Hc лямбда – Откуда взялась эта формула Е=hc/л (лямбда)… -reshimne.ru

Широкополосный лямбда зонд: Innovate MTX-L, установка

НА САЙТЕ ВЕДУТСЯ РАБОТЫ. ВОЗМОЖНЫ СБОИ, НЕКОРРЕКТНОЕ ОТОБРАЖЕНИЕ. ОКОНЧАНИЕ 20.07.2019

Случайная статья узнай что то новое

Введение

Широкополосный лямбда зонд — незаменимый прибор при настройке работы двигателя. Во-первых, для первичного понимания — это некое устройство для измерения количества кислорода в отработанных газах. Устанавливается в выпускном тракте. Разберем по словам выражение — широкополосный лямбда зонд. Широкополосный — означает, что диапазон измерений выходит за пределы штатных значений. Штатный (узкополосный) датчик кислорода работает в диапазоне 0-1 Вольт (0.1-0.9 обычно). Узкополосный датчик меряет в диапазоне 0.9-1.1 Лямбды, что соответствует смеси 13.18-16.10 AFR. Широкополосный датчик Innovate меряет в диапазоне 7.4 — 22.4 AFR. Широкополосный кислородный датчик меряет в диапазоне 0-5 вольт соответственно. Как вы понимаете, есть значение Лямбда. Есть значение AFR. Это одно и тоже значение просто в разных единицах. 

1 Lambda = 14.7 AFR.  Если вы заметили, узкополосный датчик меряет в диапазоне 13-16 AFR, что в принципе на первый взгляд может хватить для настройки атмосферного — 1.5 мотора. Есть два но! Двигатель на скорости 8000 RPM, совершает 1 оборот за 7.5 мс. Узкополосная лямбда успевает срабатывать на 100-300мс, что соответствует примерно 600 RPM. Узкополосная лямбда успевает обрабатывать точно только очень низкие обороты, более высокие обороты будут идти с инерционной погрешностью. Широкополосная лямбда примерно меряет 8мс, что соответствует примерно 7500 RPM (и это не предел). Поэтому корректно отстроить на сток лямбде можно только холостой ход.

Типовой вид монитора MTX-L Innovate

Innovate MTX-L

Я люблю работать с продуктами фирм, кто занимается конкретикой. Если вы покупаете шины фирмы Yokohama, то вы вряд ли будете рассматривать эту фирму как производитель телевизоров. Компания Innovate Motorsports занимается оборудованием для настройки топливно-воздушной смеси. За основу взяты 

качественные датчики Bosch с быстродейственными контроллерами Innovate. Популярные модели — LC-1, LC-2 и конечно MTX-L, который я и выбрал по совету друга. Bosch 0 258 007 351 — номер лямбды идущей в комплекте MTX-L, Gauge O2 Sensor — монитор состояния AFR, дополнительный кабель удлинитель — это база комплекта MTX-L. Данный датчик кислорода Bosch 0 258 007 351 является премиум продукцией для автомобилей типа Bentley Continental GT, хотя и ставился на WAG VolksWagen Phaeton. Имеет 5 проводов. Сам датчик подключается напрямую к монитору MTX-L. Если подать напряжение на собранный MTX с лямбдой, то вы в любом случае увидите результат. Далее вы можете либо подключить один из каналов контроллера к мозгу, либо широкополосный канал, либо
симуляция узкополосной лямбды 0-1
.

Комплект Innovate MTX-L на базе BOSCH

Новое место в коллекторе

При установке широкополосного зонда нужно пользоваться несколькими правилами. Во-первых, Лямбда должна стоят до катализатора. Во-вторых, не нужно ее ставить в хвост выхлопной системы, иначе у вас получится очень долгий отклик. Не нужно ставить максимально близко к ГБЦ, лишний перегрев не нужен! Обычно ставят на расстояние примерно 50см от верхнего фланца выпускного коллектора.

Установка MTX-L

Во-первых, широкополосная лямбда вам нужна только после установки мозга, который можно настроить — OBD1. Просто так отдавать 200$ за датчик — мне кажется это не интересно. Во-вторых, есть спор о том, что лучше подключить — лямбду напрямую к компьютеру, или же к ECU. Общим мнением решено, что лучше подключить к ECU, а далее считывать параметры по даталогу. Да, вы правильно поняли, что датчик выдает сигнал на контролер, контролер выдает на ECU, а ECU по даталогу в уже в компьютер. Скажете что цепочка длинная? Но дело в том, что подключив лямбду к ECU, вы будете видеть 

синхронизированный с ним сигнал. Система должна быть связана.  Далее, если вы не откручивали свой старый кислородный датчик — советую прогреть двигатель, а уже после аккуратно открутить кислородный датчик. Иначе на холодную есть шанс открутить только часть датчика. В качества инструмента используйте либо ключ на 22, либо разрезной ключ на 22, либо спец инструмент Jonnesway AI010033 . Резьбу, и только резьбу, советую смазать медной смазкой, так лямбда не прикипит к коллектору.
После этого, около мозга вы должны на расстоянии примерно 10-20 см от коннектора D14 (третья фишка, нижний ряд, 5 справа) отрезать провод, идущий к лямбде, и зачистить его. Это вход в мозг от кислородного датчика. За аккумулятором, прямо под ним, вы найдете резиновую заглушку с проводами, советую именно через нее провести удлинитель MTX-L. Все, с подготовкой законченно. Кабель-удлинитель очень длинный, можно оставить в подкапотном пространстве, а можно убрать в салон. Сразу скажу, что клипса между лямбдой и удлинителем очень тугая. Подключаете лямбду к удлинителю, удлинитель к контроллеру в салоне. А дальше контролер имеет 3 провода. 2 из них имеет маркировку In и Out — это программирование контроллера, пока не будем их обсуждать.

Подключение MTX-L к ECU

Во-первых, предосторожности: лямбда работает в коллекторе, и поэтому во время работы двигателя коллектор и лямбда нагреваются до 700 градусов. Так же не следует использовать лямбда зонд как заглушку. Если вы установите широкополосный зонд, но не подключите его, то без прогрева и питания  лямбда зонд выйдет быстро из строя. Третий кабель, идущий от контроллера, имеет 5 проводов. Ниже таблица подключения:

Таблица подключения проводов MTX-L

#####ЦветОписание
 Красный12 вольтовое напряжение, обязательно подключите его после зажигания. Так как если лямбда будет висеть на постоянном питании — то утром вы получите севший АКБ. Так же вам нужно 3 Ампера тока. Многие сажают Лямбда зонд на прикуриватель — в нем порядка 20 ампер.
 ЧерныйЗемля, заземление, минус. Любая часть корпуса автомобиля или черный провод штатной проводки. Но советую все таки убедится что это точно минус, прозвонив его.
 БелыйБелый провод нужен для изменения яркости дисплея монитора. Обычно при включение габаритов и фар, яркость приборов внутри салона должна уменьшиться. Подключается непосредственно к питанию ламп. Если вы не планируйте менять яркость, просто подключите белый провод к черному — на землю.
 ЖелтыйАналоговый выход 1. Широкополосный выход, где 0V=7.35 а 5v=22.39. Подключать нужно в замен пина старой лямбды (выше описано) — D14 OBD1.
 КоричневыйАналоговый выход 2. Эмуляция стоковой лямбды, где 1.1v=14 и 0.1v = 15. Подключить так же к D14 взамен канала 1. Если канал не планируется использовать просто — заизолируйте его. На землю подключать не нужно.

Калибровка MTX-L широкополосного датчика

Калибровка нужна, чтобы определить пределы измеряемых значений. Во-первых, лямбда зонд должен быть чистым и находится на воздухе — не в коллекторе выпускного тракта. Отключите лямбду от MTX-L монитора, проще это делать в салоне, а не в подкапотном пространстве. Без подключенной лямбды включите зажигание (запускать двигатель не нужно). Данная процедура сотрет старые значения, на мониторе появится 

ошибка E2, означающая отсутствие лямбда зонда. Все нормально, оставьте на минутку монитор с включенным зажиганием, затем выключите зажигание. Ошибка E9 Innovate MTX-L — свидетельствует о низком напряжение, бывает на незаведенном двигателе. Подключите лямбду снова к монитору MTX-L и включите зажигание. Монитор покажет надпись «htr» что означает «Heater» (нагрев), процедура нагрева широкополосного датчика. При первом включение надпись изменится на «CAL» — первичная калибровка. После 30-60 секунд MTX-L должен показать значение на датчике. Обычно это 22.4. Всегда, сначала включения будет проходить нагрев, а после уже значение датчика кислорода, вне зависимости, какую температуру имеет коллектор. Когда калибровка закончена, необходимо выключить зажигание и установить лямбду в выпускной коллектор. Вы можете отключать лямбду от MTX-L монитора, не потеряв калибровку — только не включайте зажигание.

Номера некоторых Innovate продуктов

  • 3812 — переходник с 4 пина на AudioJack 2.5мм
  • 3846 — 4 пиновый кабель
  • 3728 — Держатель лямбда зонда на выхлопной трубе
  • 3838 — Болт заглушка с бочонком для «заваривания» в трубу под лямбду в нештатное место
  • 3729 — HBX-1 Дополнительная защита лямбды при работе свыше 900 градусов
  • 3828 — 550см удлинитель датчика кислорода
  • 3764 — тоже что и 3838
  • 3737 — Датчик BOSCH LSU 4.2 — OEM 0258007351
  • 3840 — 4 пиновый кабель с DB-9 разъемом, ComPort-RS232
  • 3810 — 240см удлинитель датчика кислорода
  • 3843 — 90см удлинитель датчика кислорода

Инструкция и файлы

Настройка в CROME

Лямбда подключена, AFR показывается. Как это использовать для настройки? Вам нужен прошиваемый OBD1 мозг. В нем нужно работать с базой P30 (P28 не подходит). Для начала отключите проверку целостности прошивки (Plugins-Enhancements-Remove Checksum Routine) включите даталог (Plugins-Enhancements-Quick Datalogger +RTP). Это нужно для даталога.

Сам CROME тоже необходимо настроить под лямбду. Во первых скажу что CROME очень не стандартная программа (наблюдаю с 1.2-1.6.9 версии). Взамен точек нужно использовать запятые 14.7->14,7. Решается суммарно для ОС Windows : панель управления->язык и региональные стандарты->дополнительные параметры ->разделитель целой и дробной части установить как . (точку)! Далее File-Settings. В первом окне «General» устанавливаем галочку Air-Fuel Ratio (перевод напряжения в AFR) — перевод значений в AFR. На вкладке «Tuner Logging» заполняйте значения как показано ниже. Левая таблица сравнивает напряжение и выдает AFR. Правая часть таблицы отвечает за то, на каких оборотах, передачи, при каких значениях температуры ОЖ снимать значения. Я даю полную картину, с опытом вы поймете что вам мерить нужно, а что нет.

Настройка широкополосного зонда в Crome

Калибровочная таблица LC-1 Innovate для CROME

Напряжение датчика, ВAir-Fuel Ratio (AFR)
0.007.35
0.258.10
0.508.85
0.759.61
1.0010.36
1.2511.11
1.5011.86
1.7512.61
2.0013.37
2.2514.12
2.5014.87
2.7515.62
3.0016.37
3.2517.13
3.5017.89
3.7518.63
4.0019.38
4.2520.13
4.5020.89
4.7521.64
5.0022.39

Статья подготовлена: Илья Серб и Андрей Варламов

Случайная статья узнай что то новое

Данная статья актуальна для автомобилей Honda выпуска 1992-2000 годов, таких как Civic EJ9, Civic EK3, CIVIC EK2, CIVIC EK4 (частично). Информация будет актуальна для владельцев Honda Integra в кузовах DB6, DC1, с моторами ZC, D15B, D16A.

www.ej9.ru

Широкополосный лямбда-зонд или универсальный лямбда-зонд (LSU)

Широкополосный лямбда-зонд представляет собой новое поколение зондов, многократно используемых в качестве предкатализаторных и имеющих очень широкий диапазон измерений. Это позволяет оптимально использовать их для двигателей, работающих на бедных смесях, газе и дизельном топливе. Значение лямбда выдается не в виде скачкообразно растущей кривой напряжения, как у циркониевого зонда, а в виде почти линейной кривой роста силы тока. Благодаря этому теоретически возможно измерение значения лямбда в большом диапазоне измерений (более широкий диапазон) от Л = 0,7 до Л = бесконечности. Надежно анализируемые сигналы получают при значениях лямбда до 3,4. Значение А определяется не по изменению напряжения, а по изменению силы тока. Рабочая температура в регулируемом диапазоне составляет 750°С. Из-за очень низкого сопротивления нагревательного элемента рабочая температура зонда достигается через 15 секунд. Принципиальная схема LSU-зонда изображена на рисунке.

Рис. LSU-зонд:
1. Электролизный «насос» (ZrO2)
2. Платиновые электроды опорной ячейки
3. Нагревательный элемент
4. Эталонный зазор
5. Керамика из ZrO2
6. Измерительный зазор (диффузионный зазор, 10-50 мкм)
7. Опорная ячейка (измерительная ячейка, ZrOJ
8. Плат иновые электроды опорной ячейки
9, 10. Платиновые электроды электролизного «насоса»

В отличие от зонда с релейной характеристикой напряжение на электродах поддерживается постоянным. Это реализуется с помощью так называемого электролизного «насоса», подающего на электрод со стороны ОГ столько кислорода, чтобы напряжение между электродами всегда составляло 450 мВ. Это соответствует значению Л = 1 в измерительном зазоре. Потребляемый «насосом» ток пересчитывается электронным блоком управления двигателем в значение лямбда. Зонд можно заменять только в комплекте с кабелем и разъемом, так как все компоненты согласованы между собой. Разъемы нужно обязательно защищать от загрязнения, так как через них наружный воздух как эталонный газ подается внутрь датчика. Существуют 6-контактные (Bosch) и 5-контактные (NTK) варианты.

Функция зонда

Рис. Характеристика сигнала LSU-зонда

Протекание сигнала у широкополосного зонда изображено на рисунке В результате подачи напряжения на платиновые электроды электролизного «насоса» кислород перекачивается из ОГ или в ОГ через диффузионный барьер диффузионного зазора. Электроника регулирует напряжение таким образом, что состав смеси в диффузионном зазоре составляет Л = 1 (450 мВ). Протекающий через электроды электролизного «насоса» ток прямо пропорционален концентрации кислорода в ОГ.

При обеднении топливовоздушной смеси содержание кислорода в ОГ повышается, и электролизный «насос» должен откачивать кислород наружу. Соотношение кислорода к наружному воздуху изменяется при постоянной мощности насоса, и напряжение между электродами падает. Чтобы достичь напряжения в 450 мВ между электродами, нужно уменьшить концентрацию кислорода на стороне выпуска. Мощность «насоса» изменяется, и блок управления двигателем пересчитывает потребляемый «насосом» ток в значение лямбда. Состав смеси соответствующим образом изменяется.

При обогащении топливовоздушной смеси содержание кислорода в ОГ снижается, и электролизный «насос» закачивает меньше кислорода в область измерения. Направление тока меняется на обратное, и кислород выкачивается в измерительный зазор из ОГ и из реакции превращения СO2 и Н2O. Напряжение между электродами повышается. Электролизный «насос» должен изменить свою производительность, чтобы содержание кислорода в измерительной камере выросло, и напряжение между электродами снова составило 450 мВ. В таблице показаны значения напряжения зонда с соответствующим значением Л у различных типов топлива. Эти значения могут слегка различаться у отдельных автопроизводителей.

Таблица. Значения напряжения и параметры смеси LSU-зонда

ustroistvo-avtomobilya.ru

Проверяем лямбда-зонд (датчик кислорода) —

На написание этого материала натолкнуло обилие вопросов на интернет-форуме, связанных с непониманием (или недопониманием) принципа работы датчика кислорода, или лямбда-зонда.

Датчик кислорода: от общего к частному

Прежде всего, нужно идти от общего к частному и понимать работу системы в целом. Только тогда сложится правильное понимание работы этого весьма важного элемента ЭСУД и станут понятны методы диагностики.

Чтоб не углубляться в дебри и не перегружать читателя информацией, поведу речь о циркониевом лямбда-зонде, используемом на автомобилях ВАЗ. Желающие разобраться более глубоко могут самостоятельно найти и прочитать материалы про титановые датчики, про широкополосные датчики кислорода (ШДК) и придумать методы их проверки. Мы же поговорим о самом распространенном датчике, знакомом большинству диагностов.

Когда-то очень давно датчик кислорода представлял собой только лишь чувствительный элемент, без какого-либо подогревателя. Нагрев датчика осуществлялся отработанными газами и занимал весьма продолжительное время. Жесткие нормы токсичности требовали быстрого вступления датчика в полноценную работу, вследствие чего лямбда-зонд обзавелся встроенным подогревателем. Поэтому датчик кислорода ВАЗ имеет 4 вывода: два из них — подогреватель, один — масса, еще один — сигнал.

Из всех этих выводов нас интересует только сигнальный.

Форму напряжения на нем можно увидеть двумя способами:

  • сканером
  • мотортестером, подключив щупы и запустив самописец

Второй вариант предпочтительнее. Почему? Потому, что мотортестер дает возможность оценить не только текущие и пиковые значения, но и форму сигнала, и скорость его изменения. Скорость изменения — это как раз и есть характеристика исправности датчика.

Итак, главное: датчик кислорода реагирует на кислород. Не на состав смеси. Не на угол опережения зажигания. Не на что-либо еще. Только на кислород. Это нужно осознать обязательно.

О физическом принципе работы датчика рассказано во многих книгах, посвященных электронным системам управления двигателем, и мы на нем останавливаться не будем.

На сигнальный вывод датчика с ЭБУ подается опорное напряжение 0.45 В. Чтобы быть полностью уверенным, можно отключить разъем датчика и проверить это напряжение мультиметром или сканером. Все в порядке? Тогда подключаем датчик обратно.

К слову, на старых иномарках опорное напряжение «уплывает», и в итоге нормальная работа зонда и всей системы нарушается. Чаще всего опорное напряжение при отключенном датчике бывает выше необходимых 0.45 В. Проблема решается путем подбора и установки резистора, подтягивающего напряжение к «массе», тем самым возвращая опорное напряжение на необходимый уровень.

Дальше схема работы датчика проста. Если кислорода в газах, омывающих датчик, много, то напряжение на нем упадет ниже опорного 0.45 В, примерно до 0.1В. Если кислорода мало, напряжение станет выше, около 0.8-0.9 В. Прелесть циркониевого датчика в том, что он «перепрыгивает» с низкого на высокое напряжение при таком содержании кислорода в отработанных газах, которое соответствует стехиометрической смеси. Это замечательное его свойство используется для поддержания состава смеси на стехиометрическом уровне.

Методика проверки датчика кислорода

Поняв, как работает датчик кислорода, легко понять методику его проверки.

Предположим, ЭБУ выдает ошибку, связанную с этим датчиком. Например, Р0131 «Низкий уровень сигнала датчика кислорода 1». Нужно понимать, что датчик отображает состояние системы, и если смесь действительно бедная, то он это отразит. И замена его абсолютно бессмысленна.

Как нам выяснить, в чем кроется проблема — в датчике или в системе? Очень просто. Смоделируем ту или иную ситуацию.

  1. Например, при жалобе на бедную смесь и низком напряжении на сигнально выводе датчика увеличим подачу топлива, пережав шланг обратного слива. Или, при его отсутствии, брызнув во впускной коллектор бензина из шприца. Как отреагировал датчик? Показал ли обогащенную смесь? Если да — то нет никакого смысла его менять, нужно искать причину, почему система подает недостаточное количество топлива.
  2. Если же смесь богатая, и зонд это отображает, попробуйте создать искусственный подсос, сняв какой-нибудь вакуумный шланг. Напряжение на датчике упало? Значит, он абсолютно исправен.
  3. Третий вариант (достаточно редкий, но имеющий место). Создаем подсос, пережимаем «обратку» — а сигнал на датчике не меняется, так и висит на уровне 0.45 В, либо меняется, но очень медленно и в небольших пределах. Все, датчик умер. Ибо он должен чутко реагировать на изменения состава смеси, быстро меняя напряжение на сигнальном выводе.

Для более глубокого понимания добавлю, что при наличии небольшого опыта легко установить степень изношенности датчика. Это делается по крутизне фронтов перехода с богатой смеси на бедную и обратно. Хороший, исправный датчик реагирует быстро, переход почти что вертикальный (смотреть, само собой, мотортестером). Отравленный либо просто изношенный датчик реагирует медленно, фронты переходов пологие. Такой датчик требует замены.

Понимая, что датчик реагирует на кислород, можно легко уяснить еще один распространенный момент. При пропусках воспламенения, когда из цилиндра в выпускной тракт выбрасывается смесь атмосферного воздуха и бензина, лямбда-зонд отреагирует на большое количество кислорода, содержащееся в этой смеси. Поэтому при пропусках воспламенения очень возможно возникновение ошибки, указывающей на бедную топливно-воздушную смесь.

Хочется обратить внимание еще на один важный момент: возможный подсос атмосферного воздуха в выпускной тракт перед лямбда-зондом.

Мы упоминали, что датчик реагирует на кислород. Что же будет, если в выпуске будет свищ до него? Датчик отреагирует на большое содержание кислорода, что эквивалентно бедной смеси.

Обратите внимание: эквивалентно

Смесь при этом может быть (и будет) богатой, а сигнал зонда ошибочно воспринимается системой как наличие бедной смеси. И ЭБУ ее обогатит! В итоге имеем парадоксальную ситуацию: ошибка «бедная смесь», а газоанализатор показывает, что она богатая. Кстати сказать, газоанализатор в данном случае — очень хороший помощник диагноста.

Как пользоваться извлекаемой с его помощью информацией, рассказано в статье «Газоанализ и диагностика».

Датчик кислорода: выводы

  1. Нужно совершенно четко отличать неисправность ЭСУД от неисправности лямбда-зонда.
  2. Проверить зонд можно, контролируя напряжение на его сигнальном выводе сканером или подключив к сигнальному выводу мотортестер.
  3. Искусственно смоделировав обедненную или, наоборот, обогащенную смесь и отследив реакцию зонда, можно сделать достоверный вывод о его исправности.
  4. По крутизне перехода напряжения от состояния «богато» к состоянию «бедно» и наоборот легко сделать вывод о состоянии лямбда-зонда и его остаточном ресурсе.
  5. Наличие ошибки, указывающей на дефект лямбда-зонда, отнюдь не является поводом для его замены.

 

pakhomov-school.ru

Широкополосный лямбда-зонд – особенности работы и диагностика

Широкополосный лямбда-зонд обеспечивает формирование правильной топливно-воздушной смеси в современных двигателях с системой впрыска.

 

Если этот датчик не работает должным образом, то обеспечение современных экологических норм будет невозможным. 

Лямбда-зонд измеряет остаточное содержание кислорода в выхлопных газах и сравнивает его с содержанием кислорода в окружающем воздухе. В результате блок управления двигателем способен регулировать количество впрыскиваемого топлива таким образом, чтобы обеспечивался оптимальный состав топливовоздушной смеси. Это является необходимым условием для эффективной работы каталитического нейтрализатора выхлопных газов. Обычные однополосные лямбда-зонды с технологией диоксида титана и диоксида циркония обнаруживают только переход от богатой смеси (недостаток воздуха) к обедненной смеси (избыток воздуха) и наоборот.

Поскольку современные дизельные и бензиновые двигатели работают вне стехиометрического соотношения лямбда = 1, были разработаны так называемые широкополосные лямбда-зонды. Широкополосный зонд имеет более широкий диапазон измерения и точно измеряет как в богатых, так и в бедных областях. Широкополосные зонды внутри оснащены двумя ячейками: измерительной и ячейкой накачки. В измерительной ячейке измеряется концентрация кислорода, а затем преобразуется в сигнал напряжения, который сравнивается с опорным напряжением 450 мВ. Если это значение отклоняется от эталонного значения, включается ячейка накачки и ионы кислорода поступают в или из измерительной ячейки для коррекции концентрации кислорода, таким образом, чтобы опорное напряжение поддерживалось на уровне 450 мВ. Значение и полярность электрического тока, требуемого ячейкой накачки для поддержания постоянной концентрации, представляют собой эквивалент концентрации кислорода в смеси. Если лямбда-зонд выходит из строя, сжигание в современном двигателе больше не может контролироваться должным образом, что отрицательно сказывается на составе и эффективности очистки выхлопных газов.

Измерение сигнала и диагностика лямбда-зонда

Чтобы проверить функцию лямбда-зонда, сначала необходимо установить зонд в разъем. В VW Passat B7 с двигателем 1,6 TDI оба расположены непосредственно в моторном отсеке. Чтобы проверить включение нагревательного контура и встроенного нагревательного резистора, необходим мультиметр для измерения напряжения и сопротивления зонда. Для проверки электрического управления нагревательным контуром необходим осциллограф. Наблюдение за работой лямбда-зонда проводят при помощи диагностического устройства. Однако это относится только к бензиновым двигателям, где значение лямбда находится в границах 1 в двигателях с впрыском перед впускным клапаном и может варьироваться в пределах от 0,8 до 2,5 в силовых установках с непосредственным впрыском. В дизелях нет смысла наблюдать за сигналом лямбда-зонда, так как они всегда работают в очень широком диапазоне состава смеси. Значение лямбда в дизеле может изменяться от 1,4 до 12. Используя данные диагностического устройства, теперь можно контролировать ток накачки как положительное или отрицательное значение изменения коэффициента избытка воздуха. Некоторые диагностические устройства также отображают графическое изменение значения коэффициента лямбда на дисплее. Основываясь на полярности (плюс или минус) тока накачки, теперь можно определить, работает ли двигатель с богатой или бедной смесью. Отрицательные значения сигнала указывают на богатую смесь, а положительные — на обедненную. На практике значение лямбда быстро переходит в отрицательный диапазон (богатая смесь). Если убрать ногу с педали акселератора после короткого нажатия, значение лямбда должно быстро перемещаться в положительный диапазон (обедненная смесь). Плохие или аномальные сигналы от широкополосных лямбда-зондов могут иметь много причин и не обязательно должны быть связаны с неисправным лямбда-зондом. Одной из причин может быть неправильное измерение массы воздуха, что приводит к плохому управлению впрыском. Проблемы с топливным насосом и форсунками также могут вызывать неправильные значения. То же самое относится к утечкам воздуха в выхлопной системе или в цепи впуска воздуха, а также к проблемам в системе зажигания. Причиной может быть также плохое состояние двигателя и неисправный клапан EGR.

info-parts.ru

Диагностика по широкополосным лямбда-зондам

В предыдущих статьях мы рассмотрели назначение, принципы работы и способы проверки «скачковых» датчиков кислорода (лямбда-зондов). Также были рассмотрены те возможности в поиске дефектов (диагностике) топливной системы автомобиля, которые открывает правильный анализ показаний этих датчиков.

Но все мировые автопроизводители постепенно отказываются от них и переходят на так называемые «широкополосные» лямбда-зонды. Почему так происходит? И чем плохи датчики, которые верой и правдой служили на протяжении многих лет? Чтобы ответить на данный вопрос, нам необходимо вернуться в прошлое и посмотреть, как развивалась борьба за экологию.

До 60-х годов прошлого века об экологии никто не думал. Автомобилей было мало, их «вклад» в загрязнение атмосферы был незначительным. Все изменилось во время автомобильного бума начала 60-х. Первым от «чуда» современной цивилизации под названием «автомобиль» пострадал американский штат Калифорния. Не очень удачное географическое положение и крайне неблагоприятная «роза ветров» — он очень плохо продувается, и людям от выхлопных газов просто стало нечем дышать. Был принят ряд законов, обязывающих автопроизводителей повышать качество выпускаемых автомобилей по экологическим параметрам. До недавнего времени это был громадный рынок сбыта автомобилей.

На нем торговали все мировые производители. А законы рынка очень жестоки – хочешь торговать на моем рынке, выполняй поставленные условия. Таким образом, требования законодательства Калифорнии распространились на весь мир. Отдельно хочется отметить рынок Европы. Тут «роза ветров» более благоприятная, экологические требования к автомобилям более мягкие. И стандарты по экологии сразу разделились на «американские» — более жесткие и «европейские» — чуть более мягкие. На данное время автомобильные рынки Старого и Нового Света практически заполнены. По расчетам аналитиков, свободные ниши имеются пока в России и Китае. Поэтому к рынкам этих стран приковано пристальное внимание всех автопроизводителей мира. До недавнего времени экологии на этих рынках придавалось незначительное значение. Но вступление России в ВТО потребовало ужесточения экологических норм для выпускаемых в стране автомобилей. Как же выполнить все более ужесточающиеся международные экологические требования?

Вредные выбросы — это несгоревшее топливо. При полном сгорании углеводородов всего топлива образуется только СО2 (углекислый газ) и Н2О (вода). Если топливо сгорает не полностью, в выхлопе образуются продукты неполного сгорания. Пресловутые СО и СН. Ну, а если топливо полностью не сгорает, что происходит с крутящим моментом? Правильно – он падает! Что происходит с расходом топлива (если вы просто выливаете его в выхлопную трубу)? Правильно – он растет! И вот здесь полностью пересеклись интересы экологов, производителей автомобилей и специалистов автосервисов. Исправный автомобиль имеет прекрасную динамику, низкий расход топлива и еще атмосферу не загрязняет! От чего зависит крутящий момент, расход топлива и вредные выбросы? Основное требование – система управления двигателем должна поддерживать стехиометрический состав смеси. По современным стандартам отклонение не должно превышать 2%. Для контроля над этим параметром как раз и служат датчики кислорода в выхлопе.

Начало широкого применения лямбда-зондов в автомобилестроении было положено еще в конце 70-х годов прошлого столетия. Появление «скачковых» датчиков кислорода позволило на тот момент решить эту задачу. Но для выполнения норм Евро-4 и Евро-5 точность этих датчиков перестала удовлетворять производителей. Их недостатком явилось то, что состав смеси они определяют только по наличию кислорода в выхлопе. Нет кислорода – либо стехиометрия, либо богатая смесь. Есть кислород – бедная смесь. Работают по принципу «да–нет». Системе лямбда — регулирования постоянно приходится чуть добавлять и убавлять топливо, чтобы понять, находится ли система в зоне стехиометрии. Это приводит к некоторой задержке реакции системы при возникновении неизбежных отклонений и имеет определенную погрешность при измерении их величин. Для увеличения точности потребовались датчики, которые могут определить избыток или нехватку кислорода в процентах. Так появились широкополосные датчики кислорода. При возникновении малейшего отклонения от правильного состава смеси они моментально дают блоку управления двигателя указание внести поправки и указывают их величину с достаточно большой точностью. На данный момент широкополосные датчики занимают лидирующее положение в автомобилестроении.

Для рассмотрения принципов работы широкополосных датчиков кислорода обратимся к ставшему уже классическим описанию, данному фирмой Bosch в конце прошлого столетия и вошедшему практически во все учебные пособия и публикации в СМИ и в Интернете. К сожалению, данное описание не дает понимания алгоритмов их работы и (судя по вопросам на форумах) не всегда понятно специалистам автосервисов. Попробуем исправить эту ситуацию.

Условно систему лямбда — регулирования с широполосным датчиком кислорода можно разделить на 4 зоны (см. рис.1). Зона А – ионный насос, зона В – «скачковый» лямбда – зонд (элемент Нернста), зона С – разъем и проводка, зона D – блок управления двигателем (ЭБУ) 4.

               

                                                                                   Рисунок 1

Выхлопные газы 1 из выхлопной трубы 2 через канал поступают в диффузионную щель 6. Здесь они подвергаются каталитическому дожиганию (как в обычном катализаторе), и здесь же (в зависимости от первоначального состава смеси в двигателе) образуется либо избыток, либо недостаток кислорода. Поскольку толщина щели невелика – около 50 мкм, процесс происходит очень быстро. Но для протекания реакции каталитического дожигания нужна температура (в зависимости от конструкции – от 200 до 300 градусов Цельсия). Учитывая тот факт, что температура отработавших газов (ОГ) на холостом ходу может и не достигать указанных значений, необходимым элементом является нагреватель 3. Непрогретый лямбда-зонд не работоспособен.

Далее в работу вступает элемент Нернста 7 (зона В). Сравнивая состав контрольного воздуха в камере 5 с составом газов в щели 6, он дает информацию ЭБУ о наличии или отсутствии кислорода в ней. Только «да — нет». На основании этих показаний ЭБУ 4 дает команду ионному насосу 8 (зона А):

1. Откачать лишний кислород из щели в выхлопные газы, если избыточный кислород там присутствует. Бедная смесь. Ток положительный.

2. Закачать недостающий кислород в щель, если его там нехватка. Богатая смесь. Ионный насос «отнимает» кислород у продуктов выхлопа и перекачивает его в щель. Ток отрицательный.

3. Ничего не делать, если смесь стехиометрическая. Ток нулевой.

Ток ионного насоса прямо пропорционален разности концентраций кислорода на разных его сторонах. Таким образом, по полярности и величине тока этого элемента сразу же определяется состав смеси. Получив указание от ЭБУ, ионный насос пытается привести состав ОГ в щели, соответствующий стехиометрии. По его току ЭБУ понимает, куда и насколько отклонилась смесь, и сразу принимает меры по корректировке времени впрыска в ту или иную сторону. Колебания смеси ему не нужны – ЭБУ сразу видит абсолютные величины отклонений и выводит стехиометрию в идеал.

С началом применения широкополосных лямбда– зондов работа диагностов значительно облегчилась. Такой прибор, как газоанализатор, стал попросту ненужным. Если ЭБУ выводит показания в виде тока, то «нулевой» ток говорит о том, что системе лямбда-регулирования удалось вывести стехиометрию. По показанию коррекции смотрим, какой ценой и в какую сторону ему это удалось (см. рис. 2).

                       

                                                                                            Рисунок 2

Если ток не нулевой, это означает, что системе вывести стехиометрию не удалось. Причин тут две:

1. Неисправен сам лямбда-зонд. Как показывает практика, код ошибки в этом случае возникает крайне редко. Причина проста – чтобы проверить исправность датчика, ЭБУ обязан включить систему мониторинга, т.е. принудительно обогатить или обеднить смесь. А это приводит к нарушению экологии! Поэтому мониторинг зонда проводится нечасто. Например, два автомобиля Opel Vectra, оборудованные системой впрыска Bosch и принимавшие участие в съемках фильма ОРТ «Левый автосервис», обнаружили отказ этого датчика только через несколько часов после его возникновения.

2.Дефект критичен. Система корректировки по лямбда-зонду уже дошла до пределов своей регулировки, но смесь по-прежнему отклоняется от стехиометрии. В этом случае возможен код «Превышение пределов топливной коррекции».

Действия диагноста в этих случаях таковы:

1. Проверка самого лямбда-зонда.

2. Если зонд исправен, определяем состав смеси. Стандарт OBD2 гласит однозначно: положительный ток – бедная смесь. Отрицательный ток – смесь богатая. График зависимости тока от состава смеси приведен на рис.3. Ну а причины и способы устранения отклонения состава смеси достаточно подробно описаны в учебных пособиях. Не будем повторяться.

                            

                                                                                              Рисунок 3

Так выглядит идеальная картинка. Реалии куда более сложнее. Итак, давайте рассмотрим те «подводные камни», которые нас ждут при анализе показаний широкополосного лямбда-зонда.

Первый «подводный камень»: не все производители придерживаются стандарта. Очень часто ко мне приезжали автомобили, на которых стандарт был нарушен — положительный ток соответствовал богатой смеси, отрицательный – бедной. Но не стоит сразу винить производителей этих датчиков. Полярность тока зависит только от схемотехники и программного обеспечения ЭБУ.

ПРОВЕРКА: Необходимо в воздухозаборник работающего автомобиля добавить немного горючего вещества (принудительно обогатить смесь). На нашем автотехцентре мы используем обычный очиститель карбюратора. При наличии изменений показаний датчика однозначно говорим о его исправности и определяем, в какой полярности выводятся его показания на экран сканера.

Самый сложный случай, когда при этой проверке реакции широкополосного лямбда-зонда нет. Однозначного ответа – где дефект, дать невозможно. Вернемся опять к рис.1 .

Дефект возможен в зонах А и В (сам датчик), зоне С (проводка) либо в самом ЭБУ – зона D. В большинстве сервисов предлагают замену датчика, как наиболее вероятную причину. Но учитывая его стоимость, есть смысл обратиться к зоне С (проводке и разъему) для более глубокого поиска дефекта.

Pin 1. Ток ионного насоса. Проводится миллиамперметром на 10 mA и в большинстве случаев этот замер затруднителен.

Pin 2. Масса. Отклонение от «массы» двигателя не более 100 mV. Если «масса» идет с ЭБУ, возможно наличие смещения, заложенного производите- лем. Необходимо свериться с мануалами.

Pin 3. Сигнал элемента Нернста. При отключенном разъеме должен составлять 450 mV. При подключенном разъеме – напряжение должно находиться в пределах 0…1v. Но некоторые производители могут отклоняться от этого правила. Принудительное обогащение смеси позволяет определить исправность этой цепи.

Pin 4 и 5. Напряжение подогревателя. На современных автомобилях управляется с помощью Широтно-Импульсной Модуляции (ШИМ). Проверка необязательна, ибо в случае ее отказа код ошибки с Р0036 по Р0064 (Heater Control HO2S) пробивается практически моментально.

Второй «подводный камень»: ЭБУ не может «понимать» ток. Его входные цепи способны оцифровывать только напряжения. И блоки управления начинают выводить на сканер не ток, а падение напряжения на каком-то нагрузочном сопротивлении в ЭБУ. В зависимости от схемотехники блока оно в норме может иметь абсолютно разное значение. В потоке данных выводится не ток, а какое-то абстрактное напряжение. Мануалы на конкретный автомобиль его указывают.

Но способы проверки точно такие же. Принудительное обогащение смеси позволяет определить исправность датчика, а просмотр топливной коррекции позволяет понять, в каком состоянии находится система топливоподачи автомобиля.

Третий «подводный камень»: большинство широкополосных датчиков не взаимозаменяемы. Реклама настойчиво предлагает разнообразный выбор. На форумах часто звучат вопросы: «Какой датчик лучше поставить?». Как быть рядовому потребителю? Что выбрать?

Ответ дают сами производители автомобилей. Ставить нужно только те датчики, которые рекомендовал завод-изготовитель. В противном случае, производитель не в состоянии гарантировать правильную работу системы.

«Компания NGK Spark Plug Co., Ltd стала одним из пионеров в области лямбда-регулирования в начале 1980-х годов, когда на рынке был представлен регулируемый катализатор. Сегодня ассортимент продукции, выпускаемой под маркой NTK, включает цирконий-оксидные, титановые, широкополосные лямбда-зонды и покрывает порядка 7600 модификаций автомобилей. Все лямбда-зонды соответствуют спецификации оригинальной комплектации (в том числе по длине проводов, штекерам и электрическим параметрам), что гарантирует простоту установки и безупречную эксплуатацию. Каждый лямбда-зонд NTK обеспечивает оптимальные рабочие условия для функционирования катализатора, идеальное образование смеси, а также способствует сокращению выброса вредных веществ и поддержанию расхода топлива на минимальном уровне. Любой автомобиль, оснащённый регулируемым катализатором, имеет, как минимум, один кислородный датчик. Современным же автомобилям требуется не менее двух датчиков. Широкополосные датчики могут регулировать соотношение воздуха и топлива в топливно-воздушной смеси в широком диапазоне, что особенно важно для современных двигателей, работающих на обеднённых смесях, при значениях лямбда гораздо больше чем 1».

Автор: Федор Рязанов
15.05.2014 г.

injectorcar.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *