
- Убедитесь, что у критически важных служб, таких как полиция, пожарные депо и больницы, есть электричество.
- Проверьте объекты генерации, чтобы определить, работает ли все еще исходный источник энергии.
- Ремонт линий электропередачи от генерирующих станций к подстанциям.
- Ремонтные подстанции, на которых снижается мощность ЛЭП для бытового использования.
- Ремонт распределительных линий, по которым электроэнергия идет от подстанций к каждому району.
- Отремонтируйте водопроводные линии, которые обслуживают от 20 до 300 домов и предприятий.
- Повторное подключение линий к отдельным клиентам — это самый сложный и трудоемкий этап в процессе восстановления.
