Грм двигателя: Страница не найдена — Techautoport.ru

Содержание

ᐉ Газораспределительный механизм двигателя (ГРМ). Устройство

Видео: Принцип работы газораспределительного механизма. Ремень ГРМ. Ресурс, когда менять. Цепь или ремень ГРМ. Что лучше и надежнее. Растянутая цепь ГРМ — симптомы

Что такое газораспределительный механизм (ГРМ)?

Газораспределительный механизм (ГРМ) — это механизм предназначенный для впуска в цилиндры двигателя свежего заряда (горючей смеси в классических бензиновых двигателях или воздуха в дизелях) и выпуска отработавших газов в соответствии с рабочим циклом, а также для обеспечения надежной изоляции камеры сгорания от окружающей среды во время тактов сжатия и рабочего хода.

В зависимости от вида устройств, осуществляющих впуск заряда и выпуск отработавших газов, различают два типа механизмов газораспределения:

  • клапанный
  • золотниковый

Клапанный механизм наиболее широко распространен и используется во всех четырехтактных двигателях. Возможно верхнее и нижнее расположение клапанов. Верхнее расположение в настоящее время применяется чаще, так как в этом случае процесс газообмена протекает эффективнее. Характерные конструкции газораспределительных механизмов с верхним расположением клапанов представлены на рисунке.

Из чего состоит газораспределительный механизм (ГРМ) двигателя?

Основными элементами газораспределительного механизма являются:

  • распределительный вал
  • впускные и выпускные клапаны с пружинами, крепежными деталями и направляющими втулками
  • привод распределительного вала
  • также детали (толкатели, штанги, коромысла и др.), обеспечивающие передачу перемещения от распределительного вала к клапанам

У V-образных двигателей основная деталь рассматриваемого механизма — распределительный вал — может иметь как нижнее, так и верхнее расположение. При нижнем расположении (рис. а) распределительный вал 7, размещенный в блок-картере, приводится во вращение от коленчатого вала двигателя с помощью зубчатой передачи, обычно содержащей одну пару цилиндрических или конических шестерен (возможно применение и нескольких пар шестерен).

У четырехтактного двигателя передаточное отношение привода равно двум, т.е. распределительный вал вращается вдвое медленнее коленчатого. При вращении распределительный вал с помощью кулачков перемещает толкатели 2 и штанги 3. Последние поворачивают коромысла 5 относительно оси 4. В то же время противоположные концы коромысел воздействуют на клапаны 7, перемещая их вниз и преодолевая при этом сопротивление пружин 6. Расположение кулачков на распределительном валу и их форму выбирают так, чтобы впускные и выпускные клапаны открывались и закрывались в строго определенные моменты согласно рабочему циклу двигателя.

Рис. Газораспределительные механизмы с верхним расположением клапанов:

а — с нижним расположением распределительного вала: 1 — распределительный вал; 2 — толкатель; 3 — штанга; 4 — ось коромысел; 5 — коромысло; 6 — пружина; 7 — клапан; б — с верхним расположением распределительного вала: 1 — винт; 2 — контргайка; 3 — коромысла; 4 — распределительный вал

У рядных верхнеклапанных двигателей и V-образных двигателей с четырьмя клапанами на цилиндр распределительный вал (валы) находится в головке блока, в непосредственной близости от клапанов (рис. б). Поскольку при верхнем расположении распределительного вала расстояние между его осью и осью коленчатого вала оказывается значительным, для приведения распределительного вала во вращение обычно используют цепную передачу. У двигателей сравнительно малой мощности можно также применять зубчатый ремень.

Распределительные валы мощных V-образных дизелей приводятся во вращение с помощью зубчатой передачи, у которой число пар конических шестерен может составлять две и более. При верхнем расположении распределительного вала уменьшается число передаточных деталей. Например, в механизме, представленном на рис. б, отсутствуют толкатели и штанги. Распределительный вал 4 непосредственно воздействует на коромысла 3, которые, в свою очередь, перемещают клапаны.

При работе двигателя детали газораспределительного механизма нагреваются (наиболее сильно — клапаны) и, следовательно, расширяются и удлиняются. Чтобы обеспечить возможность удлинения стержня клапана при его нагреве без нарушения плотности посадки головки клапана в седле, между отдельными деталями газораспределительного механизма у непрогретого двигателя должен быть зазор (например, между стержнем клапана и концом коромысла). Регулировать этот зазор можно различными способами, например с помощью винта 1 (см. рис. б), самоотвинчивание которого предотвращает контргайка 2. Чтобы исключить необходимость в регулировке зазора и уменьшить шумность двигателя в газораспределительных механизмах многих современных двигателей используются гидравлические толкатели. В эти толкатели встроены гидрокомпенсаторы, изменяющие их длину под действием давления масла, которое специально подается из смазочной системы двигателя. Клапан, его направляющая втулка, пружина и опорная шайба с деталями ее крепления образуют клапанную группу газораспределительного механизма.

Клапан состоит из головки и стержня, между которыми для уменьшения сопротивления движению газов выполнен плавный переход. Головка клапана имеет шлифованную конусную рабочую поверхность — фаску, по которой клапан плотно прилегает к седлу. Для крепления опорной шайбы пружины конец стержня клапана снабжен канавкой. В некоторых случаях для улучшения отвода теплоты от головки выпускного клапана стержень со стороны головки выполняют полым и вводят в него жидкий металлический натрий.

Клапаны изготавливают высадкой из стального прутка с последующей механической и термической обработкой. Материалом для них служит износо- и жаростойкая сталь. Иногда головку и стержень выпускного клапана выполняют из разных марок стали, а затем соединяют сваркой. Торец стержня клапана дополнительно закаливают для повышения твердости и износостойкости. В некоторых случаях на фаску выпускного клапана для увеличения его долговечности наплавляют особо жаростойкий сплав.

Каждый цилиндр двигателя имеет, как минимум, два клапана — впускной и выпускной. Однако в настоящее время наметилась тенденция к увеличению числа клапанов на цилиндр. Все шире применяются двигатели с тремя (два впускных и один выпускной) и четырьмя (два впускных и два выпускных) клапанами. При наличии одного впускного и одного выпускного клапанов первый имеет большую головку. Это необходимо для лучшего наполнения цилиндра свежим зарядом.

Направляющая втулка, через которую проходит стержень клапана, обеспечивает его точную посадку в седло. Стержень имеет высокоточное сопряжение с втулкой (зазор составляет 0,05… 0,12 мм). Направляющие втулки изготавливают из чугуна или спеченного пористого материала, который может быть пропитан смазочным маслом.

Клапанная пружина удерживает клапан в закрытом положении, обеспечивая его плотную посадку в седле. Пружины изготавливают методом холодной навивки из специальной стальной, термически обработанной проволоки с последующей дробеструйной обработкой, что увеличивает их долговечность. Иногда для предотвращения появления резонансных колебаний используют пружины с переменным шагом витков.

Опорная шайба удерживает пружину в сжатом состоянии. Крепление стержня клапана к опорной шайбе осуществляется с помощью конических разрезных сухарей, входящих в выточку на стержне.

Седло клапана, в которое он садится фаской головки, у верхнеклапанного двигателя расположено в головке цилиндров. Обычно седла выпускных, а иногда и впусковых клапанов, выполняют в виде вставных колец и наглухо запрессовывают в выточки головки цилиндров. Вставные кольца изготавливают из жаростойкой стали, специального чугуна или спеченного материала.

Передаточные детали газораспределительного механизма обеспечивают передачу усилия от распределительного вала к стержням клапанов. К таким деталям относятся:

  • толкатели
  • штанги
  • коромысла

Толкатели передают осевое усилие от кулачков распределительного вала на штанги или стержни клапанов. Они могут быть плоскими, грибовидными, цилиндрическими или рычажными. Их изготавливают из стали или чугуна. Для повышения твердости и износостойкости рабочие поверхности толкателей упрочняют, а затем шлифуют.

Штанги служат для передачи усилий от толкателей к коромыслам при нижнем расположении распределительного вала в верхнеклапанном двигателе (см. рис. а). Штанги изготавливают из стали или алюминиевого сплава, придавая им форму трубки. На концах штанг крепят стальные наконечники со сферическими поверхностями, имеющими высокую твердость. Нижними концами штанги упираются в гнезда толкателей, а верхними — в регулировочные винты коромысел.

Коромысла предназначены для изменения направления и величины усилий, передаваемых на стержни клапанов. Коромысла шарнирно устанавливают на осях, которые крепятся к головке цилиндров. На одном конце коромысла может быть установлен регулировочный винт, который позволяет изменять зазор в газораспределительном механизме. Материалом для коромысла служит сталь или ковкий чугун. Рабочие поверхности коромысла закаливают, а затем шлифуют.

Распределительный вал служит для своевременного открытия и закрытия клапанов при помощи кулачков. Конструкция распределительного вала зависит от типа двигателя, числа цилиндров и клапанов, а также типа привода. Характерные конструкции распределительных валов представлены на рисунке. Любой распределительный вал имеет кулачки впускных 2 и выпускных 4 клапанов, а также опорные шейки 2. Распределительный вал бензинового карбюраторного двигателя снабжен также винтовой шестерней 5 привода масляного насоса и распределителя зажигания и эксцентриком 3, приводящим в действие топливный насос. Число кулачков соответствует общему числу клапанов, которые обслуживаются данным валом. Число опорных шеек чаще всего равно числу коренных шеек коленчатого вала. В рядном четырех- цилиндровом двигателе вершины одноименных кулачков располагаются под углом 90° (рис. а), в рядном шестицилиндровом — под углом 60° (рис. б), а в V-образном восьмицилиндровом — под углом 45° (рис. в). Угол установки разноименных кулачков зависит от фаз газораспределения. Вершины кулачков располагают в соответствии с принятым для двигателя порядком работы с учетом направления вращения вала. В качестве подшипников для распределительного вала чаще всего применяют запрессованные в картер (при нижнем расположении) или головку цилиндров (при верхнем расположении) тонкостенные биметалические или триметаллические втулки. Одна из опорных шеек вала (обычно передняя) снабжена фиксирующим устройством для предотвращения его осевых перемещений. Для смазывания опорных шеек к ним подается масло под давлением из общей смазочной системы двигателя. При верхнем расположении распределительного вала в его теле сверлят осевое отверстие, по которому масло поступает ко всем опорным шейкам и кулачкам.

Рис. Распределительные валы рядного четырехцилиндрового (а), рядного шестицилиндрового (б) и V-образного восьмицилиндрового (в) двигателей со схемами расположения кулачков:
1 — опорная шейка; 2, 4 — кулачки впускных и выпускных клапанов; 3 — эксцентрик привода топливного насоса; 5 — винтовая шестерня привода масляного насоса

Видео: Принцип работы ГРМ

Вопросы по теме


Газораспределительный механизм двигателя: устройство ГРМ

Газораспределительный механизм двигателя

Газораспределительный механизм (ГРМ) предназначен для впрыска топлива и выпуска отработанных газов в двигателях внутреннего сгорания. Сам механизм газораспределения делится на нижнеклапанный, когда распределительный вал находится в блоке цилиндров, и верхнеклапанный. Верхнеклапанный механизмподразумевает нахождение распредвала в головке блока цилиндров (ГБЦ). Существуют и альтернативные механизмы газораспределения, такие как гильзовая система ГРМ, десмодромная система и механизм с изменяемыми фазами.

Для двухтактных двигателей механизм газораспределения осуществляется при помощи впускных и выпускных окон в цилиндре. Для четырехтактных двигателей самая распространенная система верхнеклапанная, о ней и пойдет речь ниже.

Газораспределительный механизм

Устройство ГРМ

В верхней части блока цилиндров находится ГБЦ (головка блока цилиндров) с расположенными на ней распределительным валом, клапанами, толкателями или коромыслами. Шкив привода распредвала вынесен за пределы головки блока цилиндров. Для исключения протекания моторного масла из-под клапанной крышки, на шейку распредвала устанавливается сальник. Сама клапанная крышка устанавливается на масло- бензо- стойкую прокладку. Ремень ГРМ или цепь одевается на шкив распредвала и приводится в действие шестерней коленчатого вала. Для натяжения ремня используются натяжные ролики, для цепи натяжные «башмаки». Обычно ремнем ГРМ приводится в действие помпа водяной системы охлаждения, промежуточный вал для системы зажигания и привод насоса высокого давления ТНВД (для дизельных вариантов).

Газораспределительный механизм

С противоположной стороны распределительного вала посредством прямой передачи или при помощи ремня, могут приводиться в действие вакуумный усилитель, гидроусилитель руля или автомобильный генератор.

Газораспределительный механизм

Распредвал представляет собой ось с проточенными на ней кулачками. Кулачки расположены по валу так, что в процессе вращения, соприкасаясь с толкателями клапанов, нажимают на них точно в соответствии с рабочими тактами двигателя.

Существуют двигатели и с двумя распредвалами (DOHC) и большим числом клапанов. Как и в первом случае, шкивы приводятся в действие одним ремнем ГРМ и цепью. Каждый распредвал закрывает один тип клапанов впускных или выпускных.

Клапан нажимается коромыслом (ранние версии двигателей) или толкателем. Различают два вида толкателей. Первый – толкатели, где зазор регулируется калибровочными шайбами, второй – гидротолкатели. Гидротолкатель смягчает удар по клапану благодаря маслу, которое находится в нем. Регулировка зазора между кулачком и верхней частью толкателя не требуется.

Принцип работы ГРМ


Весь процесс газораспределения сводится к синхронному вращению коленчатого вала и распределительного вала. А так же открыванию впускных и выпускных клапанов в определенном месте положения поршней.

Для точного расположения распредвала относительно коленвала используются установочные метки. Перед надеванием ремня газораспределительного механизма совмещаются и фиксируются метки. Затем надевается ремень, «освобождаются» шкивы, после чего ремень натягивается натяжным(и) роликами.

Газораспределительный механизм

При открывании клапана коромыслом происходит следующее: распредвал кулачком «наезжает» на коромысло, которое нажимает на клапан, после прохождения кулачка, клапан под действием пружины закрывается. Клапаны в этом случае располагаются v-образно.

Если в двигателе применены толкатели, то распредвал находится непосредственно над толкателями, при вращении, нажимая своими кулачками на них. Преимущество такого ГРМ малые шумы, небольшая цена, ремонтопригодность.

Газораспределительный механизм двигателя

В цепном двигателе весь процесс газораспределения тот же, только при сборке механизма, цепь надевается на вал совместно со шкивом.

какой привод ГРМ лучше? — журнал За рулем

В среде автолюбителей никогда не утихнут споры, какой привод газораспределительного механизма предпочтительнее: ременный или цепной? Еще раз разбираемся в проблеме и собираем воедино все аргументы за и против.

Вначале были шестерни

Начнем с истории вопроса. На заре создания двигателей внутреннего сгорания самым простым и логичным был привод распределительного вала с помощью шестерен. Нужно, чтобы распредвал вращался вдвое медленнее коленчатого вала, а потому две шестерни с числом зубьев, относящимся как 1:2, представлялись идеальным решением. Схема с шестеренным приводом обладает самой высокой надежностью. Недаром на знаменитом танке Т-34 устанавливался двигатель В-2, у которого не только привод клапанов, но и всех вспомогательных агрегатов осуществлялся шестернями. Предвоенные, да и некоторые послевоенные легковые автомобили отечественного производства также имели шестеренный привод ГРМ с нижним расположением распредвала.

На цепь его!

Конструкторы автомобильных двигателей довольно быстро пришли к выводу, что распределительному валу место рядом с клапанами. Это решение упрощает привод клапанов и снижает инерционность, что особенно важно для высокооборотных моторов. И расстояние между распределительным и коленчатым валами стало достаточно велико, особенно на длинноходных двигателях. Такими называют моторы, у которых ход поршня больше, чем диаметр цилиндра. К тому времени уже были освоены в производстве втулочно-роликовые цепи, которые и стали применять для привода распредвалов. Передаточное отношение обеспечивала двукратная разница в числе зубьев ведущей и ведомой шестерен. А цепи применяли двухрядные, для надежности.

Шестеренный привод ГРМ сохранился на современных V-образных многоклапанных моторах. Это стало возможным потому, что распредвалы, расположенные в развале V-образного блока цилиндров, находятся относительно близко к коленчатому валу.

Шестеренный привод ГРМ сохранился на современных V-образных многоклапанных моторах. Это стало возможным потому, что распредвалы, расположенные в развале V-образного блока цилиндров, находятся относительно близко к коленчатому валу.

Впервые на массовом отечественном двигателе цепной привод появился на москвичовском двигателе УЗАМ-412, разработанном в первой половине 60-х годов прошлого столетия. А вскоре началось триумфальное шествие Жигулей, на которых вплоть до начала восьмидесятых безраздельно господствовал цепной привод распредвала.

Отмечу, что при использовании цепного привода всегда возникают сложные колебания системы, вызванные неравномерностью работы цепи. Для гашения этих колебаний мотористам приходится устанавливать успокоители в виде пластмассовых (иногда стальных обрезиненных) пластин. При этом цепь необходимо натягивать. Делать это приходится и сразу после сборки мотора, и в процессе эксплуатации в связи с удлинением (вытяжкой) цепи.

Откуда берется «вытяжка»? Интересный вопрос. Конечно, не может быть и речи об удлинении под нагрузкой каждой отдельной пластинки, составляющей цепь. Рассчитать на прочность эти элементы проще простого. Удлинение цепи происходит при износе, увеличении зазора в каждом шарнире, а их, как правило, больше сотни. Соответственно, и суммарная длина цепи может расти на несколько миллиметров по мере износа.

Ранние импортные и описанные выше отечественные двигатели имели механические натяжители с пружиной, обслуживаемые при каждом ТО. При этом цепи на наших моторах (напомню, двухрядные) ходили при должном обслуживании немногим больше 100 000 км. Далее тольяттинские моторостроители на много лет прекратили разрабатывать новые конструкции с цепным приводом, и только при модернизации старого доброго двигателя рабочим объемом 1,7 л для Chevrolet Niva и Lada 4×4 немного изменили конструкцию. Вместо двухрядной применили однорядную цепь, снабдив ее гидравлическим натяжителем. Замечу, что при равном качестве материалов ресурс однорядной цепи меньше: ведь в двухрядной цепи поверхностей пластин, взаимодействующих с валиками, минимум три, а в однорядной — только две.

Вот такой узкой стала цепь на нынешних вазовских полноприводниках.

Вот такой узкой стала цепь на нынешних вазовских полноприводниках.

Мировое моторостроение меж тем перешло на зубчатые цепи, что позволило снизить шум и износ. Достигнут такой эффект благодаря тому, что количество пластин, работающих в паре с валиками цепи, увеличено до четырех даже в самых простых конструкциях. Вторым фактором, продлившим срок службы цепей и сделавших их необслуживаемыми, стало применение гидравлических натяжителей. Такие устройства обеспечивают постоянное необходимое натяжение цепи, особенно если снабжены храповым механизмом, который уже не отдаст обратно отвоеванную у цепи слабину.

Так выглядит цепной привод распредвалов в двигателе корейских автомобилей Kia Rio или Hyundai Solaris прошлого поколения.

Так выглядит цепной привод распредвалов в двигателе корейских автомобилей Kia Rio или Hyundai Solaris прошлого поколения.


В современных многоцилиндровых V-образных двигателях цепей может быть несколько, включая и небольшую цепочку привода масляного насоса.

В современных многоцилиндровых V-образных двигателях цепей может быть несколько, включая и небольшую цепочку привода масляного насоса.


На оппозитных двигателях конструкторы тоже применяют цепной привод.

На оппозитных двигателях конструкторы тоже применяют цепной привод.


Да, кстати, вы в курсе, что на народном любимце Логане стоит цепь? «Нет, неправда, автор сошел с ума! Там ремень!» — скажете вы. А вот и нет. Масляный насос на этом достойном двигателе действительно приводит небольшая цепь.

Явление ремня народу

Материалы по теме

До поры до времени неметаллические материалы использовались в двигателе только в виде прокладок или сальников. Как вдруг в середине пятидесятых годов прошлого века американцы впервые наладили привод распредвала резиновым ремнем. Конечно, это был не такой ремень, который крутит генераторы и компрессоры кондиционера. Во-первых, требовалось синхронное вращение валов, то есть должно быть исключено проскальзывание ремня, а во-вторых, прочность ремня и его зубьев должны обеспечивать работоспособность двигателя в течение длительного срока.

На просторах нашей Родины ремень появился впервые на двигателе ВАЗ-2105. Заводчане изменили конструкцию двух базовых деталей — блока цилиндров и его головки, чтобы не отставать от мирового прогресса автомобилестроения. Ремни ходили не очень долго, являлись приличной головной болью для хозяев, но их обрыв не был фатален для мотора. Конструкция предусматривала, что при любых взаимных положениях коленчатого и распределительного валов встречи клапанов с поршнями не происходило. Иными словами, даже в дороге — заменил ремень и езжай дальше. Правда, такой мотор выпускали не очень долго.

С появлением переднеприводного семейства ВАЗ ремень стал основным типом привода ГРМ. Были в линейке новых моторов и «втыковые», и «невтыковые» модели и их модификации. Но постепенно требования к мощности и экологии привели к необходимости даже восьмиклапанный двигатель сделать по конструкции втыковым. А у шестнадцатиклапанников подобная конструкция была изначально.

Натяжной ролик и поверхность зубчатого ремня двигателя Приоры. Объявленный ресурс ремня — 200 000 км. Посмотрим…

Натяжной ролик и поверхность зубчатого ремня двигателя Приоры. Объявленный ресурс ремня — 200 000 км. Посмотрим…

Но русского умельца так просто современными евронормами не возьмешь. Сейчас в продаже есть поршни, предотвращающие встречу клапанов при обрыве ремня — и к восьми-, и к шестнадцатиклапанникам. О чем это говорит? О том, что ремни-то, похоже, рвутся, как и прежде, ну а спрос рождает предложение. К слову, для импортных двигателей я таких поршней в продаже не встречал.

Ременный привод в двигателе Chevrolet Cruze. Современная схема привода ГРМ с двумя фазовращателями требует применения широкого (1 дюйм) ремня.

Ременный привод в двигателе Chevrolet Cruze. Современная схема привода ГРМ с двумя фазовращателями требует применения широкого (1 дюйм) ремня.

Плюсы ременного привода

Минусы ременного привода

  • Меньший шум
  • Ремень позволяет избежать резонансных колебаний, т.к. число зубьев нечетное и некратное количеству зубьев шестерен.. Например, 111 зубьев было у двигателя некогда популярной вазовской «восьмерки». Таких моторных цепей не бывает в природе: число звеньев всегда четное.
  • Ремень благодаря своей эластичности хорошо гасит крутильные колебания.
  • Не требует гидравлического натяжителя: ремню достаточно недорогого пружинного натяжителя.
  • Нечувствителен к качеству залитого в двигатель масла, его количеству и величине давления.
  • На части моторов его довольно легко осмотреть. Но, к сожалению, на некоторых моторах бывает нужно демонтировать опору силового агрегата.
  • Заменить ремень проще. Это можно сделать даже своими силами.
  • Масса двигателя с ременным приводом несколько ниже.
  • Двигатель с ременным приводом имеет большое число валов, выходящих из масляной полости наружу. Это — большее число сальниковых уплотнений, причем течь из них и будет выводить ремень из строя.
  • Очень низкие температуры, как и попадание воды, представляют для ремня серьезную угрозу.
  • Ресурс ремня ограничен не только пробегом, но и временем. Резина склонна к старению.
  • На сохранность ремня влияет состояние натяжных и обводящих роликов, а также помпы, которая часто приводится тем же ремнем. Смазка в роликах пересыхает от времени и жары, а помпу выводит из строя применение некачественных охлаждающих жидкостей.
  • Требует периодических замен в соответствии с таблицей регламентных работ.
  • Ремень рвется мгновенно, зачастую без всяких предупреждающих звуков.

Плюсы цепного привода

Минусы цепного привода

  • Для первого владельца цепь дешевле в эксплуатации. Регламентных работ по замене цепи ни в одной сервисной книжке, которые очень многие производители ведут до 100 тыс. км. не видел ни разу.
  • Высокий ресурс, особенно для знаменитых двигателей 80–90 годов с цепями, имеющими два и более ряда.
  • Цепь защищена от внешних неблагоприятных факторов, всегда смазана и при исправном натяжителе — натянута.
  • Цепь благодаря продуманной системе успокоителей и натяжителей испытывает даже меньшие колебания, чем ремень.
  • Цепь — находка для тех, кто ездит мало. Она не нуждается в замене «по возрасту».
  • Цепь перед «кончиной» начнет «проситься» на замену повышенным шумом, и у владельца есть шанс не упустить этот момент.
  • Двигатели с цепным приводом несколько тяжелее.
  • Гидронатяжитель цепи без храпового механизма может плохо работать при недостаточном давлении масла. Такое возможно при использовании систем «старт-стоп».
  • Возможно перескакивание цепи при вращении мотора в обратную сторону, что случается при парковке с включенной передачей на крутом склоне.
  • Насос охлаждающей жидкости практически всегда у таких моторов вращает ремень вспомогательных агрегатов. Его по регламенту зачастую не меняют — мол, он не самый важный. А при обрыве далеко не уедешь из-за перегрева двигателя.
  • Встречались в истории двигатели с ресурсом цепи, не превышающим 50 тыс. км. Ну, тут по поговорке — «В семье не без урода».

Выводы

Материалы по теме

Способ привода газораспределительного механизма — ремнем или цепью — редко становится определяющим фактором при выборе автомобиля. Но задуматься все-таки заставляет. Ведь он порой может изменить судьбу автомобиля. Характерен пример с нашей редакционной Грантой.

Если данная модель двигателя не славится малым ресурсом цепи (отзывы на профильных форумах вам в помощь), то цепной привод лучше ременного. Ременный привод выдерживает только пробег до регламентной замены, а цепь может ходить дольше. Недаром же существует совет: покупаете бэушный автомобиль — сразу замените все ремни, включая ГРМ.

Не хочу никого обидеть, но владельцы автомобилей, где привод ГРМ осуществляется цепью, несколько снисходительно взирают на тех, кто периодически задумывается: «А как там поживает мой ремень?..».

Расскажите в комментариях, какой тип привода ГРМ нравится вам и почему.

Газораспределительный механизм ГРМ двигателя УМЗ-4216, зазоры

Впускные и выпускные клапаны газораспределительного механизма ГРМ двигателя УМЗ-4216 расположены в головке блока цилиндров вертикально в ряд. Привод клапанов осуществляется от распределительного вала через толкатели, штанги толкателей и коромысла. 

Газораспределительный механизм ГРМ двигателя УМЗ-4216, устройство, каталожные номера деталей и узлов, обслуживание ГРМ УМЗ-4216.

Распределительный вал ГРМ двигателя УМЗ-4216 чугунный с отбелом до высокой твердости кулачков. Имеет пять опорных шеек и шестерню привода масляного насоса. Привод распределительного вала осуществляется от коленчатого вала парой косозубых шестерен. Обе шестерни имеют по два резьбовых отверстия для съемника. Осевое перемещение распределительного вала ограничивается стальным упорным фланцем.

Упорный фланец распределительного вала ГРМ двигателя УМЗ-4216.

Рабочий зазор 0,1-0,2 мм между ступицей шестерни и упорным фланцем обеспечивается тем, что распорное кольцо зажатое межу шестерней и шейкой распределительного вала, толще упорного фланца. Правильность фаз газораспределения ГРМ двигателя УМЗ-4216 обеспечивается установкой шестерен по меткам. Метка «О» на шестерне коленчатого вала должна быть против риски у впадин зуба на шестерне распределительного вала.

Установочные метки на шестернях распределительного и коленчатого валов двигателя УМЗ-4216.

На торце шестерни распределительного вала установлен отметчик, генерирующий при прохождении мимо торца датчика фазы (датчик установлен на крышке распределительных шестерен) электрический импульс для управления фазированной подачей топлива.

Каталожные номера деталей и узлов газораспределительного механизма ГРМ двигателя УМЗ-4216.

Толкатели и штанги толкателей газораспределительного механизма ГРМ двигателя УМЗ-4216.

Толкатели стальные с наплавкой рабочего торца специальным чугуном, имеющим высокую твердость. Штанги толкателей из дюралюминиевого прутка с напрессованными на оба конца стальными наконечниками.

Коромысла клапанов и клапана газораспределительного механизма ГРМ двигателя УМЗ-4216.

Коромысла клапанов стальные, взаимозаменяемые, с запрессованной втулкой из оловянистой бронзы. Впускные клапаны изготовлены из хромистой стали, выпускные из жаростойкой стали. Рабочая фаска выпускных клапанов имеет наплавку из специального жаропрочного сплава.

Привод впускного клапана ГРМ двигателя УМЗ-4216.

Обслуживание газораспределительного механизма ГРМ двигателя УМЗ-4216.

Обслуживание ГРМ двигателя УМЗ-4216 заключается в периодической проверке зазора между коромыслами и клапанами, в очистке клапанов от нагара и их притирке. Регулировку зазоров выполнять на холодном двигателе при очередном техническом обслуживании или при появлении признаков нарушения зазоров.

Регулировка зазоров между коромыслами и клапанами газораспределительного механизма ГРМ двигателя УМЗ-4216.

Регулировку зазоров между коромыслами и клапанами необходимо производить в следующем порядке.

— Отсоединить низковольтные и высоковольтные провода от катушек зажигания.
— Отсоединить от ресивера шланг основной ветви системы вентиляции картера.
— Снять крышку коромысел вместе с катушками зажигания.
— Установить поршень первого цилиндра в ВМТ такта сжатия, для чего повернуть специальным ключом на 36 мм коленчатый вал двигателя УМЗ-4216 до положения, при котором метка на шкиве-демпфере коленчатого вала совместиться со штифтом на крышке распределительных шестерен. При этом коромысла впускного и выпускного клапанов первого цилиндра будут свободно покачиваться (клапаны закрыты).

Установочная метка на шкиве-демпфере коленчатого вала двигателя УМЗ-4216.

— Проверить с помощью щупа зазоры между коромыслами и клапанами первого цилиндра. При необходимости с помощью регулировочного винта установить зазор 0,30-0,35 мм по щупу, после чего, поддерживая отверткой регулировочный винт, затянуть контргайку регулировочного винта и проверить правильность зазора.

Проворачивая коленчатый вал на полоборота, отрегулировать зазоры остальных цилиндров согласно порядку их работы 1-2-4-З. Зазор между коромыслом и клапаном на холодном двигателе, температура 15-20 градусов, для выпускных клапанов первого и четвертого цилиндров должен быть 0,30-0,35 мм, для остальных клапанов — 0,35-0,40 мм.

Похожие статьи:

  • Ремонт коленчатого вала 5143.1005010 дизельного двигателя ЗМЗ-5143.10 Евро-3 на УАЗ Хантер УАЗ-315148, предельные размеры и контролируемые параметры коленчатого вала.
  • Ремонт блока цилиндров дизельного двигателя ЗМЗ-5143.10 Евро-3 на УАЗ Хантер УАЗ-315148, детали стандартного и ремонтных размеров, размерные группы поршней и цилиндров.
  • Подбор поршней к цилиндрам двигателя ЗМЗ-40522.10 на Газель и Соболь, размерные группы поршней и цилиндров блока, подбор пальцев к поршням и шатунам.
  • Ремонт масляного насоса 406.1011010-03 системы смазки двигателя ЗМЗ-40522.10 на Газель и Соболь, проверка ослабления пружины редукционного клапана.
  • Как проверить термоклапан 406.1013080 системы смазки ЗМЗ-40522.10 на Газель и Соболь, проверка износа термоклапана и плунжера и проверка термосилового датчика.
  • Как проверить термостат ТС107-1306100-05, ТР2-1306100-01, 406.1306008-12 на двигателе ЗМЗ–40522.10 автомобилей Газель и Соболь, проверка герметичности основного клапана.

Система ГРМ двигателя ЗМЗ-406

_____________________________________________________________________________

Система ГРМ двигателя ЗМЗ-406


В процессе эксплуатации, а также из-за погрешности при изготовлении деталей привода газораспределительного механизма ГРМ ЗМЗ-406 автомобилей ГАЗ-3110 Волга, Газель-3302 возможно значительное отклонение фаз газораспределения от заданных значений.

В то же время известно, что правильность фаз газораспределения является одним из важнейших факторов, влияющих на мощность, крутящий момент и экономические показатели двигателя.

Поэтому при снижении тяговых свойств двигателя, повышении эксплуатационного расхода топлива и неустойчивой работе двигателя возникает необходимость проверить и, при необходимости, правильно установить фазы ГРМ.

Двигатель ЗМЗ-406 имеет два газопровода: впускной и выпускной.

Впускной газопровод состоит из впускной трубы и ресивера, отлитых из алюминиевого сплава и соединенных между собой через паронитовую прокладку пятью шпильками.

Впускная труба в сборе с ресивером через паронитовую прокладку пятью шпильками крепится к головке цилиндров справа.

Ресивер представляет собой емкость определенного объема, подобранную таким образом, чтобы вместе с газовыми каналами впускной трубы, имеющими одинаковую длину, форму и сечение для каждого цилиндра, подобранными экспериментально, обеспечить настройку впускной системы, на определенном скоростном режиме, на получение некоторого давления перед впускными клапанами и тем самым иметь более высокое наполнение цилиндров, а значит и более высокую мощность.

К фланцу ресивера через паронитовую прокладку четырьмя болтами крепится дроссельный патрубок (дроссель), в котором на горизонтальной оси установлена дроссельная заслонка, регулирующая подачу воздуха в цилиндры двигателя ЗМЗ-406.

Дроссельная заслонка управляется водителем от педали через рычаги и тросик, закрепленный на секторе рычага дроссельной заслонки.

На корпусе дроссельного патрубка установлен датчик положения дроссельной заслонки (ДПДЗ), подвижная часть которого соединена с осью дроссельной заслонки. ДПДЗ информирует электронную систему управления о величине открытия дроссельной заслонки.

На корпусе дроссельного патрубка установлены также четыре штуцера: два нижних и два верхних. К нижним штуцерам подсоединены шланги подвода и отвода охлаждающей жидкости для подогрева корпуса дроссели.

Два верхних штуцера служат: один для подсоединения трубки вентиляции картера двигателя ЗМЗ-406 автомобилей ГАЗ-3110 Волга, Газель-3302, другой для подсоединения трубки подачи воздуха к регулятору холостого хода.

Кроме того, на ресивере закреплены: двумя болтами регулятор холостого хода и двумя болтами кронштейн наконечника трубки тросика управления дроссельной заслонкой.

Рис.4. Топливопровод двигателя ЗМЗ-406 автомобилей ГАЗ-3110 Волга, Газель-3302

1 — впускная труба; 2 — электромагнитная форсунка; 3 — штуцер; 4 — топливопровод; 5 — болт; 6 — регулятор давления топлива; I — от электробензонасоса; II — к ресиверу; III — к бензобаку

К впускной трубе двумя болтами М6 закреплен, отлитый из алюминия, топливопровод 4 (рис. 4 ) с установленными в нем четырьмя электромагнитными форсунками 2.

Другие концы электромагнитных форсунок двс ЗМЗ-406 автомобилей ГАЗ-3110 Волга, Газель-3302 входят в отверстия впускной трубы 1. Уплотнение форсунок в отверстиях топливопровода и впускной трубы осуществляется с помощью резиновых колец круглого сечения.

Выпускной газопровод (коллектор) отлит из чугуна, через четыре стальных прокладки восемью шпильками крепится к головке цилиндров слева.

Для улучшения очистки цилиндров двигателя от отработавших газов и повышения мощностных показателей двигателя патрубки выпускного коллектора от первого и четвертого, а также от второго и третьего цилиндров попарно соединены между собой.

Распредвал двигателя ЗМЗ-406

Распредвалы ГРМ двигателя ЗМЗ-406 автомобилей ГАЗ-3110 Волга, Газель-3302 отлиты из чугуна. Двигатель имеет два распределительных вала: для впускных и выпускных клапанов.

Профили кулачков распределительных валов двс одинаковые. Для достижения высокой износостойкости рабочая поверхность кулачков отбелена до высокой твердости при отливке распределительного вала.

Каждый распредвал имеет пять опорных шеек. Первая шейка имеет диаметр 42 мм, остальные — 35 мм. Валы вращаются в опорах, образованных алюминиевой головкой и алюминиевыми крышками, расточенных в сборе.

Кулачки по ширине смещены на 1 мм относительно оси гидравлических толкателей (гидрокомпенсаторов ЗМЗ-406), что при работе двигателя придает толкателю вращательное движение. В результате этого уменьшается износ торца толкателя и отверстия под гидрокомпенсатор ЗМЗ-406 и делает его равномерным.

От осевых перемещений каждый распредвал удерживается упорным стальным термоупрочненным или пластмассовым фланцем, который входит в выточку крышки передней опоры и в проточку на передней опорной шейке распределительного вала.

Распредвалы ЗМЗ-406 автомобилей ГАЗ-3110 Волга, Газель-3302 обеспечивают следующие фазы газораспределения: впускные клапана открываются с опережением на 14° до прихода поршня в ВМТ, закрываются с запаздыванием на 46° после прихода поршня в НМТ, выпускные клапана открываются с опережением 46° до прихода поршня в НМТ и закрываются с запаздыванием на 14° после прихода поршня в ВМТ.

Указанные фазы газораспределения действительны при правильной установке привода распредвалов. Высота подъема клапанов 9 мм.

Привод распредвалов ЗМЗ-406

Привод распределительных валов двс ЗМЗ-406 автомобилей ГАЗ-3110 Волга, Газель-3302 (рис. 5) — цепной, двухступенчатый. Первая ступень — от коленчатого вала на промежуточный вал, вторая ступень — от промежуточного вала на распределительные валы.

Приводная цепь ГРМ первой ступени (нижняя) имеет 70 звеньев, второй ступени (верхняя) — 90 звеньев. Цепь втулочная, двухрядная с шагом 9,525 мм.

На коленчатом валу находится звездочка 1 из высокопрочного чугуна с 23-я зубьями. На промежуточном валу находится ведомая звездочка 7 первой ступени также из высокопрочного чугуна с 38-ю зубьями и ведущая стальная звездочка 8 второй ступени с 19-ю зубьями.

На распредвалах установлены звездочки 14, 16 из высоко­прочного чугуна с 23-я зубьями.

Звездочка на распределительном валу устанавливается на передний фланец и установочный штифт и крепится центральным болтом М12х1,25.

Рис.5. Привод распредвалов ЗМЗ-406 автомобилей ГАЗ-3110 Волга, Газель-3302

1 — звездочка коленчатого вала; 2 — гидронатяжитель нижней цепи; 3 — шумоизолирующая резиновая шайба; 4 — пробка; 5 — башмак гидронатяжителя нижней цепи; 6 — нижняя цепь; 7 — ведомая звездочка промежуточного вала; 8 — ведущая звездочка промежуточного вала; 9 — башмак гидронатяжителя верхней цепи; 10 — гидронатяжитель верхней цепи, 11 — верхняя цепь; 12 — установочная метка на звездочке; 13 — установочный штифт; 14 — звездочка распределительною вала впускных клапанов; 15 — верхний успокоитель цепи; 16 — звездочка распределительного вала выпускных клапанов; 17 — верхняя плоскость головки блока цилиндров; 18 — средний успокоитель цепи; 19 — нижний успокоитель цепи; 20 — крышка цепи; М1 и М2 — установочные метки на блоке цилиндров

Распредвалы ГРМ ЗМЗ-406 вращаются в два раза медленнее коленчатого. На торцах звездочки коленчатого вала, ведомой звездочке промежуточного вала и звездочках распределительных валов имеются установочные метки, служащие для правильной установки распределительных валов и обеспечения заданных фаз газораспределения.

Гидронатяжитель ЗМЗ-406

Натяжение каждой цепи (нижней 6 и верхней 11) производится автоматически — гидронатяжителями 2 и 10.

Гидронатяжители установлены в расточенные отверстия: нижний — в крышке цепи 20, верхний — в головке цилиндров, и закрыты алюминиевыми крышками, закрепленными к крышке цепи и к головке цилиндров двумя болтами М 8 через паронитовые прокладки.

Корпус гидронатяжителя ГРМ ЗМЗ-406 автомобилей ГАЗ-3110 Волга, Газель-3302 через шумоизолирующую резиновую шайбу 3 упирается в крышку, а плунжер через башмак действует на нерабочую ветвь цепи.

Кроме того, в крышке имеется отверстие с конической резьбой К 1/8″ закрытое пробкой 4, через которое гидронатяжитель «разряжается».

Башмак изготовлен из пластмассы с криволинейной рабочей поверхностью и со стальной опорной площадкой, на которую давит плунжер гидронатяжителя.

Башмаки 5 и 9 установлены консольно на осях, ввернутых в передний торец блока цилиндров.

Рабочие ветви цепей проходят через успокоители 15, 18 и 19, изготовленные из пластмассы и закрепленные двумя болтами М 8 каждый: нижний -19 на переднем торце блока цилиндров, верхний 15 и средний 18 — на переднем торце головки цилиндров.

Гидронатяжитель ГРМ ЗМЗ-406 (рис. 6) стальной, выполнен в виде плунжерной пары, состоящей из корпуса 4 и плунжера 3.

Внутри плунжера установлена пружина 5, которая сжата корпусом клапана 1 с наружной резьбой, в котором расположен обратный шариковый клапан.

Корпус 4 и плунжер 3 связаны между собой через храповое устройство, состоящее из запорного кольца 2, кольцевых канавок в корпусе и канавки специального профиля на плунжере.

Гидротолкатель ЗМЗ-406 автомобилей ГАЗ-3110 Волга, Газель-3302 устанавливается на двигатель в «заряженном» состоянии, когда плунжер 3 удерживается в корпусе 4 с помощью стопорного кольца 6.

Рис.6. Гидронатяжитель ЗМЗ-406 автомобилей ГАЗ-3110 Волга, Газель-3302 в сборе

1 — корпус клапана в сборе; 2 — кольцо запорное; 3 — плунжер; 4 — корпус; 5 — пружина; 6 — кольцо стопорное

В рабочем состоянии гидронатяжитель «разряжен», когда стопорное кольцо 6 выведено из канавки в корпусе и не удерживает плунжер.

Гидронатяжитель работает следующим образом. Под действием пружины 5 и давления масла, поступающего из масляной магистрали, плунжер З нажимает на башмак цепи, а через него на цепь.

По мере вытяжки цепи и износа башмака плунжер выдвигается из корпуса 4, передвигая запорное кольцо 2 храпового устройства из одной канавки корпуса в другую.

При изменении скоростного режима работы двигателя и возникновении ударов со стороны цепи на башмак плунжер 3 движется назад, сжимая пружину 5, при этом шариковый клапан закрывается и происходит дополнительное демпфирование за счет перетекания масла через зазор между плунжером и корпусом.

Обратный ход плунжера ограничивается шириной канавки на плунжере.

Промежуточный вал ЗМЗ-406

Промежуточный вал двс ЗМЗ-406 автомобилей ГАЗ-3110 Волга, Газель-3302 (рис. 7) — стальной, двухопорный, установлен в приливах блока цилиндров, справа. Наружная поверхность вала углеродоазотирована на глубину 0,2-0,7 мм и термообработана.

Рис.7. Промвал двс ЗМЗ-406 автомобилей ГАЗ-3110 Волга, Газель-3302

1 — болт; 2 — стопорная пластина; 3 — ведущая звездочка; 4 — ведомая звездочка; 5 — передняя втулка вала; 6 — промежуточный вал; 7 — труба промежуточного вала; 8 — валик-шестерня; 9 — гайка; 10 — шестерня привода масляного насоса; 11 — задняя втулка вала; 12 — блок цилиндров; 13 — фланец промежуточного вала; 14 — штифт

Промежуточный вал вращается во втулках, запрессованных в отверстия в приливах блока цилиндров. Передняя 5 и задняя 11 втулки сталеалюминиевые.

От осевых перемещений промежуточный вал удерживается стальным фланцем 13, который расположен между торцем передней шейки вала и ступицей ведомой звездочки 4 с зазором 0,05-0,2 мм и закреплен двумя болтами М8 к переднему торцу блока цилиндров.

Осевой зазор обеспечивается разницей размеров между длиной уступа на валу и толщиной фланца. Для повышения износостойкости фланец закален, а для улучшения приработки торцовые поверхности фланца шлифованы и фосфатированы.

На передний цилиндрический выступ вала установлена ведомая звездочка 4. Ведущая звездочка 3 цилиндрическим выступом устанавливается в отверстие ведомой звездочки 4, а ее угловое положение фиксируется штифтом 14, запрессованным в ступицу ведомой звездочки 4.

Обе звездочки «напроход» крепятся двумя болтами 1 (М8) к промежуточному валу. Болты контрятся отгибом на их грани углов стопорной пластины 2.

На хвостовике промвала ЗМЗ-406 с помощью шпонки и гайки 9 закреплена ведущая винтовая шестерня 10 привода масляного насоса.

Свободная поверхность промежуточного вала (между опорными шейками) герметично закрыта тонкостенной стальной трубой 7, запрессованной в приливы блока цилиндров.

Клапаны ЗМЗ-406

Клапаны двс ЗМЗ-406 автомобилей ГАЗ-3110 Волга, Газель-3302 приводятся от распределительных валов непосредственно через гидравлические толкатели 8 (рис. 8), для которых выпонены направляющие отверстия в головке цилиндров.

Рис.8. Привод клапанов ЗМЗ-406 автомобилей ГАЗ-3110 Волга, Газель-3302

1 — впускной клапан; 2 — головка цилиндром; 3 — распределительный вал впускных клапанов; 4 — тарелка пружин клапана; 5 — маслоотражательный колпачок; 6 — наружная пружина клапана; 7 — распределительный вал выпускных клапанов; 8 — гидротолкатель; 9 — сухарь клапана; 10 — выпускной клапан; 11 — внутренняя пружина клапана; 12 — опорная шайба пружин клапана

Привод клапанов ЗМЗ-406 закрыт сверху крышкой, отлитой из алюминиево­го сплава, с закрепленным с внутренней стороны лабиринтным масло­ отражателем с тремя маслоотводящими резиновыми трубками.

Крышку клапанов через резиновую прокладку и резиновые уплотнители свечных колодцев крепится к головке цилиндров восемью болтами М8.

Сверху на крышке клапанов устанавливается крышка маслозаливного отверстия и крепятся две катушки зажигания.

Клапана изготовлены из жаропрочных сталей: впускной клапан — из хромокремнистой, выпускной — хромоникельмарганцовистой и азотирован.

На рабочую фаску выпускного клапана дополнительно наплавлен жаростойкий хромоникелевый сплав.

Диаметр стержня клапанов ЗМЗ-406 — 8 мм. Тарелка впускного клапана имеет диаметр 37 мм, а выпускного — 31,5 мм. Угол рабочей фаски обоих клапанов 45°30.

На конце стержня клапана выполнены выточки для сухариков 9 (см. рис. 5) тарелки 4 пружин клапана. Тарелки пружин клапанов и сухарики изготовлены из малоуглеродистой стали и подвергнуты поверхностному нитроцементированию.

На каждый клапан устанавливается по две пружины: наружная 6 с правой навивкой и внутренняя 11 — с левой. Пружины изготовлены из термически обработанной высокопрочной проволоки и подвергнуты дробеструйной обработке.

Под пружины устанавливается опорная стальная шайба 12. Клапаны 1 и 10 работают в направляющих втулках, изготовленных из серого чугуна. Внутреннее отверстие втулок окончательно обрабатывается после их запрессовки в головку.

Втулки клапанов мотора ЗМЗ-406 снабжены стопорными кольцами, препятствующими самопроизвольному перемещению втулок в головке.

Для уменьшения количества масла, просасываемого через зазоры между втулкой и стержнем клапана, на верхние концы всех втулок напрессованы маслоотражательные колпачки 5, изготовленные из маслостойкой резины.

Детали клапанного механизма: клапаны, пружины, тарелки, сухарики, опорные шайбы и маслоотражательные колпачки взаимозаменяемы с аналогичными деталями двигателя автомобиля ВАЗ-2108.

Гидротолкатель (гидрокомпенсатор) ЗМЗ-406

Гидротолкатель ЗМЗ-406 автомобилей ГАЗ-3110 Волга, Газель-3302 (рис. 9) стальной, его корпус 2 выполнен в виде цилиндрического стакана, внутри которого размещен компенсатор с обратным шариковым клапаном.

На наружной поверхности корпуса выполнена канавка и отверстие для подвода масла внутрь толкателя из магистрали в головке цилиндров. Для повышения износостойкости наружная поверхность и торец корпуса толкателя нитроцементированы.

Рис.9. Гидротолкатель (гидрокомпенсатор) ЗМЗ-406 автомобилей ГАЗ-3110 Волга, Газель-3302

1 — направляющая втулка компенсатора; 2 — корпус гидротолкателя; 3 — стопорное кольцо; 4 — корпус компенсатора; 5 — поршень компенсатора; 6 — обратный шариковый клапан; 7 — пружина

Гидрокомпенсаторы ГРМ ЗМЗ-406 устанавливаются в расточенные в головке цилиндров отверстия диаметром 35 мм между торцами клапанов и кулачками распределительных валов.

Гидротолкатель размещен в направляющей втулке 1, установленной и приваренной внутри корпуса гидротолкателя, и удерживается стопорным кольцом 3.

Гидрокомпенсатор состоит из поршня 5, опирающегося изнутри на донышко корпуса гидронатяжителя, и корпуса 4, который опирается на торец клапана.

Между поршнем и корпусом компенсатора установлена пружина 7, раздвигающая их и тем самым выбирающая возникающий зазор. Одновременно пружина 7 прижимает колпачок обратного шарикового клапана 6, размещенного в поршне.

Обратный шариковый клапан пропускает масло из полости корпуса гидротолкателя в полость компенсатора и запирает эту полость при нажатии кулачка распределительного вала на корпус гидротолкателя.

Работает гидротолкатель ЗМЗ-406 автомобилей ГАЗ-3110 Волга, Газель-3302 следующим образом: при нажатии кулачка распределительного вала на торец корпуса гидротолкателя 2 (открытие клапана) шариковый клапан 6 закрывается, запирая находящееся внутри компенсатора масло, которое становится рабочим телом, через которое передается усилие и движение от кулачка к клапану.

При этом часть масла перетекает через зазор в плунжерной паре компенсатора в полость корпуса гидротолкателя, и поршень 5 несколько вдвигается в корпус компенсатора 4.

При закрытии клапана, когда снимается усилие с гидротолкателя, пружина 7 компенсатора прижимает поршень 5 и корпус гидротолкателя 2 к цилиндрической части кулачка, выбирая зазор, шариковый клапан 6 в компенсаторе открывается, впуская в полость компенсатора масло, после чего цикл повторяется.

Гидротолкатели (гидрокомпенсатор) автоматически обеспечивают беззазорный контакт кулачков распределительных валов с клапанами, компенсируя износы сопрягаемых деталей: кулачков, торцов корпуса гидротолкателя, корпуса компенсатора, клапана, фасок седел и тарелок клапанов.

 

_____________________________________________________________________________

_____________________________________________________________________________

_____________________________________________________________________________

Общее устройство АКПП

_____________________________________________________________________________

CVT вариатор Ауди

Коробка автомат Toyota

_____________________________________________________________________________

АКПП Mazda/Mitsubishi

Коробка автомат ZF

Двигатели Mitsubishi

Двигатели Toyota

  • Блок цилиндров и головка 3S-FE/3S-GE
  • Техническое обслуживание ГРМ 3S-FE, 3S-GE
  • Коленвал двигателей 3S-FE, 3S-GE
  • Технические характеристики двигателя 3S-FE, 3S-GE
  • Распредвалы 3S-FE и 3S-GE
  • Система охлаждения двс 3S-FE и 3S-GE
  • Топливная систем 3S-FE, 3S-GE
  • Параметры двигателя 4A-FE, 5A-FE, 7A-FE и 4A-GE
  • Головка и блок цилиндров двигателя 4A-GE, 4A-FE, 5A-FE, 7A-FE
  • Дроссельная заслонка 4A-FE, 5A-FE, 4A-GE, 7A-FE
  • Вентилятор системы охлаждения 4A-FE, 5A-FE, 7A-FE, 4A-GE
  • Форсунки двигателей 4A-FE, 5A-FE, 4A-GE, 7A-FE
  • Замена водяного насоса 4A-GE, 4A-FE, 5A-FE, 7A-FE
  • Поршневая группа и коленвал двигателей 4A-FE, 5A-FE, 4A-GE, 7A-FE
  • Диагностика двигателей 4A-FE, 5A-FE, 7A-FE и 4A-GE
  • Замена компонентов блока цилиндра 4A-GE, 4A-FE, 5A-FE, 7A-FE
  • Система охлаждения 4A-FE, 5A-FE, 4A-GE, 7A-FE
  • Система смазки двигателей 4A-FE, 5A-FE, 4A-GE, 7A-FE
  • Топливная система двигателей 4A-FE, 4A-GE, 5A-FE и 7A-FE
  • Система зажигания 4A-FE, 5A-FE, 4A-GE, 7A-FE
  • Термостат и радиатор двс 4A-FE, 5A-FE, 7A-FE, 4A-GE
  • Бензонасос 4A-GE, 4A-FE, 5A-FE, 7A-FE
  • Ремень ГРМ двигателей 4A-FE, 5A-FE, 7A-FE
  • Снятие головки блока цилиндров двигателей 4A-FE, 5A-FE, 7A-FE
  • Регулировки клапанов 4A-FE, 5A-FE, 7A-FE
  • Монтаж головки блока цилиндров двигателя 4A-FE, 5A-FE, 7A-FE
  • Замена ремня ГРМ 4A-GE
  • Демонтаж головки блока цилиндров двигателей 4A-GE
  • Настройки клапанов 4A-GE
  • Монтаж головки блока цилиндров двигателя 4A-GE
  • Детали двигателей 1AZ-FE / 2AZ-FE
  • Блок управления и датчики 1AZ-FE и 2AZ-FE
  • Компоненты рабочих систем двигателя 1AZ-FE, 2AZ-FE
  • Система управления двигателем 1AZ-FE и 2AZ-FE

Двигатели ЗМЗ

ГРМ двигателя Д-240: метки, распредвал и схема

Механизм газораспределения (ГРМ) двигателя Д-240 состоит из шестерен, распредвала, впускных и выпускных клапанов, соединительных и передающих движение деталей.

Вращательное движение от коленвала передается шестерням привода распредвала и топливного насоса. Профильные кулачки распределительного вала размещены соответственно порядку работы двигателя. Во время поворота распредвала кулачок своим выступом приподнимает толкатель и штангу, упирающаяся нижним концом в дно толкателя, а верхним в регулировочный винт коромысла. Коромысло, смонтированное на валике, поворачивается и опускает клапан вниз, после чего открывается отверстие в головке цилиндров, а пружины, предварительно сжатые для удержания клапана в закрытом положении, дополнительно сжимаются. Стержень клапана совершает движение в направляющей втулке.

Схема ГРМ двигателя Д-240: 1 — прокладка головки; 2 — головка; 3 — выпускной клапан; 4 — впускной клапан; 5 — втулка клапана; 6 — прокладка; 7 — крышка головки; 8 — наружная пружина клапана; 9 — внутренняя пружина клапана; 10 — прокладка колпака; 11 — колпак крышки; — 12 тарелка клапана; 13 — сухарики; 14 — гайка колпака; 15 — шайба; 16 — пружина; 17 — ось коромысел; 18 — пробка оси; 19 — болт крепления крышки головки; 20 — толкатель; 21 — штанга; 22 — регулировочный винт; 23 — гайка регулировочного винта; 24 — коромысло; 25 — шпилька крепления впускного коллектора; 26 — болт крепления форсунки; 27 — гайка стакана форсунки; 28 — стакан форсунки; 29 — трубка маслопровода; 30 — стойка оси; 31 — впускной коллектор.

Открытие клапана осуществляется полностью, когда толкатель находится у вершины кулачка. При последующим повороте распределительного вала толкатель опускается, а клапан под влиянием пружин возвращается в верхнюю позицию. При выходе выступа кулачка из-под толкателя, прекращается давление на клапан и он под влиянием пружин наглухо закрывает отверстие клапана в ГБЦ. Штанга, коромысло и толкатель возвращаются в исходное положение.

Для того, чтобы цилиндр как можно быстрее наполнялся и хорошо очищался, необходимо правильно установить моменты времени, в которые клапана закрываются и открываются. Открытие впускного клапана происходит с некоторым опережением, т. е. до возвращения поршня в верхнюю мертвую точку, а закрытие — с запаздыванием, после того, как поршень проходит нижнюю мертвую точку.

Схема установки шестерен газораспределения: 1 — шестерня привода насоса рулевого управления; 2 — шестерня распределительного вала; 3 — промежуточная шестерня; 4 — шестерня привода топливного насоса; 5 — шестерня коленчатого вала; 6 — шестерня привода масляного насоса.

Установка фаз ГРМ

Для того, чтобы правильно установить фазы газораспределения двигателя во время сборки, необходимо совместить метки грм д 240 на шестернях распределения. На промежуточной шестерне имеются две метки-впадины, отмеченные буквами Т и К, и один зуб оснащен меткой с буквой Р. Впадину с буквой К размещают напротив помеченного зуба шестерни коленвала; впадину с буквой Т — напротив меченого зуба шестерни привода топливного насоса; зуб с буквой Р — напротив отмеченной впадины шестерни распредвала.

Косозубые шестерни распределения изготавливаются из легированной стали и закаливаются до высокой твердости. Ведущая шестерня насажена на передний конец коленвала, зафиксирована шпонкой и постоянно зацеплена с промежуточной шестерней, вращающаяся на пальце, запрессованном в переднюю стенку блоку цилиндров.

Промежуточная шестерня вращает шестерни распределительного вала и привода топливного насоса. Специальная шайба, присоединенная к торцу пальца двумя болтами, удерживает шестерню от осевых перемещений (допустимо 0,1-0,78 мм). Шестерня распредвала напрессована на передний конец, передает ему вращение при помощи шпонки и зафиксирована болтом и шайбой, вкрученный в передний торец вала. В головке болта имеется прорезь для поводка привода редуктора тахомотосчетчика.

Диаграмма фаз газораспределения: 1 — начало открытия впускного клапана; 2 — начало закрывания впускного клапана; 3 — начала открытия выпускного клапана; 4 — конец закрывания выпускного клапана.

Распределительный вал

Распредвал дизеля Д-240 изготавливается из стали, а рабочие поверхности кулачков и опорные шейки закаливаются токами высокой частоты. Вал совершает вращение в трех втулках, установленные в блок цилиндров. Передняя втулка выполнена из бронзы, а две остальные из антифрикционного чугуна.

Вдоль вала расположены восемь кулачков в следующей последовательности:

1. выпускной первого цилиндра;
2. впускной первого цилиндра;
3. впускной второго цилиндра;
4. выпускной второго цилиндра;
5. выпускной третьего цилиндра;
6. впускной третьего цилиндра;
7. впускной четвертого цилиндра;
8. выпускной четвертого цилиндра.

Данное расположение кулачков (следовательно и клапанов) соединяет в головке цилиндров каналы от двух выпускных и впускных клапанов третьего и второго цилиндров в один единый.

Задняя шейка распределительного вала имеет наклонный просверленный канал, по которому к механизму клапанов подается смазка. Упорное кольцо удерживает распределительный вал от продольного перемещения (допустимо 0,3-1,04 мм).

Стальной толкатель имеет грибовидную форму со сферической нижней опорной поверхностью. В нижней части толкателя просверлен канал для отвода масла из механизма клапанов в картер. Штанга толкателя выполнена из стального прутка, концы которого имеют сферическую форму. Верхний конец штанги упирается в регулировочный винт коромысла клапана, а нижний — в углубление донышка толкателя.

Газораспределительный механизм (ГРМ)

Газораспределительный механизм (ГРМ) является узлом, обеспечивающим открытие и закрытие впускных и выпускных клапанов двигателя в определенный момент времени. Основная задача ГРМ заключается в своевременной подаче топливовоздушной смеси в камеру сгорания и выпуск отработавших газов.

В состав газораспределительного механизма входят следующие основные элементы:

  • Распределительный вал. В зависимости от конструкции ГРМ распредвал может устанавливаться в головке блока цилиндров или в картере двигателя (такая компоновка не применяется на современных двигателях). Это основная деталь, которая отвечает за последовательное открытие и закрытие клапанов.На валу имеются опорные шейки и кулачки, которые и толкают стержень клапана или коромысло. Форма кулачка имеет строго определенную геометрию, поскольку от этого зависит длительность и степень открытия клапана. Также кулачки выполнены разнонаправленными, чтобы обеспечивать попеременную работу цилиндров.
  • Привод ГРМ. Крутящий момент от коленчатого вала передается через привод на распределительный вал. Шестерня коленвала  в два раза меньше шестерни распредвала. Таким образом, коленчатый вал вращается в два раза быстрее. Как правило привод ГРМ делят на два типа: цепной привод и ременной привод, однако встречается шестеренчатый тип привода. 
  • Впускные и выпускные клапаны  как правило отличаются по конструкции и размеру. Впускной изготавливается цельной деталью. Также он имеет больший диаметр тарелки для обеспечения лучшего наполнения цилиндра. Выпускной часто изготавливают из жаропрочной стали и с полым стержнем для лучшего охлаждения, так как в работе он подвергается более высоким температурам. Внутри полости находится натриевый наполнитель, который легко плавится и отводит часть тепла от тарелки к стержню. На тарелках клапанов сделаны специальные фаски, которые обеспечивают более плотное прилегание к отверстиям в головке блока цилиндров. Это место называется седлом клапана.

Кроме самих клапанов, в механизме предусмотрены дополнительные элементы:

    • Пружины. Возвращают клапаны в исходное положение после нажатия.
    • Маслосъемные колпачки. Уплотнители, которые не допускают попадания масла в камеру сгорания по стержню клапана.
    • Направляющая втулка. Устанавливается в корпус ГБЦ и обеспечивает точное движение клапана.
    • Сухари. С их помощью пружина крепится на стержне клапана.
  • Толкатели. Через толкатели передается усилие от кулачка распредвала на стержень клапана. Толкатели бывают разных видов (механические (стаканы или шайбы), роликовые, гидрокомпенсаторы). 
  • Коромысло или рычаги. Простое коромысло представляет собой двуплечный рычаг, который совершает качательные движения. В различной компоновке коромысла могут работать по-разному.
  • Системы изменения фаз газораспределения. Данные системы могут иметь различную конструкцию и устанавливаются не на все двигатели. Работу таких систем мы рассмотрим в отдельной статье.

Основная задача газораспределительного механизма — это вовремя открыть и закрыть клапана на определенный промежуток времени. Соответственно на такте впуска открываются впускные, а на такте выпуска — выпускные. Технически это происходит следующим образом: Коленчатый вал передает крутящий момент посредством привода на распределительный вал. Кулачок на распределительном валу нажимает на толкатель или коромысло. Клапан перемещается внутрь камеры сгорания, открывая доступ свежему заряду или отработавшим газам. После того как кулачок проходит активную фазу воздействия, клапан возвращается на место под действием пружины. За полный рабочий цикл распредвал совершает 2 оборота, попеременно открывая клапана в каждом цилиндре. Например, при схеме работы 1-3-4-2 в один и тот же момент времени в первом цилиндре будут открыты впускные клапаны, а в четвертом выпускные. Во втором и третьем клапаны будут закрыты.

Типы ГРМ

Двигатели могут иметь различную компоновку газораспределительного механизма:

По расположению распределительного вала. 

Существуют два типа положения распредвала: нижнее; верхнее. При нижнем расположении распредвал находится в блоке цилиндров рядом с коленчатым валом. Данный тип расположения на современных моторах не применяется. При верхнем положении распредвал находится в головке блока цилиндров (ГБЦ) непосредственно над клапанами. При таком положении могут быть реализованы различные варианты воздействия на клапаны: через толкатели, коромысла или рычаги.

По количеству распределительных валов.

На рядных двигателях могут быть установлены один или два распределительных вала. Моторы с одним распредвалом имеют аббревиатуру SOHC (Single Overhead Camshaft), а с двумя — DOHC (Double Overhead Camshaft). При двухвальной конструкции — один вал отвечает за открытие впускных, а другой за открытие выпускных клапанов. В двигателях c V-образной компоновкой используются два или четыре распредвала, по одному или по два на каждый ряд цилиндров соответственно.

По количеству клапанов.

От количества клапанов на один цилиндр будет зависеть количество и форма распредвалов и количество кулачков на них. Клапанов может быть два, три, четыре или пять. Самый простой вариант с двумя клапанами: один работает на впуск, другой на выпуск. В трехклапаном двигателе два работают на впуск и один на выпуск. При четырех клапанах: два на впуск и два на выпуск. Пять клапанов: три на впуск и два на выпуск. Чем больше клапанов на впуске, тем больше объем поступающей топливовоздушной смеси в камеру сгорания. Повышается мощность и динамика двигателя. Наиболее часто встречается схема с четырьмя клапанами на цилиндр.

По типу привода.

Различают три типа привода распределительного вала:

  • Шестеренчатый. Главное преимущество такого привода – надежность. Однако применяется такой тип привода редко.
  • Цепной. Этот привод считается более надежным. Но использование цепи требует особых условий. Для гашения колебаний устанавливаются успокоители, а натяжение цепи регулируется натяжителями. В зависимости от количества валов могут применяться несколько цепей. Ресурса цепи хватает в среднем на 150-200 тысяч километров пробега. Главной проблемой цепного привода считается поломка натяжителей, успокоителей или разрыв самой цепи. При плохом натяжении цепь может перескакивать между зубьев в ходе работы, что приводит к нарушению фаз газораспределения и повреждению клапанного механизма. 
  • Ременный. Ременный привод не требует смазки, в отличие от цепного. Ресурс ремня также ограничен и в среднем он равен 60-90 тысячам километров пробега. Для лучшего сцепления и надежности используются зубчатые ремни. Такой привод более прост. Разрыв ремня при работающем двигателе приведет к тем же последствиям, что и при разрыве цепи. Главными преимуществами ременного привода является простота эксплуатации и замены, дешевизна и бесшумная работа.

От правильной работы всего газораспределительного механизма зависит работа двигателя, его динамика и мощность. Чем больше количество и объем цилиндров, тем сложнее будет устройство ГРМ.

 При написании статьи использовались материалы портала ТехАвтоПорт

Плюсы и минусы синхронизации двигателя и что происходит, когда она идет не так

Взаимосвязь между движущимися частями двигателя спроектирована с чрезвычайно высокими допусками, которые контролируются очень точной синхронизацией двигателя. Вот как это все работает

Подсчитано, что в среднем автомобиле с двигателем внутреннего сгорания имеется около 10 000 движущихся частей.Иными словами, заставить все эти компоненты общаться друг с другом и соединяться вместе, чтобы сформировать машины, которые мы знаем и любим, — это поистине завораживающий инженерный подвиг. А с точки зрения сердца зверя — двигателя — синхронизация является важнейшим фактором.

Поскольку точное движение распределительных валов, клапанов, поршней и коленчатых валов является неотъемлемой частью процесса внутреннего сгорания, действительно не может быть места для ошибки, учитывая скорость и силу, с которой эти компоненты взаимодействуют друг с другом.

Чтобы понять важность синхронизации двигателя, давайте разберемся, что происходит в цилиндрах обычного четырехтактного двигателя. Во-первых, поршень внутри цилиндра опускается вниз, и топливно-воздушная смесь поступает через отверстие впускного клапана. Как только поршень достигает НМТ (нижней мертвой точки), он начинает свое движение обратно к верхней части цилиндра (верхняя мертвая точка) с закрытым впускным клапаном, сжимая таким образом воздушно-топливную смесь.

Затем используется искра для воспламенения смеси от свечи зажигания, при этом сгорание заставляет поршень вернуться в НМТ.Наконец, выпускной клапан открывается, позволяя газам, образующимся при сгорании, выйти из цилиндра, чтобы цикл начался снова.

5 МБ

Здесь вы можете увидеть, как коленчатый вал совершает два полных оборота за один цикл двигателя.

В четырехтактном цикле коленчатый вал должен сделать два полных оборота (или 720 градусов), чтобы завершить цикл двигателя, поворачиваясь на полные 360 градусов каждый раз, когда поршень перемещается из ВМТ в НМТ и обратно.А в автомобиле, способном достигать красной зоны около 7500 об/мин, двигатель совершает это возвратно-поступательное движение примерно 125 раз в секунду.

Чтобы связать эту чрезвычайно точную серию событий, используется зубчатый ремень или цепь, соединяющие жизненно важные компоненты двигателя вместе, чтобы все было синхронизировано. Ремень ГРМ представляет собой толстый зубчатый ремень, который проходит вокруг звездочек распределительного вала, шкива водяного насоса и звездочки коленчатого вала, поэтому вращается синхронно с коленчатым валом в нижней части блока цилиндров.

6 МБ

Здесь вы можете увидеть цепь ГРМ с синхронно вращающимися кулачками и кривошипом.

Это означает, что водяной насос увеличивает и уменьшает скорость потока охлаждающей жидкости одновременно с любыми изменениями частоты вращения двигателя, позволяя большему количеству охлаждающей жидкости циркулировать вокруг блока цилиндров, когда двигатель интенсивно работает.Последним компонентом этой системы газораспределения является натяжитель ремня газораспределительного механизма, который действует как подпружиненный штифт в боковой части ремня газораспределительного механизма, удерживая его в заданном натяжении, чтобы предотвратить проскальзывание ремня или перепрыгивание через зубья звездочек, которые это зацепление с.

Эта система синхронизации синхронизируется с зажиганием с помощью меток совмещения или установочных меток на крышке клапана, кулачковых и кривошипных звездочках.Используя маленькие тире, цифры или лепестки, расположенные на звездочках, можно отрегулировать систему газораспределения таким образом, чтобы после запуска двигателя вращение ремня ГРМ синхронизировало распределительные валы, открывающие соответствующие клапаны, с возвратно-поступательным движением поршней коленчатых валов. вместе с моментом зажигания. Производитель размещает эти установочные метки, чтобы установить угол коленчатого вала (в пределах его 360-градусного диапазона), при котором происходит зажигание.

Метка синхронизации на звездочке распределительного вала правильно совмещена с соответствующей меткой на крышке клапана.

В качестве альтернативы ремню цепи ГРМ считаются гораздо более долговечным методом поддержания двигателя в рабочем состоянии, поскольку ремни могут прослужить всего 40 000 миль, прежде чем они начнут изнашиваться и требуют замены.И следить за пробегом вашего автомобиля по отношению к ремню ГРМ, безусловно, не следует пренебрегать. Со временем ремень может ослабнуть (или перетянуться), зубья могут изнашиваться или отскакивать во время работы, что может привести к катастрофическим последствиям.

Допустим, ваш ремень ГРМ перескочил или даже порвался; распределительные валы неизбежно оставят любой клапан, который был открыт в то время, в его активированном положении внутри цилиндра. Это особенно проблематично в двигателе с интерференцией, где поршни делят свою ВМТ с той же областью, на которую выходит клапан.Продолжающееся возвратно-поступательное движение поршней приведет к тому, что головка поршня врежется в открытый клапан, раздавит его и, следовательно, приведет к потенциально смертельному счету, когда вас отбуксируют в местный гараж.

Чтобы этого никогда не происходило, я бы посоветовал немедленно заменить ремень ГРМ на любом автомобиле с большим пробегом, который вы покупаете, если только нет явных доказательств того, что его уже недавно меняли. Последнее, что вы хотите сделать, это проехать пару тысяч миль до того, как ремень выйдет из строя, и вы останетесь с серьезно сломанным двигателем и ужасным счетом за оплату труда.В случае с синхронизатором лучше перестраховаться, чем потом сожалеть.

Последствия обрыва ремня ГРМ… Цепи ГРМ

, с другой стороны, никогда не требуют замены, они являются неотъемлемой частью блока цилиндров и нуждаются в подаче масла для поддержания смазки.Хотя производство ремня обходится производителям автомобилей дешевле, его замена может быть дорогостоящей в зависимости от их расположения. Например, ремень ГРМ на двигателе Alfa Romeo Twinspark расположен прямо в внутренностях моторного отсека, а не спереди, как в большинстве установок двигателя, что приводит к оплате труда в размере 400 фунтов стерлингов из-за сложности доступа к нему.

Но цепная система отсчета времени все еще не является пуленепробиваемой, как показала компания Engineering Explained на примере его недавней покупки S2000.Со временем натяжитель может ослабить усилие, прилагаемое к цепи, из-за чего цепь будет дребезжать, так как у нее есть вновь обретенная нежелательная свобода слегка крутиться вокруг звездочек.

Alfa Romeo GTV поставлялась с особенно тусклыми ремнями, которые требовали частой замены, а их неудобное расположение в моторном отсеке не помогало.

После того, как ремень ГРМ выполнил свою работу, вступают в действие фазы газораспределения и зажигания.Каждая из этих областей фаз газораспределения легко может иметь собственное полное объяснение, но сейчас я кратко расскажу, как они могут влиять на синхронизацию двигателя.

Время газораспределения в его простейшей форме контролируется профилями лепестков на распределительных валах с целью открытия клапанов в двигателе на точное время, чтобы получить столько воздушно-топливной смеси, а затем выпустить выхлопные газы для каждого двигателя. цикла, максимизируя эффективность двигателя. Лепестки управляют подъемом (насколько клапан открывается) и продолжительностью (время, в течение которого он остается открытым), а технология двигателей 90-х годов сделала переход к регулируемым фазам газораспределения, чтобы сделать распределительный вал максимально универсальным.

Honda V-TEC — самая известная форма системы изменения фаз газораспределения.

Момент зажигания, с другой стороны, фокусируется на том, когда искра для воспламенения воздушно-топливной смеси возникает в течение цикла двигателя, с возможностью опережать или замедлять (задерживать) момент зажигания в зависимости от применения.Как правило, момент зажигания сдвигается вперед, когда его необходимо изменить, поскольку это означает, что искра в цилиндре предварительно возбуждается до того, как поршень достигнет ВМТ, что дает немного больше времени для воспламенения воздушно-топливной смеси, максимизируя сгорание.

Задержка зажигания означает, что искра возникает немного позже ВМТ, что обычно означает, что высокое давление, создаваемое в цилиндре в результате сгорания, теряется, а поршень уже движется вниз к НМТ.Момент зажигания можно проверить с помощью индикатора времени, который Эд Чайна из Wheeler Dealers использует несколько раз, чтобы максимизировать эффективность двигателя своего последнего проекта.

Хотя вероятность того, что синхронизация двигателя сработает, невелика, всегда стоит убедиться, что ремень или цепь вашего автомобиля находятся в хорошем состоянии.Хотя это может показаться простой проверкой, потенциально это может спасти ваш ежедневный пробег от свалки. После того, как ваш основной тайминг проверен, дверь открыта, чтобы рассмотреть вопрос об изменении клапана и момента зажигания, тонкой настройке вашего двигателя, чтобы максимизировать эффективность и мощность. Как говорится, время решает все!

Как работает синхронизация двигателя | Как работает автомобиль

Дистрибьютор

Распределитель направляет высоковольтный ток на нужную свечу зажигания и гарантирует, что он поступит в наилучшее время для максимальной эффективности.

Для двигатель работать в лучшем виде, т. топливо /воздушной смеси в каждом цилиндр должен стрелять так же, как поршень достигает верхней мертвой точки ( ВМТ ).

Требуется определенное время для свеча зажигания для воспламенения смеси и для горение построить. На этот раз остается примерно таким же нет иметь значение как быстро двигатель это работает.

Механизм синхронизации настроен на срабатывание свечи незадолго до ВМТ. Но поскольку механизм работает за счет движения двигателя, это время обычно уменьшается по мере того, как двигатель работает быстрее, и свеча срабатывает слишком поздно.

Таким образом, механическое устройство установлено на продвигать стрельба — сделать это раньше — с увеличением оборотов двигателя.

Нагрузка на двигатель — сильно ли он тянет или движется — также влияет на синхронизацию.

Легко нагруженный двигатель работает лучше, если зажигание авансируется дополнительная сумма. Второе вакуумное устройство управляет этим независимо от первого.

Центробежный механизм продвижения

Как работают центробежные грузы

центробежный механизм продвижения реагирует на обороты двигателя.Обычно он находится в нижней части распределитель корпус под плитой прерывателя контактов.

Два стальных груза прикреплены к вращающемуся пластина на валу распределителя с помощью шарниров и удерживается в закрытом положении сильными пружинами.

Когда двигатель набирает обороты, центробежная сила выбрасывает вес наружу.

Включают свои шкворни, выкручивая кулачок прерывателя контактов вперед, так что точки размыкаются раньше, и свеча зажигания срабатывает раньше при увеличении скорости.

Вакуумный механизм продвижения

Два типа спускового механизма

вакуумное продвижение механизм реагирует на вакуум на входе в двигатель многообразие , что вызвано подсосом движущихся поршней. Когда двигатель слегка загружен, разрежение увеличивается.

От коллектора к вакуумной камере на распределителе проходит узкая трубка, внутри которой находится гибкий диафрагма .

По мере увеличения вакуума диафрагма изгибается, перемещая стержень, соединенный с ее центром, что приводит к небольшому повороту опорной плиты прерывателя контактов.Это перемещает прерыватель контакта каблук относительно кулачка распределителя и опережает зажигание.

Когда двигатель находится под нагрузкой, разрежение уменьшается, диафрагма пружинит и зажигание задерживается в соответствии с изменившимися условиями.

Регулировка времени

Обычный способ регулировки фаз газораспределения заключается в ослаблении стяжного болта распределителя и небольшом повороте всего узла.

Величина, на которую два механизма опережения изменяют синхронизацию, не регулируется.

Некоторые более ранние распределители имеют рифленую гайку на вакуумном механизме подачи, с помощью которой можно изменить синхронизацию в целом (а не только работу механизма).

Как работает электронное зажигание

Многие новые автомобили имеют электронную система зажигания который раз Искра точнее механическая система.

Он также меньше изнашивается, поэтому всегда работает с максимальной эффективностью, и решает одну проблему механической системы: при высоких оборотах двигателя механическая система не работает с максимальной эффективностью.

Электронные системы могут быть индуктивными увольнять или емкостного типа разряда.

Индуктивная разрядная система обычно устанавливается в качестве оригинального оборудования на автомобили с электронным зажиганием. Он производит высокое напряжение (HT) ток обычным способом: путем выключения и включения тока низкого напряжения (LT) в катушка .

В простейшей системе индуктивного разряда типа транзисторных контактов (TAC) имеется также обычный прерыватель контактов.

По нему проходит только очень небольшой ток, который подается к источнику питания. транзистор который переключатели включать и выключать более тяжелый ток LT на катушку.

Места размыкания контактов не разрушаются малым током, поэтому они дольше остаются чистыми, а регулировка зазора требуется редко.

Более совершенные, полностью электронные системы могут не иметь очков. Вместо этого распределитель содержит другую форму запускающего устройства для силового транзистора, которое основано на электрических импульсах, а не на механическом методе включения и выключения.

В одном типе имеется электромагнитная катушка и вращающийся шиповой ротор с одним стальным шипом на каждый цилиндр.

Каждый раз, когда шип проходит мимо катушки, создается небольшое напряжение, которое запускает транзистор.

Некоторые другие типы могут иметь оптические или магнитные триггеры — все они выполняют одну и ту же функцию.

Система емкостного разряда (CD), используемая в некоторых наборах для самостоятельного изготовления, создает высоковольтный ток в катушке, посылая большой импульс от конденсатора через первичная обмотка .

Конденсатор представляет собой электрическое накопительное устройство, которое может очень быстро заряжаться и разряжаться.

вторичные обмотки катушки создают ВТ-ток как в момент включения НТ-тока в первичных обмотках, так и в момент его выключения.

Поскольку конденсатор может дать очень большой импульс очень быстро, всегда возникает сильная искра, независимо от скорости двигателя.

Как работает синхронизация двигателя | Совет вашего механика

Двигатель вашего автомобиля состоит из ряда быстро движущихся частей, включая коленчатый вал, распределительный вал, поршни, клапаны двигателя, шатуны и шкивы.Когда поршень движется вверх и вниз, клапаны соответственно перемещаются внутрь и наружу. Коленчатый вал крутится, а шатуны тянут и толкают. Все это должно работать в полной гармонии.

Различные типы синхронизации

Существует два вида синхронизации: синхронизация кулачка и опережение зажигания. Кулачковая синхронизация регулирует клапаны и поршни, а весь процесс контролируется цепью или ремнем ГРМ. Если время выключено, может произойти повреждение. В некоторых двигателях, называемых «интерференционными двигателями», последствия могут быть особенно плохими.В этом типе двигателя клапаны двигателя и поршни фактически занимают одно и то же место в цилиндре, но в разное время. Поскольку интервалы между временем, когда поршень владеет пространством, и временем, когда клапан владеет пространством, намного меньше секунды, вы, вероятно, можете себе представить последствия, если синхронизация сбита. В конечном итоге вам может понадобиться ремонт двигателя или даже его замена.

Если синхронизация вашего кулачка отключена, скорее всего, вы узнаете, потому что ваша машина не будет работать хорошо, если она вообще будет работать.С другой стороны, момент зажигания определить сложнее, но его легко отрегулировать. Момент зажигания связан с четырьмя циклами двигателя вашего автомобиля. Четыре цикла:

  • Воздух всасывается через впускной клапан, а форсунки подают топливо.
  • Топливная смесь сжата.
  • Свеча зажигания воспламеняет топливную смесь, толкая поршень вниз.
  • Выпускной клапан открывается, чтобы выпустить сгоревшие топливные газы (выхлоп).

Самое главное, чтобы искра была вовремя.Если это не так, вы можете получить прерывистый холостой ход, отсутствие мощности или двигатель, который просто не будет работать.

Вы никогда не должны игнорировать проблемы с синхронизацией двигателя, так как если синхронизация сбита, это может привести к серьезным проблемам с двигателем. Если в вашем автомобиле проявляются какие-либо симптомы плохой синхронизации двигателя, обратитесь к профессиональному механику.

Синхронизация решает все. Как динамически определять время работы двигателя

Суть опережения зажигания, будь то статическое или динамическое, заключается в том, чтобы обеспечить искру, воспламеняющую пары топлива, в нужное время.«Правильно», однако, является движущейся целью.

Представьте, что поршень двигателя устремляется вверх по каналу во время такта сжатия. Топливо впрыскивается в канал ствола и сжимается при подъеме поршня. В верхней части такта или около нее загорается свеча зажигания, и топливо воспламеняется, толкая поршень вниз. Это простой процесс, но он должен учитывать, сколько времени потребуется для воспламенения всего топлива по отношению к тому моменту, когда поршень достигнет верхней мертвой точки — точки, в которой поршень и головка цилиндра наименьшие, и взорвавшееся топливо будет самый мощный и самый полный прожиг.

С учетом вышеперечисленных факторов зажигание должно быть рассчитано так, чтобы искра начала сжигание топлива где-то за 90 175 до верхней мертвой точки 90 176 , или 90 175 до ВМТ 90 176 на языке двигателей. Измеряется в градусах вращения. Большинство двигателей устанавливают угол опережения зажигания где-то между 0 и 20 градусами до верхней мертвой точки. Это называется базовым временем. Когда установлено, система зажигания и двигатель синхронизируются таким образом, чтобы топливо в цилиндре сгорало максимально, как раз в тот момент, когда поршень сжимает пары топлива в наименьшее пространство.

Большинство автомобилей будут работать нормально, если синхронизация на несколько градусов отличается от идеальной. Но необходимы дальнейшие усовершенствования, чтобы достичь точки, при которой двигатель работает с максимальной производительностью и имеет наименьшие выбросы выхлопных газов.

Прежде чем углубляться в любой тип опережения зажигания, проверьте двигатель, чтобы убедиться, что все системы работают правильно. Если другие системы, связанные с двигателем и зажиганием, не работают должным образом, то, вероятно, потребуется сбросить время после устранения других проблем.Лучше всего устанавливать время на машине в идеальном состоянии, если это возможно.

Обязательно проверьте:

  • Свечи зажигания (состояние и возраст)
  • Провода или катушки свечей зажигания (состояние и возраст)
  • Система распределителя (исправность и состояние)
  • Топливные форсунки или карбюратор
  • Топливный насос и строки
  • Состояние аккумулятора и уровень заряда
  • Общее состояние двигателя

Когда список проверен и автомобиль выключен, пришло время начать синхронизацию системы зажигания… почти. Есть некоторая информация, которую нужно собрать, прежде чем запачкать руки. Мы подойдем к этому в следующем разделе.

Синхронизация двигателя. Два типа включают синхронизацию кулачка и опережение зажигания.

Итак, есть два типа фаз газораспределения, которые присутствуют в каждом двигателе.

Первый называется синхронизацией распределительного вала, а второй — опережением зажигания.
Моменты распредвала (также известные как фазы газораспределения) и опережения зажигания (также известные как фазы зажигания) делают волшебство возможным.
Это два совершенно разных действия, но их нужно синхронизировать по времени, чтобы двигатель действительно заработал.

Итак, чтобы понять важность синхронизации двигателя, давайте разберемся, что происходит внутри вашего двигателя.

Синхронизация распредвала больше связана со всеми тяжелыми вещами, быстро движущимися внутри вашего двигателя.

Момент зажигания, с другой стороны фокусируется на; когда искра для воспламенения воздушно-топливной смеси возникает в течение цикла двигателя.

Двигатели оснащены зубчатым ремнем или цепью, которая получает энергию от коленчатого вала и использует ее для вращения распределительного вала. Его работа состоит в том, чтобы убедиться, что клапаны не мешают, когда этот поршень летит к ним. Но в некоторых двигателях поршень может ударить по клапану в верхней точке своего движения. В этих двигателях, так называемых двигателях с интерференцией, даже незначительное смещение фаз газораспределения может иметь катастрофические последствия. Это одна из причин, по которой так важно осматривать ремень ГРМ на предмет износа или повреждений.

Момент зажигания (или момент зажигания) управляет моментом зажигания свечи зажигания во время такта сжатия. Многие новые автомобили имеют электронную систему зажигания, которая измеряет искру более точно, чем механическая система. Он также меньше изнашивается, поэтому всегда работает с максимальной эффективностью.


Выберите раздел справки по синхронизации двигателя ниже

Неисправность ремня ГРМ — общие неисправности ремня ГРМ и предупреждающие знаки

Транспортное средство Ремень ГРМ — передает вращение коленчатого вала на распределительный вал

Замена ремня ГРМ водяного насоса – основные советы и инструкции

Ремень ГРМ – что может случиться, если им пренебречь

Момент зажигания — ваш двигатель знает, что синхронизация решает все

Ремни ГРМ – зачем заменять ремень ГРМ

Ремни ГРМ — цепи или шестерни — все делают одно и то же, но по-разному

Двигатель с помехами или без помех — в чем реальная разница

Верхняя мертвая точка (ВМТ), когда поршень находится в верхней точке своего хода

Dayco-ГРМ-Информация о ремне

Ворота-ГРМ-Информация о ремне


Спасибо!

Система синхронизации двигателя

В течение сорока лет после первый полет братьев Райт, самолеты использовались двигатель внутреннего сгорания превратить пропеллеры генерировать толкать.Сегодня большинство самолетов авиации общего назначения или частных самолетов по-прежнему приводимый в движение пропеллерами и двигателями внутреннего сгорания, как и ваш автомобильный двигатель. Мы обсудим основы двигатель внутреннего сгорания, использующий Двигатель братьев Райт 1903 года, показанный на рисунке в качестве примера. Дизайн братьев очень прост по сегодняшним меркам, так что это хороший двигатель для студентов, чтобы учиться и изучать основы двигателей и их операция. На этой странице мы представляем компьютерный чертеж системы газораспределения Райта Авиадвигатель братьев 1903 года.

Механическая операция

На верхнем рисунке показаны основные компоненты системы синхронизации . на двигателе Райт 1903. В любом двигателе внутреннего сгорания топливо и кислород соединяются в процесс горения чтобы произвести мощность, чтобы повернуть коленчатый вал двигателя. Чтобы совершить полезную работу, должно произойти сгорание в конце такт сжатия двигателя цикл. После рабочий ход выпускной клапан должен быть открыт, чтобы очистить цилиндр от отработанного выхлопные газы.Работа системы синхронизации состоит в том, чтобы вызывать различные операции цикл двигателя должен происходить в правильной последовательности в нужное время.

Система синхронизации состоит из нескольких механических компонентов. Главный ведущая звездочка крепится к коленчатому валу двигателя снаружи картер на передней части двигателя. Ведущая звездочка имеет шесть зубьев, которые входят в зацепление отверстия на цепи ГРМ . Цепь проходит вокруг ведущей звездочки и большая звездочка распредвала .Аранжировка точно как цепь на велосипеде от педалей до заднего колеса. Большая звездочка распределительного вала имеет двенадцать зубьев, поэтому два оборота коленчатого вала производят один оборот кулачкового вала клапана. Это необходимое соотношение для четырехтактный двигатель, в котором поршень (прикрепленный к коленчатому валу) совершает два прохода через цилиндр во время каждого цикла. Чтобы сохранить правильное натяжение цепи, есть небольшая регулировка натяжения колесо на внешней стороне цепи.

Цепь ГРМ вращает вал распредвала клапана , который расположен на днище двигателя. На рисунке вверху этой страницы и в этом компьютерная анимация, мы видим двигатель снизу.

К валу кулачка клапана прикреплены четыре кулачка клапана . Кулачки вращаются вместе с валом и поверхность каждого кулачка опирается на коромысло выхлопной клапан каждого цилиндра. Из-за дизайна поверхности или кулачок, коромысло опускается, а клапан открывается, в определенные моменты времени и через определенные промежутки времени во время вращения вала.Это движение гарантирует, что клапан открывается только во время такта выпуска. цилиндра. Обратите внимание на анимацию, что четыре коромысла двигаться в разное время. Это движение поддерживает порядок работы цилиндров.

На кулачковом валу клапана ближе к передней части расположена небольшая шестерня. вала справа на рисунке. Эта шестерня входит в зацепление с другой шестерней на валу кулачка зажигания . Вращение этих шестерен вала зажигания вызывает кулачок зажигания вал вращаться в направлении, противоположном валу кулачка клапана, но чтобы вращаться с той же скоростью.На валу кулачка зажигания расположены четыре кулачки зажигания , которые входят в зацепление с пружинными переключателями электрическая система. На анимации зажигание кулачки и вал окрашены в зеленый цвет. Комбинация кулачков клапанов и зажигания кулачки обеспечивают открытие и закрытие клапанов в нужное время в двигателе цикла и что воспламенение происходит, когда клапаны закрыты и объем цилиндра наименьший.

Как это работает?

Чтобы лучше понять действие кулачков, вот схема, описывающая как работают камеры:

Кулачок представляет собой металлический диск, для которого расстояние от центра вращения диска к краевой поверхности изменяется при перемещении по кромочной поверхности.Кулачок вращается на валу, а поверхность кулачка движется по объект называется последователем . (Для нашего двигателя коромысло является последователь). Когда кулачок поворачивается из положения 1 в положение 2, точка на поверхности, которая касается толкателя, изменяется. Поскольку расстояние от центра вращения изменяется между точками на поверхности кулачка, последователь движется. В зависимости от того, как сконфигурирован толкатель, он может вращаться или перевести, или замкнуть переключатель, или выполнить множество задач.камера в конечном итоге возвращается в положение 1, и задача повторяется. Поскольку фактическое сгорание занимает конечное время, воспламенение система зажигания обычно не происходит точно в верхней части поршня движение. Чтобы внести некоторые вариации, на ножке есть небольшая ручка. двигатель, который соединяется с шестерней вала зажигания. Перемещение этой ручки вызывает чтобы шестерня немного сместилась на валу, чтобы кулачок зацепил переключатель в немного другое время относительно движения клапанов (и поршня).Это называется опережение зажигания и используется даже на современных автомобильные двигатели. Для самолета Райта опережение было установлено до полета и не мог быть изменен пилотом в полете.
Виды деятельности:

Экскурсии с гидом

Навигация..


Домашняя страница руководства для начинающих

Признаки плохого или неисправного ремня ГРМ

Хотя вы можете не обращать пристального внимания на ремень ГРМ вашего автомобиля, он играет важную роль в механике вашего автомобиля.Ремень ГРМ — это внутренний компонент двигателя, который синхронно вращает кулачок двигателя и коленчатый вал, обеспечивая срабатывание каждого цилиндра в нужное время. Ремень ГРМ вашего автомобиля можно найти под крышкой ГРМ рядом с передней частью двигателя, и, поскольку он, вероятно, изготовлен из высококачественной резины, его необходимо будет время от времени заменять. В этом блоге мы рассмотрим несколько распространенных симптомов, которые могут указывать на необходимость ремонта ремня ГРМ.

В SCR Performance в Лавленде наши сертифицированные механики помогли сотням людей отремонтировать и заменить изношенный ремень ГРМ новой моделью.Если вы заметили какие-либо из перечисленных ниже симптомов в своем автомобиле, свяжитесь с нашим автосервисом сегодня.

Вы слышите тикающий звук, исходящий от двигателя

Если вы слышите тикающий звук, исходящий от двигателя вашего автомобиля, возможно, что-то серьезно не так с вашим ремнем ГРМ. Ремень ГРМ в вашем автомобиле крепится рядом шкивов, которые идут к коленчатому валу двигателя и кулачковому валу. Коленчатый вал приводит в движение шатуны двигателя, которые прикреплены к поршням внутри камеры сгорания.Распределительный вал, с другой стороны, управляет клапанами головки блока цилиндров и узлом коромысла, который направляет топливо в камеру сгорания. Затем выбрасываемые газы выходят через выпускной коллектор. Когда ремень ГРМ вашего автомобиля начинает изнашиваться, он может издавать тикающий звук внутри двигателя. Это также может быть признаком низкого давления масла.

Двигатель вашего автомобиля не заводится

Когда ремень ГРМ вашего автомобиля сломан или незаменим, ваш двигатель не сможет нормально загореться или провернуться.Это означает, что когда вы поворачиваете ключ, вы можете услышать, как стартер включается, но, поскольку ремень ГРМ отвечает за работу кривошипа и вала, он не загорится полностью. Когда ремень ГРМ порвется, вы вообще не сможете водить машину. Часто ремень ГРМ рвется во время движения автомобиля. Это может привести к серьезному повреждению деталей головки цилиндров, таких как коромысла, толкатели или клапаны.

Вы заметили утечку масла возле двигателя

Другим распространенным признаком того, что ваш ремень ГРМ находится в плохом состоянии, является утечка масла.Если вы начинаете замечать масло вокруг двигателя, возможно, в вашем автомобиле имеется утечка, которая часто происходит из-под крышки ремня ГРМ. Хотя крышка ремня ГРМ может быть закреплена набором гаек и болтов, весьма вероятно, что со временем они могут ослабнуть. Утечка масла также может произойти, когда прокладка между блоком двигателя и крышкой ГРМ изнашивается или трескается. Это может привести к перегреву двигателя и ряду других дорогостоящих ремонтов.

Проблемы с выхлопом

Если из выхлопной трубы вашего автомобиля выбрасывается гораздо больше дыма, чем вы привыкли, это может быть связано с проблемой ремня ГРМ.Это может заставить ваш двигатель работать тяжелее, чем предполагалось, в попытке работать под принуждением, что может привести к дорогостоящему ремонту в будущем. В результате этой избыточной работы ваш автомобиль будет выбрасывать больше выхлопных газов, чем должен.

Ваши обороты начинают расти

Если вы заметили, что ваши RPM (обороты в минуту) стали вести себя странно, это может указывать на то, что что-то не так с вашим ремнем ГРМ. Если у вашего ремня ГРМ отсутствуют зубья или он полностью порвался, это может оказать огромное влияние на счетчик оборотов вашего автомобиля.

К сожалению, иногда нет явных признаков того, что ремень ГРМ вашего автомобиля нуждается в ремонте. Вот почему высококлассные автомеханики рекомендуют заменять ремень ГРМ каждые 60 000–100 000 миль пробега. Вы также можете ознакомиться с рекомендациями производителя в руководстве пользователя.

Техническое обслуживание и ремонт автомобилей в Лавленде

SCR Performance с гордостью предлагает жителям Лавленда и Колорадо полный спектр автомобильных услуг, включая услуги по обслуживанию ремней ГРМ.Наша автомастерская специализируется на европейских марках, таких как Audi, BMW, MINI, Porsche и Volkswagen, и мы будем рады помочь вам с любыми вопросами обслуживания и ремонта автомобилей.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *