Из чего состоит генератор: Генератор автомобиля: устройство и принцип работы

Содержание

Электрогенератор: предназначение, устройство, принцип действия

20.01.2014 #Генератор

Электрогенератор: предназначение, устройство, принцип действия

Основным предназначением автомобильного электрогенератора является подзарядка аккумулятора и питания бортовой системы автомобиля. Учитывая конструктивные особенности, можно выделить два типа генераторов: генераторы традиционной и компактной конструкции.

Генератор, в основе работы которого находится магнитная индукция, предназначен для обеспечения электрическим током потребителей, включенных в систему электрооборудования, а также для зарядки аккумулятора при включенном двигателе автомобиля. Генератор должен иметь соответствующие выходные параметры, чтобы, независимо от режима движения автомобиля, не происходил разряд аккумулятора. Кроме этого, генератор должен обеспечивать стабильное напряжение в бортовой сети автомобиля. Принцип работы генератора, а также конструкция этого механизма приблизительно одинаковы для любого автомобильного генератора, несмотря на то, где и кем он выпущен.


Устройство генератора

Основу работы генератора составляет эффект электромагнитной индукции. Генератор состоит из корпуса, статорной обмотки, ротора, реле-регулятора и выпрямительного моста.

Корпус генератора выступает в качестве основания для статорной обмотки. Обычно производится из легкосплавных металлов, например, из дюралюминия. Для охлаждения во время работы в корпусе предусмотрены специальные «окна». Сзади и спереди корпуса имеются подшипники, на которых крепится ротор. Статорная обмотка производится из медного провода и укладывается в пазах сердечника.

Ротор представляет собой некий электромагнит, который имеет одну обмотку, расположенную на валу ротора. Сверху обмотки находится сердечник, выполненный из ферромагнитного металла.

Реле-регулятор осуществляет функцию контроля и регулирования напряжения на выходе из генератора.

Выпрямительный мост с шестью диодами выдает прямой ток более 40 ампер. Диоды, расположенные попарно на плюсовом и минусовом токопроводящих основаниях, соединяются по схеме Ларионова.

  1. передняя крышка;
  2. обмотка статора;
  3. обмотка возбуждения;
  4. задняя крышка;
  5. щеточный узел;
  6. контактные кольца;
  7. выпрямительный блок;
  8. полюсные половины;
  9. крыльчатка вентилятора;
  10. приводной шкив

Конструктивные особенности

Учитывая конструктивное исполнение, можно выделить два типа генераторов: традиционные и компактные. Генераторы традиционной конструкции имеют вентилятор, расположенный у приводного шкива. Вентиляционные окна находятся только в торцевой части.

Генераторы компактной конструкции имеют два вентилятора, расположенные внутри полости генератора. Компактные генераторы часто называют высокоскоростными, так как они оснащены приводом, имеющим повышенное передаточное отношение.


Принцип работы генератора

Работа автомобильного генератора основывается на принципе появления переменного электрического напряжения в обмотке статора, возникающего в результате воздействия постоянного магнитного поля, образующегося вокруг сердечника.

Ротор приводится в действие двигателем через ременную передачу. На обмотку ротора производится подача постоянного электрического напряжения, достаточного для возникновения магнитного потока. Силу магнитного потока регулирует реле-регулятор. Напряжение на выходе генератора находится в пределах между 13,6 вольт летом и 14,2 вольт зимой. Этого напряжения достаточно для того, чтобы аккумулятор находился в нормальном рабочем состоянии, и периодически производилась его подзарядка. Питание бортовой сети, включенной параллельно аккумулятору, происходит от клемм генератора.


Правила эксплуатации генераторов

Среди основных правил можно выделить следующие:

— При эксплуатации генератора важно, чтобы «минус» АКБ всегда подключался к корпусу, а плюс — к плюсу генератора.


— Во время эксплуатации генератора его нельзя отсоединять от АКБ, так как это может привести к неисправностям в бортовой сети машины.
— Нельзя проверять генератор с использованием искры, присоединяя плюс генератора к корпусу. Из-за этого выходят из строя диоды. Для осуществления проверки генератора используют амперметр или вольтметр.
— Если производится ремонт генератора, не стоит проверять сопротивление изоляции обмотки статора высоким напряжением тока. Подобные действия могут осуществляться только на специальном стенде при условии отсоединения диодов выпрямителя.
— Если производится проверка электропроводки автомобиля, генератор необходимо отсоединить.
— При проведении кузовного ремонта автомобиля, особенно с осуществлением сварочных работ, генератор обязательно отсоединяют.

Важно придерживаться всех вышеперечисленных правил, так как их несоблюдение часто приводит к неисправностям генератора.

Другие статьи

#Стойка стабилизатора Nissan

Стойка стабилизатора Nissan: основа поперечной устойчивости «японцев»

22.06.2022 | Статьи о запасных частях

Ходовая часть многих японских автомобилей Nissan оснащается стабилизатором поперечной устойчивости раздельного типа, соединенным с деталями подвески двумя отдельными стойками (тягами). Все о стойках стабилизатора Nissan, их типах и конструкции, а также о подборе и ремонте — читайте в данной статье.

#Ремень приводной клиновой

Ремень приводной клиновой: надежный привод агрегатов и оборудования

15.06.2022 | Статьи о запасных частях

Для привода агрегатов двигателя и в трансмиссиях различного оборудования широко применяются передачи на основе резиновых клиновых ремней. Все о приводных клиновых ремнях, их существующих типах, особенностях конструкции и характеристиках, а также о правильном выборе и замене ремней — читайте в статье.

Барабан тормозной ГАЗ: управляемость и безопасность горьковских автомобилей

08.06.2022 | Статьи о запасных частях

Тормозные системы большинства ранних и актуальных моделей автомобилей ГАЗ оснащаются колесными механизмами барабанного типа. Все о тормозных барабанах ГАЗ, их существующих типах, конструктивных особенностях и характеристиках, а также о выборе, замене и обслуживании данных деталей — читайте в статье.

#Палец поршневой

Палец поршневой: прочная связь поршня и шатуна

02.02.2022 | Статьи о запасных частях

В любом поршневом двигателе внутреннего сгорания присутствует деталь, соединяющая поршень с верхней головкой шатуна — поршневой палец. Все о поршневых пальцах, их конструктивных особенностях и способах установки, а также о верном подборе и замене пальцев различных типов подробно рассказано в статье.

Вернуться к списку статей

схема и принцип действия устройства переменного тока

Человечество уже больше века использует электричество во всех сферах деятельности. Без него просто невозможно представить себе нормальной жизни. С помощью специальных машин механическая энергия преобразуется в переменный или постоянный ток. Чтобы лучше понять, как это происходит, необходимо разобраться, из чего состоит генератор и как он работает.

  • Превращение механической энергии в электрическую
  • Конструкция генератора переменного тока
  • Классификация и виды агрегатов
  • Основные сферы применения

Превращение механической энергии в электрическую

В основе работы любого генератора

лежит принцип магнитной индукции. Первые электрические машины появились во второй половине XIX века. Их изобретателями стали Майкл Фарадей и Ипполит Пикси. В 1886 году прошла публичная демонстрация альтернатора — устройства, способного вырабатывать ток из механического движения.

Первый трехфазный генератор переменного тока разработал россиянин Доливо-Добровольский. Он же в 1903 году сооружает самую первую на Земле электростанцию промышленного значения, ставшую источником питания для элеватора.

Простейшая схема генератора переменного тока представляет собой проволочную катушку, совершающую вращение в магнитном поле. Альтернативный вариант — когда катушка остаётся недвижима, а её пересекает магнитное поле. В обоих случаях будет вырабатываться электрическая энергия. Пока продолжается движение, в проводнике вырабатывается переменный ток. Генераторы применяются для выработки тока во всем мире. Они являются частью глобальной системы электроснабжения Земного шара.

Конструкция генератора переменного тока

То как устроен генератор, зависит от его назначения, и возможны различные модификации. Однако существуют две основные составляющие:

  1. Ротор — подвижный элемент, изготовленный из цельного железа.
  2. Статор — неподвижный, он собирается из изолированных железных листов. Внутри на нём есть пазы, в которых проходит проволочная обмотка.

Чтобы получить наибольшую магнитную индукцию, расстояние между этими частями агрегата должно быть как можно меньшим. Обмотка возбуждения, находящаяся на роторе, питается через систему щёток.

Выделяются два типа конструкции:

  • с вращающимся якорем и неподвижным магнитным полем;
  • магнитное поле вращается, а якорь остаётся на месте.

Наибольшее применение получили машины с подвижными магнитными полюсами. Гораздо удобнее снимать электричество со статора, нежели с ротора. В целом генератор построен так же, как электродвигатель.

Классификация и виды агрегатов

Агрегаты для преобразования механической энергии в электрическую имеют сходную конструкцию. Они могут различаться принципом действия генератора и обмотки возбуждения:

  • независимое возбуждение происходит от аккумулятора;
  • источником является генератор постоянного тока;
  • источник возбуждения размещается на том же валу, что и основной;
  • самовозбуждение выпрямленным током;
  • от постоянных магнитов.

По конструкции:

  • явно выраженные полюса;
  • не выраженные.

По способу соединения обмоток:

  • система Тесла;
  • звезда;
  • треугольник;
  • славянка.

В зависимости от количества фаз:

  • однофазные;
  • двухфазные;
  • трехфазные.

Агрегаты постоянного тока устроены таким образом, что механизм для съёма энергии состоит из двух изолированных полуколец, на каждое из которых поступает заряд определённого потенциала. На выходе получается пульсирующий ток одной направленности.

Синхронные генераторы имеют якорь с обмоткой, на которую подаётся постоянный ток. Регулируя его величину, можно изменять силу магнитного поля и контролировать напряжение на выходе. В асинхронных нет обмотки, вместо этого используется эффект намагничивания.

Основные сферы применения

Стоит помнить о том, что обычное электричество в розетках появляется благодаря работе огромных генераторов переменного тока на тепловых электростанциях. Сфера использования этих электрических машин включает в себя все виды деятельности человека:

  • используются в качестве резервного источника энергии на объектах, где нельзя допускать перебоев электроснабжения;
  • незаменимы в местах, где отсутствуют линии электропередачи;
  • бо́льшая часть транспортных средств снабжена генератором, он вырабатывает электричество для бортовой сети;
  • питание установок для гидролиза;
  • промышленность;
  • на атомных и гидроэлектростанциях.

В последнее время всё большую популярность набирают бытовые агрегаты для выработки электроэнергии. Они отличаются компактными размерами и малым потреблением топлива. Могут работать на бензине и на дизеле. Применяются в походных условиях, на даче или как аварийный источник питания.

Изобретение способа получения электричества из механического движения имело эпохальное значение для развития современной цивилизации. Окружающий мир полон загадок, ответы на которые неизвестны, но, возможно, людей ждут и другие важные открытия, способные изменить жизнь.

Устройство генератора автомобиля

Устройство генератора автомобиля

Основными узлами генератора являются ротор, статор, выпрямительное устройство и щеточный узел.

Ротор генератора содержит обмотку возбуждения. Она выполнена в виде круглой катушки, намотанной на стальную втулку. Катушка установлена на валу ротора и зажата между двумя клювообразными половинами сердечника ротора. Половины напрессованы на вал ротора. Такой сердечник называют сердечником с явно выраженными полюсами. Клювы одной половины образуют северный полюс магнита, а клювы другой половины — южный. Концы обмотки возбуждения выведены на контактные кольца, по которым при вращении ротора скользят щетки щеткодержателя. Обычно одна из щеток соединяется с выводом, через который подается питание обмотки возбуждения, а другая щетка соединена с корпусом генератора. Есть генераторы, у которых обе щетки соединены с изолированными выводами.

Рекламные предложения на основе ваших интересов:

Дополнительные материалы по теме:

Рис. 1. Основные узлы генератора

Статор генератора состоит из сердечника, набираемого из изолированных листов магнитомягкой электротехнической стали, и обмотки. Внутренняя поверхность сердечника статора имеет равномерно расположенные по окружности зубцы. Количество пазов кратно трем. В пазах между зубцами укладываются витки катушек обмотки статора. Изоляция катушек от сердечника осуществляется электротехническим картоном и пропиткой статора в сборе изоляционным лаком. Каждая из трех фаз обмотки статора содержит одинаковое число последовательно соединенных катушек. Этим объясняется кратность числа пазов и катушек трем. Три вывода обмотки статора присоединяются к выпрямительному устройству.

Магнитная цепь генератора образуется стальной втулкой, на которой расположена обмотка возбуждения, двумя половинами сердечника ротора, клювы которых образуют полюсные наконечники, и зубцами сердечника статора.

Обмотка возбуждения генератора получает питание от генератора или аккумуляторной батареи. Небольшой постоянный ток, поступающий в обмотку возбуждения через щетки и контактные кольца, вызывает появление магнитного потока (линии 18). Магнитный поток в осевом направлении проходит через втулку, затем в радиальном направлении по левой половине сердечника ротора и его полюсному наконечнику (клюву) и через воздушный зазор в сердечник статора. Выйдя из сердечника статора, магнитный поток через воздушный зазор и полюсный наконечник правой половины сердечника ротора замыкается через втулку. Так как полюсные наконечники левой и правой половин сердечника ротора смещены в пространстве, происходит соответствующее смещение магнитного потока. Поэтому, входя в статор через один зубец, из статора магнитный поток выходит через другой зубец. При этом он пересекает катушки статора. При вращении ротора под каждым зубцом происходит постоянное чередование северного и южного полюсов ротора, приводящее к изменению пересекающего катушки статора магнитного потока по величине и направлению. В результате в фазных обмотках наводится переменная э. д. е., имеющая форму синусоиды, которая выпрямительным устройством преобразуется в постоянную э. д. с.

Выпрямительное устройство современных генераторов типа ВПВ состоит из шины, в которую запрессованы диоды обратной проводимости, и шины, в которую запрессованы диоды прямой проводимости. У диодов прямой проводимости отрицательный вывод, а у диодов обратной проводимости положительный вывод припаиваются непосредственно к корпусу диода. Поэтому шина служит положительным, а шина — отрицательным выводом выпрямительного устройства и, следовательно, генератора. Положительный вывод каждого отрицательного диода соединяется с отрицательным выводом одного из положительных диодов и выводом одной фазы статора.

Рис. 2. Генератор 32.3701

Конструктивные особенности автомобильных генераторов рассмотрим на примере некоторых типичных конструкций.

Генератор 32.3701 имеет наиболее широко применяемое конструктивное исполнение. Он представляет собой модификацию часто встречающихся в эксплуатации генераторов типа Г250, аналогично с которыми устроены также генераторы Г266 и Г271.

Генератор 32.3701 является синхронной электрической машиной со встроенным выпрямительным блоком. На генераторе имеются следующие выводы: « + » (поз. 22) —для соединения с аккумуляторной батареей и потребителями, 111 —для соединения с регулятором напряжения, «—» (поз. 20) — для соединения с корпусом регулятора напряжения.

Ротор генератора состоит из катушки возбуждения, намотанной на картонный каркас, надетый на стальную втулку. С торцов катушка зажата двумя клювообразными полюсными наконечниками, которые и образуют 12-полюсную магнитную систему. Концы катушки возбуждения припаяны к двум изолированным от вала контактным кольцам. Втулка, полюсные наконечники и контактные кольца напрессованы на вал. Вал вращается в двух шариковых подшипниках закрытого типа, установленных в крышке со стороны контактных колец и крышке со стороны привода. Подшипник имеет большие размеры по сравнению с подшипником, так как он воспринимает большие радиальные нагрузки от шкива, на который давит натянутый ремень передачи. При сборке подшипников их заполняют смазкой, и в процессе эксплуатации они в смазке не нуждаются.

Крышки отливаются из алюминиевого сплава. Они имеют вентиляционные окна. Крышка со стороны контактных колец имеет лапу для крепления генератора на двигателе. В ней установлены пластмассовый щеткодержатель 8 и выпрямительный блок (БПВ 4-60-02). Для предотвращения от проворачивания наружной обоймы шарикоподшипника в выточке крышки установлено резиновое уплотнительное кольцо.

Щеткодержатель крепится к крышке двумя болтами. Две графитовые щетки, установленные в направляющих отверстиях щеткодержателя, пружинами прижимаются к контактным кольцам. Одна щетка соединена с изолированным штекерным выводом Ш, другая — с корпусом генератора.

Крышка имеет две лапы. Одна, нижняя, как и лапа крышки, предназначена для крепления генератора на двигателе. Другая, верхняя, имеет резьбовое отверстие и предназначена для крепления натяжной планки.

Статор генератора состоит из сердечника, набранного из отдельных изолированных друг от друга пластин электрической стали и соединенных в пакет сваркой. Сердечник статора установлен между крышками и стянут вместе с ними четырьмя винтами. На внутренней поверхности сердечника имеется 36 зубцов, в пазах между которыми уложена трехфазная обмотка статора, соединенная по схеме «двойная звезда». Каждая фаза представляет собой две параллельно включенные цепи с тремя последовательно соединенными катушками. Свободные концы фаз обмотки статора соединены с тремя выводами выпрямительного блока. Шина диодов прямой проводимости соединена с выводом « + » (поз. 22) генератора, а шина диодов обратной проводимости — с корпусом генератора.

Шкив и вентилятор установлены на валу генератора на шпонке и закреплены гайкой с пружинной шайбой.

Генератор Г286А (Г286В) представляет собой трехфазную синхронную машину со встроенными выпрямительным блоком и интегральным регулятором напряжения (ИРН) Я112А. По сути дела это генераторная установка.

Сердечник статора, закрепленный между крышками тремя болтами, имеет равномерно расположенных пазов. Обмотка статора соединена по схеме «двойная звезда». Обмотка возбуждения расположена внутри двух клювообразных половин сердечника ротора. Выводы фазных обмоток соединены с выпрямительным блоком (БПВ 8-100-02). Выпрямительный блок имеет такую же конструкцию, как и у генератора 32.3701.

Рис. 3. Генератор Г286А

Отличительной особенностью генератора Г286А является также взаимное расположение контактных колец и подшипника в крышке.

Так как регулятор напряжения включается в цепь обмотки возбуждения, его встраивают в щеткодержатель. Вместе они образуют единый съемный блок 6. Крепится блок винтами к основанию щеткодержателя, который установлен на крышке. Болт служит выводом обмотки возбуждения и регулятора напряжения.

Блок щеткодержателя и регулятора напряжения состоит из щеткодержателя, интегрального регулятора и металлического теплоотвода — крышки.

Регулятор состоит из медного основания, на котором размещены элементы схемы, пластмассовой крышки для защиты элементов схемы от механических повреждений и жестких шинных выводов. Медное основание является отрицательным выводом регулятора. Оба вывода В регулятора соединены накоротко внутри. Один из них является основным, другой — дублирующим. При установке на щеткодержатель выводы регулятора напряжения ложатся на шины. К шинам приварены токопроводящие канатики, соединяющие их с щетками. Сверху на регулятор напряжения устанавливается крышка, и весь блок скрепляется винтами. Таким образом, электрическое соединение шин регулятора и щеткодержателя осуществляется прижимным контактом.

Генератор 37. 3701 (рис. 4) — генераторная установка, представляет собой синхронную машину переменного тока с встроенным выпрямительным блоком БПВ 11-60-02 и регулятором напряжения 17.3702.

Статор генератора имеет 36 равномерно расположенных пазов, в которых размещена трехфазная обмотка, соединенная по схеме «двойная звезда». Каждая фаза состоит из двух параллельно соединенных ветвей, в каждой из которых шесть непрерывно намотанных катушек.

Ротор не имеет особых конструктивных отличительных особенностей.

Выпрямительный блок, вмонтированный в крышку, отличается от традиционных тем, что в него вмонтированы три дополнительных диода прямой проводимости, через которые осуществляется питание обмотки возбуждения от генератора. Выпрямленное напряжение с дополнительных диодов подается на штекерный вывод, обозначаемый на схемах вывод «61», и проводником на штекерный вывод регулятора напряжения, который имеет маркировку В. Вывод В регулятора через контакт связан также с одной из щеток. Не показанный на рисунке вывод Ш регулятора контактирует с другой щеткой. Регулятор напряжения имеет еще вывод Б, который проводником соединен с положительным выводом генератора, обозначаемым на схемах «30».

Рис. 4. Генератор 37.3701: 1 — крышка со стороны контактных колец; 2 — выпрямительный блок; 3— вентиль выпрямительного блока; 4 — винт крепления выпрямительного блока; 5 — контактное кольцо; 6 — задний шарикоподшипник; 7 — конденсатор; 8 — вал ротора; 9 — вывод «30» генератора; 10 — вывод «61» генератора; 11 — вывод «В» регулятора напряжения; 12 — регулятор напряжения; 13 — щетка; 14 — шпилька крепления генератора к натяжной планке; 15 — шкив с вентилятором; 16 и 23 — полюсные наконечники ротора; 17 — дистанционная втулка; 18 — передний шарикоподшипник; 19 — крышка со стороны привода; 20 — обмотка ротора; 21 — статор; 22 — обмотка статора; 24 — буферная втулка; 25 — втулка; 26 — поджимная втулка

На генераторе установлен конденсатор емкостью 2,2 мкФ. Он подключен между корпусом и положительным выводом генератора. Конденсатор служит для защиты электронного оборудования автомобиля от импульсов напряжения в системе зажигания и снижения уровня помех радиоприему.

Характеристики генераторов. На автомобилях генераторы работают в условиях постоянно изменяющейся частоты вращения и тока нагрузки. При этом должно обеспечиваться в определенных пределах постоянство напряжения генератора.

Генераторы характеризуются прежде всего номинальными данными: напряжением, током, мощностью.

Номинальное напряжение генераторов, работающих в схемах электрооборудования с номинальным напряжением 12В, принято 14В, а для 24-вольтовых схем — 28В. Номинальный ток генератора — это максимальный ток нагрузки, который может отдать генератор при частоте вращения ротора 5000 об/мин и номинальном напряжении. Значения номинального напряжения и тока наносятся на крышке генератора. Номинальная мощность определяется как произведение номинального напряжения на номинальный ток.

Энергетические возможности генераторов характеризуются токоскоростной характеристикой. Это зависимость тока, отдаваемого генератором, от частоты вращения ротора (рис. 5). Характеристика снимается при номинальном напряжении генератора и постоянном, обычно номинальном, напряжении на обмотке возбуждения.

Эта характеристика чрезвычайно важна, так как она показывает возможности генератора при различной частоте вращения ротора.

Из рис. 5 видно, что без нагрузки напряжение генератора достигает номинальной величины при частоте вращения «о, которая у различных генераторов колеблется от 900 до 1200 об/мин.

Рис. 5. Токоскоростная характеристика генераторов

Якорем в синхронной машине является статор. При протекании по обмотке статора тока возникает магнитное поле статора, которое направлено против основного магнитного поля ротора и размагничивает его. При увеличении тока нагрузки возрастает ток обмотки статора, усиливается его магнитное поле, что приводит к увеличению размагничивания магнитного поля ротора. В результате в катушках статора наводится меньшая по величине э. д. с. и ограничивается максимальная сила тока, отдаваемого генератором.

Полное сопротивление Z обмотки статора, по которой протекает переменный ток, складывается из активного R и индуктивного сопротивлений:

Активное сопротивление обмотки статора зависит только от ее температуры. С увеличением температуры оно повышается. Поэтому с увеличением температуры ток отдачи генератора несколько понижается.

Начальная частота вращения нормируется техническими условиями на конкретные типы генераторов. Задается она для двух состояний генератора: холодного и горячего. Температура генератора в холодном состоянии должна быть в пределах 15—35 °С. Горячее состояние соответствует установившейся температуре генератора, работающего в режиме номинальной мощности.

Указанные характеристики могут задаваться для двух вариантов питания обмотки возбуждения: при питании обмотки возбуждения собственно от генератора (самовозбуждение) и при питании от постороннего источника питания (независимое возбуждение). Ток, отдаваемый генератором при самовозбуждении, будет меньше тока, отдаваемого генератором при независимом возбуждении, так как в первом случае часть его идет на питание обмотки возбуждения.

Характеристики начала отдачи тока генераторами без встроенных регуляторов напряжения задаются при напряжении питания обмотки возбуждения, равном номинальному, как при независимом возбуждении, так и при самовозбуждении. Наличие встроенного регулятора напряжения обусловливает необходимость подачи такого напряжения, при котором регулятор еще не вступает в работу. Поэтому питание обмотки возбуждения генераторов с встроенными регуляторами напряжения осуществляется при 13В и характеристики генераторов с самовозбуждением задаются также при напряжении на их выводах 13В.

Из чего состоит автомобильный генератор. Из чего состоит генератор

Автор Мастер М На чтение 11 мин Просмотров 27 Опубликовано

Содержание

  1. Устройство генератора переменного тока
  2. Характеристики генератора переменного тока
  3. Принцип работы генератора
  4. Виды генераторов
  5. Как устроен
  6. Автогенератор постоянного тока
  7. Автогенератор переменного тока
  8. Конструкция
  9. Статор
  10. Ротор
  11. Узел выпрямления
  12. Регулятор напряжения
  13. Устройство генератора переменного тока
  14. Корпус
  15. Привод
  16. Ротор
  17. Статор
  18. Принцип работы
  19. Параметры генератора

Мы узнали, что выходное напряжение генератора должно быть в пределах от 13,5 В до 14,2 В. Сила тока может отличаться в зависимости от модели. В среднем они находятся в диапазоне от 80 до 140 А. Возьмите среднее значение 100 А.

Устройство генератора переменного тока

Очень трудно представить современную жизнь без электричества. Даже люди, далекие от цифровых технологий и интернета, все равно пользуются приборами, работающими на электричестве. Для выработки этой энергии часто используются генераторы переменного тока. Эта мощность используется всеми электроприборами и обеспечивается во всех квартирах и частных домах. Хотя вышеупомянутые устройства были изобретены очень давно, они до сих пор не утратили своей популярности и используются во многих сферах жизни людей. В этой статье описана конструкция генератора и принцип его работы.

Альтернаторы — это электрические устройства, преобразующие механическую энергию в электрическую. Последний имеет переменные характеристики. Само преобразование основано на механическом вращении проволочной катушки в магнитном поле.

Разделы данного устройства

Наблюдение! Почти все современные генераторы вырабатывают электроэнергию с помощью вращающегося магнитного поля, а не катушки.

Как уже упоминалось, ток возникает не только при механическом перемещении катушки в магнитном поле, но и когда динамические линии вращающегося магнита пересекают витки катушки. Поэтому образовавшиеся электроны начинают двигаться к положительному полюсу магнита, и ток течет от положительного полюса к отрицательному.

В проводнике (катушке) возникает ток. Ток отталкивает магнит, когда каркас катушки приближается к магниту, и отталкивает магнит, когда каркас удаляется от него. Проще говоря, ток каждый раз меняет свое направление относительно полюсов магнита. Это и является причиной таких явлений, как переменный ток.

Демонстрация устройства, использующего простой магнит и цепь.

Это устройство появилось еще в 1832 году благодаря усилиям Н. Тесла. Затем он создал первый однофазный современный генератор. Первые устройства вырабатывали только постоянный ток, и такой генератор долгое время не находил практического применения. Это продолжалось недолго, так как вскоре люди поняли, что переменный ток гораздо практичнее постоянного.

NB! Преимуществом новой технологии было то, что она легко вырабатывала электроэнергию и требовала лишь небольших затрат времени и ресурсов на обслуживание устройства по сравнению с соответствующим устройством постоянного тока.

Благодаря переменному току и его генераторам были созданы такие устройства, как радиоприемники, магнитофоны и другие новейшие автоматические и электрические установки.

Характеристики генератора переменного тока

Основными техническими характеристиками генератора являются его внешние характеристики, регулирование скорости и регулирование тока. Внешняя характеристика определяется как зависимость между напряжением устройства и производимым им током. Она является константой и может определяться отдельными, независимыми стимулами.

Характеристики регулирования скорости обычно рассчитываются по различным значениям тока нагрузки. Минимальное значение стимуляции — ток нулевой нагрузки (максимальная скорость вращения).

Этот современный показатель мощности определяется как один из самых важных при выборе или проектировании генератора. Почти все новые теплообменники могут самостоятельно ограничивать максимальный ток.

Обратите внимание! Это делается для того, чтобы скорость курсора не поднималась до индуцированной пусковой частоты.

Простые индукционные генераторы для домашнего и лабораторного использования

Принцип работы генератора

Теперь пришло время рассмотреть конструкцию генератора переменного тока и принципы его работы. Он состоит из специальной системы, которая при работе создает магнитный поток большой силы.

В его основе лежат два сердечника из электротехнической стали. Прорезь в сердечнике используется для размещения обмоток, отвечающих за создание магнитного тока. Второй используется для индукции энергии.

Ядро внутри обычно находится в горизонтальном или вертикальном положении и вращается по соответствующей орбите. Он называется ротором. Как следует из названия, второе ядро, называемое старым, остается неподвижным. Чем меньше расстояние между этими элементами, тем больше индукция магнитного потока. Затем анализируются назначение и функции генератора переменного тока.

Практический взгляд на конструкцию генератора переменного тока

Современные генераторы переменного тока работают по тем же принципам, но в качестве движущей силы используют другие механизмы. Основное назначение генератора переменного тока — преобразование определенных видов энергии в электричество. Источники энергии следующие.

Виды генераторов

Существуют два типа монтируемых агрегатов. Между ними:.

  1. Устройство постоянного тока. Чаще всего встречается на старых моделях транспортных средств. В последнее время популярность таких агрегатов заметно снизилась.
  2. Устройство переменного тока. Установлено практически на все автомобили современного поколения. Впервые был разработан и выпущен на заводе Америки в 1946 году.

Второй тип генераторов имеет прочную конструкцию и характеризуется наличием силового компонента.

Как устроен

Независимо от типа, каждый генератор предназначен для производства и обеспечения электричества, которое может быть использовано для размещения системы органов в автомобиле. Поскольку каждый тип устройства вырабатывает различный ток, конструкция и работа альтернативных вариантов будут отличаться. Поэтому стоит рассмотреть эти два генератора отдельно.

Автогенератор постоянного тока

Уже отмечалось, что эти устройства получают все большее распространение, и это связано с рядом недостатков. Наиболее распространенные из них: — использование одного генераторного агрегата.

  • небольшая эффективность работы;
  • недостаточная мощность;
  • необходимость проведения частого ремонта и осмотра;
  • недолгий срок службы.

Данная конструкция включает коллекторы, благодаря которым эти устройства могут работать в двух функциях. Именно поэтому они часто используются в гибридных автомобилях.

Особенностью является то, что электромагниты, прикрепленные к устройству, не двигаются. Это гарантирует определенное положение силового движения и особый принцип работы.

Автогенератор переменного тока

Он считается популярным устройством среди современных моделей. Она содержится в его конструкции:.

Альтернаторы этого типа обычно устанавливаются рядом с двигателем спереди. Он устанавливается с помощью прочных винтов через предусмотренные соединения. Крышки блоков изготовлены из алюминиевого сплава. Каждая крышка оснащена окном для вентиляции корпуса и предотвращения перегрева конструкции. Отсутствие вентиляции или блокировка объясняют, почему теплообменники нагреваются до холостого хода или нормальной работы.

Кроме того, стоит отметить, что на задней крышке имеется блок areaan, называемый щеточным блоком. Обе крышки удерживаются вместе специальными винтами увеличивающейся длины.

Конструкция

Стоит внимательнее присмотреться к тому, что генератор встроен в автомобиль. Ниже приведены основные части конструкции такого важного устройства в автомобиле.

Статор

Генератор Статта представляет собой стальной профиль, толщина которого не превышает 10-11 мм. Конструкция современных генераторов основана на принципе экономии металла и поэтому состоит из отдельных секций и имеет лепестковую форму. Все пластины свариваются или привариваются друг к другу. Статор имеет более 30 гнезд для крепления обмоток. Более старые изолируются специальным эпоксидным компаундом или мембранным покрытием.

Ротор

Система курсорных полюсов отличается от стандартной системы единиц измерения. Она состоит из двух половинок, каждая из которых имеет отчетливый выступ, похожий на клюв. Каждая башня имеет шесть клемм, которые насажены на вал.

Между полюсами располагается втулка, к которой крепятся обмотки. Валы ротора изготовлены из стали низкой твердости, но это не мешает им быть прочными и эффективными. На конце вала имеется резьба и выемка для крепления шкива.

Узел выпрямления

Основным характерным элементом современных самогенераторов переменного тока является соединение анонимности. Используются два типа агрегатов: вспомогательные выпрямители и вспомогательные выпрямители.

  1. Пластины, отводящие тепло. В них установлены силовые диоды, выпрямляющие ток.
  2. Элементы со специальными ребрами для охлаждения. На них также установлены диоды, но они таблеточные.

Кроме того, вспомогательные выпрямители могут быть классифицированы как вспомогательные выпрямители. Здесь диоды заключены в пластиковую цилиндрическую оболочку. Этот корпус соединен с контуром специальной шиной.

Регулятор напряжения

Это приспособление помогает поддерживать необходимое напряжение в автоматическом генераторе. Он обеспечивает нормальную работу электрических систем, датчиков и других компонентов системы автомобиля.

Стабилизаторы напряжения основаны на полупроводниковых элементах. Хотя конструкция этих компонентов может отличаться, все они выполняют одну и ту же функцию и имеют одинаковый принцип работы.

Основной особенностью регуляторов напряжения является термокомпенсация. Это способность элемента изменять, увеличивая или уменьшая напряжение, значение напряжения, если во время работы генератора обнаружено изменение температуры. Эти операции улучшают зарядку аккумулятора и снижают потребление ресурсов.

Принципы работы генераторов переменного тока и генераторов непрерывного потока уже понятны, как и их основные компоненты. Для обобщения материала и понимания электрического процесса необходимо рассмотреть несколько систем.

Устройство генератора переменного тока

Работу любого генератора можно сравнить с реверсивным электродвигателем. Это означает, что он генерирует, а не потребляет электроэнергию. Современные генераторы делятся на два типа, в зависимости от их конструкции. Компактные генераторы и обычные генераторы. Они имеют общее устройство, но отличаются расположением корпуса, вентилятора, выпрямителя и привода. Современные устройства также имеют три фазы.

Генератор переменного тока состоит из следующих основных элементов

  • привод со шкивом, подшипниками и валом;
  • ротор с обмоткой возбуждения и контактными кольцами;
  • статор с сердечником и обмоткой;
  • корпус, состоящий из двух крышек;
  • регулятор напряжения;
  • выпрямительный блок или диодный мост;
  • щеточный узел.

Проанализируйте каждый элемент блока по отдельности и в деталях.

Корпус

В корпусе находятся все основные компоненты генератора. Он состоит из двух крышек (передней и задней). Крышки прикручены. Крышки изготовлены из ненамагниченного, термодиффузионного, легкого сплава алюминия. Крышки имеют вентиляционные отверстия и монтажные фланцы.

Задняя крышка содержит диодный мост и корпус со щетками. Клеммы, подающие питание от генератора, также находятся на задней крышке.

Привод

Вращение от коленчатого вала передается на шкив генератора, который вращает ротор. Скорость вращения шкива в два-три раза превышает скорость вращения коленчатого вала. Крутящий момент двигателя передается через ремень. В зависимости от конструкции могут использоваться ремни или клиновидные ремни. Клиновидные ремни считаются самым гибким и современным видом ремней.

Ротор

Вал ротора имеет обмотку возбуждения, которая создает магнитное поле и по сути является обычным электромагнитом. Обмотка помещается между двумя половинами (сердечниками), которые необходимы для регулирования и направления магнитного поля. Каждая половина имеет шесть треугольных выступов, называемых клювами. Вал ротора также имеет два медных контактных кольца. Иногда они изготавливаются из стали или латуни. Обмотка возбуждения питается от аккумулятора через контактное кольцо. Контакты обмотки приварены к кольцам.

На переднем конце вала ротора находится приводной шкив, а на другом конце — крыльчатка вентилятора. Их может быть двое. Они необходимы для охлаждения внутренней части теплообменника. Кроме того, на обоих концах ротора установлены подшипники, не требующие обслуживания.

Статор

Конструктивно статор имеет форму кольца. Это основная часть, которая генерирует переменный ток из магнитного поля ротора. Он состоит из обмотки и сердечника. Сердечник состоит из соединенных между собой стальных пластин, образующих 36 щелей. Три обмотки наматываются на пазы, образуя трехфазное соединение. Имеются два варианта намотки: звезда и треугольник. В звезде концы каждой из трех обмоток соединены в одной точке. В схеме «треугольник» концы обмоток приводятся в движение отдельно.

Принцип работы

Вот более подробный обзор работы генератора переменного тока в автомобиле. При включении зажигания щеточный узел питается от аккумулятора. Через щеточный узел он попадает на медное контактное кольцо, а затем на обмотку возбуждения курсора. Следует помнить, что ротор, по сути, является электромагнитом, создающим магнитное поле. Коленчатый вал начинает вращать ротор через шкив и приводной ремень. Вокруг ротора расположен статор, который начинает вырабатывать переменный ток от вращения. Когда вращение ротора достигает определенной частоты, обмотка возбуждения получает питание от самого генератора.

Переменный ток выпрямляется через диодный мост и преобразуется в постоянный ток перед подачей в электрическую систему автомобиля. Таким образом, автомобильный генератор подает энергию на нагрузку и подзаряжает аккумулятор. Регулятор напряжения изменяет функцию обмотки возбуждения по мере увеличения скорости вращения ротора. Это гарантирует, что нагрузка остается постоянной.

На приборной панели автомобиля имеется сигнальная лампа генератора переменного тока, которая указывает на состояние устройства. Например, индикатор может загореться, если ремешок сломан. В таких случаях источник питания будет работать только от аккумулятора. Время работы в этом случае зависит от уровня заряда батареи.

Параметры генератора

Работа теплообменника оценивается по различным параметрам

  • номинальный ток и номинальное напряжение;
  • номинальная частота возбуждения;
  • частота самовозбуждения;
  • коэффициент полезного действия (КПД).

Номинальное напряжение сети автомобиля от генератора переменного тока составляет 12 В или 24 В. Характеристика силы тока показывает зависимость между силой тока и частотой вращения генератора.

Напряжение генератора можно измерить с помощью мультиметра. На холостом ходу при полном потреблении без нагрузки и под нагрузкой мультиметр должен показывать от 14,3 В до 15,5 В. Если напряжение после двигателя превышает 14 В, это может означать, что аккумулятор разрядился и заряжается от генератора переменного тока. Если потребители (фары, отопление, кондиционер и т.д.) включаются поочередно, напряжение будет уменьшаться примерно на 0,2 за одно включение. Однако в конечном итоге напряжение не должно опускаться ниже 12,8 В. Если цена низкая, батарея начнет разряжаться. С другой стороны, если напряжение очень высокое (выше 14 В), это может привести к повреждению батареи. Выходное напряжение батареи должно быть в пределах 12,6В -12,7В.

Напряжение генератора под нагрузкой может отличаться от номинального напряжения 12 В. Если все потребители активны, цена колеблется в пределах 13,5В — 14В. Если он ниже, это может указывать на неисправность. Допустимый предел составляет 13 В.

На рисунке ниже показана подробная схема автомобильного генератора переменного тока.

Строение и принцип работы диодного моста генератора

 

«Автомобильные генераторы бывают двух видов: постоянного и переменного тока», — такую фразу можно прочитать в академических изданиях. В реальности автомобиль с генератором постоянного тока сегодня можно встретить разве что на выставке ретро-техники.

С 60-х годов прошлого века в автомобили устанавливают генераторы переменного тока. Узел выпрямления нужен, чтобы преобразовывать переменный ток в постоянный для питания автомобильных электроприборов. Зачем нужно было так заморачиваться и какие весомые преимущества есть у генераторов переменного тока — тема для отдельной статьи.

Что такое диодный мост и как он работает

Автомобильный генератор вырабатывает трехфазный переменный по величине и знаку ток (напряжение). Чтобы получить постоянную величину тока, в генераторах используют реле-регуляторы.

А чтобы получить ток, постоянный по полярности (+/-), используют диодные мосты, которые подключаются к обмоткам статора и преобразуют переменный ток в постоянный.

Т.е. диодный мост — это узел из выпрямительных полупроводниковых диодов, который выпрямляет переменный ток, вырабатываемый генератором.

Обмотка генератора вырабатывает три фазы тока, каждая из которых имеет форму синусоиды (волны). Часть полуволн заряжена положительно, вторая часть — отрицательно.

Полупроводниковые диоды имеют свойства пропускать ток только в одном направлении. Например, открываются на положительных полупериодах и закрываются на отрицательных.

 

Движение тока в генераторе

 

Как это работает в диодном мосте:

  • переменный ток из обмоток периодически меняет направление движения в цепи;
  • диоды пропускают его только в одном направлении;
  • чтобы не было скачков, на каждую фазу устанавливается по два диода (силовое плечо), работающих в разных направлениях.

Поэтому в стандартной, «базовой» комплектации диодного моста всегда не меньше 6 диодов (по два на каждую фазу). И независимо от полярности тока в обмотках генератора на выходе всегда будет плюс, необходимый для работы электроприборов.

С диодного моста ток поступает в аккумулятор, а оттуда ко всем электроприборам.

Принципиальная конструкция и особенности диодного моста

Диодный мост представляет собой две алюминиевые пластины (плюсовая и минусовая), соединенные изоляционными втулками. На пластинах расположены разъемы для проводов, подключающихся к обмоткам статора и регулятору напряжения.

В каждую пластину запрессованы по три или четыре крупногабаритных диода — это силовой мост.

Чтобы генератор работал более стабильно и эффективно, к 6 (8) основным диодам, которые “выпрямляют” ток,  можно подключить 3 дополнительных слаботочных — они подают питание на реле-регулятор и обмотку возбуждения.

 

 

 

Схема диодного моста генератора

Виды диодных мостов

На современных автомобилях используют диодные мосты на 6 или 8 диодов.

Шестидиодный мост используют в генераторах с любым способом подключения обмоток статора — треугольником или звездой.

 

Подключение обмотки к диодному мосту треугольником

 

Восьмидиодные мосты используются только при обмотке статора звездой, т.к. дополнительное силовое плечо здесь подключено к нулевой точке статора.

Подключение обмотки к диодному мосту звездой

 

Это более мощные мосты: дополнительное силовое плечо повышает мощность генератора на 5-15%, зависит от оборотов двигателя.

И шести-, и восьмидиодные мосты могут быть:

  • только с выпрямительными диодами. Здесь обмотка возбуждения питается от напряжения, которое снято с силовых выпрямителей;
  • с 3-мя дополнительными диодами (9-ти или 11-ти диодные мосты). В этом случае питание регулятора и обмотки идет с вспомогательных диодов.

 

Схема на 8 диодов

 

Кроме того, диодные мосты отличаются по конструкции, способу крепления диодов, бывают разборными и неразборными. В диодных мостах используются полупроводниковые выпрямители, лавинные диоды или диоды Шоттки.

Как проверить и отремонтировать диодный мост

Неисправный генератор заявляет о себе недвусмысленно:

  • Полностью заряженный с вечера аккумулятор на утро разрядился. Если его зарядить снова и завести двигатель, он разрядится через несколько минут.
  • Генератор воет во время движения. ТОнальность воя меняется в зависимости от оборотов.
  • Электроприборы сбоят.

Чтобы убедиться, что неисправен именно диодный мост, измерьте напряжение на выходе генератора — оно должно быть больше 13,5В и прозвоните генератор: если проблема в диодном мосте, “плюс” будет звенеть вместе с обмоткой.

Чтобы окончательно подтвердить предположения, езжайте на хорошее СТО — там мастера работают со спецоборудованием, которое позволяет найти обрывы, пробои, определить тип диодов, обнаружить их деградацию, напряжение обратного пробоя в лавинных диодах.  Такая подробная диагностика позволяет мастеру понять, какой диод нужен на замену, обнаружить деградирующие диоды и качественно отремонтировать генератор.

Если диодный мост разборной, специалисты заменят диоды, пришедшие в негодность. Если нет, придется полностью менять весь блок.

Ремонт и обслуживание генераторов

Записаться на СТО

Принцип работы генератора переменного тока автомобиля, устройство

Принцип работы генератора состоит в преобразовании механической энергии в электрическую. Происходит это за счет явления электромагнитной индукции. Суть его состоит в том, что при пересечении проводником электричества силовых линий магнитного поля, на концах первого возникает разность потенциалов. То есть электрическое напряжение. Принцип работы автомобильного генератора заключается в том же.

Генератор автомобиля является генератором переменного тока со встроенным в него выпрямителем.

Для чего автомобилю нужен генератор

Каждому автомобилю для работы нужна электрическая энергия. Она используется для пуска и работы двигателя, освещения дороги. Контрольные приборы и световая индикация тоже используют ее для нормального функционирования. Поэтому электрический аккумулятор в процессе работы автомобиля быстро разряжается. Чтобы он заряжался во время работы двигателя, на каждый автомобиль, оснащенный двигателем внутреннего сгорания, устанавливают генератор.

Состав и устройство автогенератора

Автогенератор состоит из следующих частей:

  • Статор, включающий в себя сердечник из пластин электротехнической стали с тремя намотанными на него катушками медного эмалированного провода диаметрам чуть меньше миллиметра. Соединяются эти обмотки между собой «звездой», а к их свободным концам подключаются диоды выпрямителя.
  • Ротор, состоящий из сердечника с 6 полюсами и намотанной внутри этой конструкции катушки изолированного медного провода, выводы которой подключены к двум медным контактным кольцам. Эта катушка является обмоткой возбуждения автогенератора.
  • Блок диодов выпрямителя. Его схема состоит из 6 мощных диодов, расположенных на двух алюминиевых подковах и попарно соединенных между собой. Способом их коммутации здесь, как правило, бывает схема Ларионова. Эта схема преобразует трехфазное переменное напряжение в постоянное.
  • Дюралюминиевый корпус автогенератора, с изолированной от него клеммой выхода, и с элементами крепления к двигателю. Выполнен он из двух половинок: передней и задней, стягивающимися между собой длинными болтами с гайками.
  • Регулятор напряжения со щетками. В более ранних конструкциях автогенератора регулятор напряжения не объединялся с блоком щеток, а устанавливался в моторном отсеке отдельно. Схема подключения автогенератора со встроенным и вынесенным регулятором напряжения несколько различается.
  • Помехоподавляющий конденсатор. Служит для уменьшения помех радиоаппаратуре в бортовой сети автомобиля. Подключается параллельно выходу генератора, то есть один его вывод присоединяется к плюсовой клемме устройства, а другой к «массе» автомобиля.
  • Приводной шкив, часто соединенный с крыльчаткой охлаждения.

Схема регулятора напряжения, по сути, является усилителем тока с отрицательной обратной связью по напряжению. То есть повышение напряжения на выходе автогенератора приводит к уменьшению тока проходящего через обмотку возбуждения ротора, что ослабляет его магнитное поля, а из-за этого уменьшается напряжение на выходе устройства. В современных генераторах для питания обмотки возбуждения используются дополнительный выпрямитель из трех маломощных диодов. Это исключает протекание тока через обмотку возбуждения при выключенном зажигании и упрощает схему индикации наличия или отсутствия зарядки. При включении зажигания, через индикаторную лампочку, на регулятор напряжения подается питание. Пока нет зарядки, ток возбуждения генератора идет через лампочку и она светится. А как только генератор начинает вырабатывать энергию, питание на регулятор подается с дополнительных диодов, ток через контрольную лампочку прекращается и она гаснет.

Работа агрегата

При прохождении тока по обмотке возбуждения автогенератора, вокруг ротора возникает магнитное поле.

Вращение ротора двигателем через приводной ремень, заставляет силовые линии магнитного поля пересекать витки обмоток статора. Отчего в них возникает ЭДС, а на выводах обмоток появляется переменное электрическое напряжение.

Последнее преобразуется блоком диодов в постоянное. Необходимая для нормальной зарядки аккумулятора величина постоянного напряжения (от 13,9 до 14,2 В) поддерживается при помощи реле-регулятора, которое при повышении напряжения выше верхнего значения, уменьшает ток возбуждения. А при снижении ниже нижнего, увеличивает его. Так устроен любой автогенератор.

Немного истории

Первые автомобильные генераторы были генераторами постоянного тока. Такими генераторами автомобили комплектовались вплоть до начала 60 годов прошлого века. Их главное отличие от генераторов переменного тока в том, что электромагниты, создающие магнитное поле, неподвижны. ЭДС находится во вращающихся в этом поле обмотках ротора. Снимается же ток с изолированных между собой полуколец, поэтому на каждой щетке присутствует напряжение только одной полярности. Их недостатками является сложная конструкция щеточно-коллекторного узла и низкая надежность из-за большого тока, протекающего через контакты между щетками и коллекторными пластинами.

Поэтому, как только промышленность стала выпускать полупроводниковые диоды достаточной мощности, генераторы постоянного тока на автомобилях стали заменять генераторами переменного тока с полупроводниковыми выпрямителями. Выпрямители первых таких генераторов для автомобиля были селеновыми. Они имели большие размеры, а их рабочая температура была значительно ниже, чем у современных кремниевых. Поэтому они не могли размещаться внутри генератора.

Первые регуляторы напряжения были вибрационные. Они представляли собой реле, регулирующее ток возбуждения за счет частых кратковременных разрывов цепи, питающую катушку ротора. Поэтому регулятор напряжения до сих пор часто называют реле-регулятор. Они имели нормально замкнутые контакты, подающие питание на катушку якоря. При повышении напряжения бортовой сети, обмотка реле притягивала сердечник и разрывала цепь питания якоря. От этого падало выходное напряжение генератора, реле переставало удерживать сердечник, и цепь питания ротора вновь замыкалась.

На смену им пришли полупроводниковые регуляторы на дискретных элементах. А за ними и интегральные регуляторы напряжения, обладающие столь малыми размерами, что их стали объединять в один узел со щетками и вставлять в корпус генератора.

Надежность генераторов

Генераторы и динамо-машины


Разработка и история компонента, который первым сделал электричество коммерчески осуществимый

Динамо Генераторы преобразуют механическое вращение в электрическую энергию.

Динамо — устройство, производящее постоянного тока электроэнергии с помощью электромагнетизма. Он также известен как генератор, однако термин генератор обычно относится к «генератору переменного тока», который создает мощность переменного тока.

Генератор — обычно этот термин используется для описания генератора , который создает мощность переменного тока с помощью электромагнетизма.

Генераторы, Динамо и Батареи — это три инструмента, необходимые для создания/хранения значительное количество электроэнергии для нужд человека. Батареи возможно, были обнаружены еще в 248 г. до н.э. Они просто используют химические реакция на производство и хранение электроэнергии. Ученые экспериментировали с батареи, чтобы изобрести раннюю лампу накаливания, электродвигатели и поезда и научные испытания. Однако батареи не были надежными или экономически эффективным для любого регулярного использования электричества, именно динамо-машина коренным образом превратил электричество из диковинки в выгодный, надежный технологии.

1. Как это работает
2. Краткая история динамо-машин и генераторов
3. Видео генераторов

1.) Как Работает:

Базовый:

Сначала вам понадобится механический источник энергии, такой как турбина (работает от падения воды), ветряная турбина, газовая турбина или паровая турбина. Вал от одного из этих устройств соединен к генератору для выработки электроэнергии.

Динамо и генераторы работают используя дикие сложные явления электромагнетизма . Понимание поведение электромагнетизма, его полей и его эффектов является большим предмет исследования. Есть причина, по которой прошло 60 лет ПОСЛЕ Вольты. первая батарея, на которой заработала хорошая мощная динамо-машина. Мы будет упрощать вещи, чтобы помочь вам познакомить вас с интересной темой производства электроэнергии.

В самом общем смысле генератор / динамо-машина — это один магнит, вращающийся внутри воздействия магнитного поля другого магнита. Вы не можете видеть магнитное поле, но это часто иллюстрируется линиями потока. На иллюстрации выше линии магнитного потока будут следовать линиям, созданным железом опилки.

Произведен генератор/динамо набор стационарных магнитов (статоров), создающих мощное магнитное поле, и вращающийся магнит (ротор), который искажает и прорезает магнитное линии потока статора. Когда ротор пересекает линии магнитного поток делает электричество.

Но почему?

В соответствии с законом индукции Фарадея если вы возьмете проволоку и будете двигать ее туда-сюда в магнитном поле, поле отталкивает электроны в металле. Медь имеет 27 электронов, два последних на орбите легко отталкиваются к следующему атому. Это движение электронов представляет собой электрический поток.

Посмотреть видео ниже показано, как индуцируется ток в проводе:

Если взять много провода например, в катушке и перемещая ее в поле, вы создаете более мощный «поток» электронов. Мощность вашего генератора зависит на:

«l»-Длина проводник в магнитном поле
«v»-скорость проводника (скорость вращения ротора)
«B»-напряженность электромагнитного поля

Вы можете выполнять вычисления, используя эта формула: е = В х Д х В

Посмотреть видео чтобы увидеть все это продемонстрировано:

О магнитах:

Вверху: простой электромагнит называется соленоидом. Термин «соленоид» на самом деле описывает трубчатая форма, созданная спиральной проволокой.

Магниты обычно не из природного магнетита или постоянного магнит (если это не небольшой генератор), но они медные или алюминиевая проволока, намотанная на железный сердечник. Каждая катушка должна быть под напряжением с некоторой силой, чтобы превратить его в магнит. Эта катушка вокруг железа называется соленоид. Соленоиды используются вместо природного магнетита, потому что соленоид НАМНОГО мощнее. Небольшой соленоид может создать очень сильное магнитное поле.

Выше: Витки провода в генераторах должны быть изолированы. Отказ генератора вызвано слишком высоким повышением температуры, что приводит к поломке изоляции и короткого замыкания между параллельными проводами. Подробнее о проводах >

Термины :
Электромагнетизм — изучение сил, которые происходит между электрически заряженными частицами
Ротор — часть генератора динамо, который вращается
Якорь — то же, что и ротор
Поток — силовые линии в магнитном поле, это измеряется в плотности, единица СИ Вебера
Статор — магниты в генераторе/динамо, которые не двигаются, они создают стационарное магнитное поле
Соленоид — магнит, созданный проволочной катушкой вокруг железа/ферриса сердечник (соленоид технически означает форму этого магнита, но инженеры ссылаются на соленоид и электромагнит взаимозаменяемо.
Коллектор — Подробнее о них читайте здесь
Момент затяжки — сила при вращательном движении

 

См. также нашу страницу Induction .

Динамо

Динамо есть старый термин, используемый для описания генератора, который производит постоянного тока. мощность . Сила постоянного тока посылает электроны только в одном направлении. Проблема с простым генератором заключается в том, что когда ротор вращается, он в конце концов полностью поворачивается, обращая ток. Ранние изобретатели не знать, что делать с этим переменным током, переменный ток более сложные для управления и проектирования двигателей и освещения. Ранние изобретатели должен был придумать способ улавливать только положительную энергию генератора, поэтому они изобрели коммутатор. Коммутатор – это переключатель, который позволяет ток течет только в одном направлении.

См. видео ниже, чтобы увидеть, как работает коммутатор:

Динамо состоит из трех основных компонентов : статора, якоря и коммутатор.

Щетки входят в состав коммутатор, щетки должны проводить электричество, чтобы сохранить контакт с вращающимся якорем. Первые кисти были настоящими проволочные «щетки» из мелкой проволоки. Эти легко изнашивались и они разработали графические блоки для выполнения той же работы.

статор представляет собой фиксированную конструкцию, которая делает магнитным поле, вы можете сделать это в небольшой динамо-машине с помощью постоянного магнита. Большие динамо-машины требуют электромагнита.

Якорь изготовлен из спиральной медной обмотки, вращаться внутри магнитного поля, создаваемого статором. Когда обмотки движутся, они пересекают линии магнитного поля. Этот создает импульсы электроэнергии.

Коллектор необходимо для получения постоянного тока. В потоках мощности постоянного тока только в одном направлении по проводу, проблема в том, что вращающийся якорь в динамо-машине меняет направление тока каждые пол-оборота, Таким образом, коммутатор представляет собой поворотный переключатель, который отключает питание. во время обратной текущей части цикла.

 

Самовозбуждение:

Так как магниты в динамо соленоиды, для работы они должны быть запитаны. Так что помимо кистей какая мощность отвода выходит на основную цепь, есть еще набор щеток, чтобы взять питание от якоря для питания статора магниты. Хорошо, если динамо работает, но как запустить динамо-машина, если у вас нет сил начать?

Иногда арматура остается некоторый магнетизм в железном сердечнике, и когда он начинает вращаться, он делает небольшая мощность, достаточная для возбуждения соленоидов в статоре. Затем напряжение начинает расти, пока динамо-машина не выйдет на полную мощность.

Если нет магнетизма остается в железе якоря, чем часто для возбуждения используется батарея соленоиды в динамо, чтобы запустить его. Это называется «поле мигает».

Ниже в обсуждении подключив динамо-машину, вы заметите, как мощность направляется через соленоиды. иначе.

Есть два способа проводка динамо: серия рана и шунт ранить. Смотрите диаграммы, чтобы узнать разницу.

А серийная намоточная машина — нажмите, чтобы увидеть крупным планом

А аппарат для шунтирования — нажмите, чтобы увидеть крупным планом

Ниже видео небольшого простая динамо-машина, аналогичная схемам выше (построена в 1890-х годах):

Генератор

Генератор отличается от динамо-машина в том, что она производит переменного тока мощностью . Электроны втекают в оба направления в сети переменного тока. Только в 1890-х годах инженеры придумали, как проектировать мощные двигатели, трансформаторы и другие устройства, которые могут использовать мощность переменного тока таким образом, чтобы конкурировать с постоянным током сила.

Пока генератор использует коллекторы, генератор использует токосъемное кольцо со щетками для отвода отключение питания ротора. К токосъемному кольцу прикреплены графит или углерод. «щетки», которые подпружинены, чтобы толкать щетку на звенеть. Это обеспечивает постоянную подачу энергии. Щетки изнашиваются время и необходимость замены.

Ниже, видео контактных колец и щеток, множество примеров от старых до новых:

Со времен Грамм в 1860-х годах было выяснено, что лучший способ построить динамо-генератор заключалась в том, чтобы расположить магнитные катушки по широкому кругу с широким вращением арматура. Это выглядит иначе, чем простые примеры небольших динамо-машин. вы видите, используется в обучении, как работают устройства.

На фото ниже вы увидите хорошо видно одну катушку на якоре (остальные сняты для обслуживания) и другие катушки, встроенные в статор.

С 1890-х годов до наших дней 3-фазная мощность переменного тока была стандартной формой питания. Три фазы сделано через конструкцию генератора.

Для изготовления трехфазного генератора вы должны разместить определенное количество магнитов на статоре и якоре, все с правильным интервалом. Электромагнетизм так же сложен, как и работа с волны и вода, поэтому вам нужно знать, как управлять полем через ваш дизайн. Проблемы включают неравномерное притяжение вашего магнита к железному сердечнику, неверные расчеты искажения магнитного поле (чем быстрее оно крутится, тем сильнее поле искажается), ложное сопротивление в обмотках якоря и множество других потенциальных проблем.

Почему 3 фазы? Если хочешь чтобы узнать больше о фазах и почему мы используем 3 фазы, посмотрите наше видео с пионером в области силовой передачи Лайонелом Бартольдом.

2.) Краткая история динамо-машин и генераторов:

Генератор развился из работы Майкла Фарадея и Джозефа Генри в 1820-х годах. Как только эти два изобретателя обнаружили и задокументировали явления электромагнитной индукции, это привело к экспериментам другими в Европе и Северной Америке.

1832 — Ипполит Pixii (Франция) построил первое динамо с использованием коммутатора, его модель создавала импульсы электричества, разделенные отсутствием тока. Он также случайно создал первый генератор переменного тока. Он не знал, что сделать с меняющимся током, он сосредоточился на попытке устранить переменного тока для получения постоянного тока, это привело его к созданию коммутатор.

1830-1860-е годы — Аккумулятор до сих пор остается самым мощным источником питания электричество для различных экспериментов, проводившихся в тот период. Электричество по-прежнему не было коммерчески жизнеспособным. Электрический на батарейках поезд из Вашингтона в Балтимор потерпел неудачу, что вызвало большое затруднение к новой области электричества. После миллионов долларов потраченных впустую паров по-прежнему оказался лучшим источником энергии. Электричество все равно нужно зарекомендовали себя как надежные и коммерчески выгодные.

1860 — Антонио Пачинотти — Создал динамо-машину, обеспечивающую непрерывную Мощность постоянного тока

1867 — Вернер фон Сименс и Чарльз Уитстон создают более мощная и более полезная динамо-машина, в которой использовался электромагнит с автономным питанием. в статоре вместо слабого постоянного магнита.

1871 — Зеноби Грамме зажгла коммерческая революция электричества. Он заполнил магнитное поле железный сердечник, который сделал лучший путь для магнитного потока. Это увеличило мощность динамо-машины до такой степени, что ее можно было использовать для многих коммерческих Приложения.

1870-е — Произошел взрыв новых конструкций динамо-машин, конструкций располагался в диком ассортименте, лишь немногие выделялись превосходством в эффективность.

1876 — Чарльз Ф. Браш (Огайо) разработала самую эффективную и надежную конструкцию динамо-машины. к этому моменту. Его изобретения продавались через Telegraph Supply. Компания.

1877 — Франклин Институт (Филадельфия) проводит испытания динамо-машин со всего мира. Публичность этого события стимулирует развитие других, таких как Элиу. Томсон, лорд Кельвин и Томас Эдисон.

Выше: Длинноногая Мэри Эдисона, коммерчески успешная динамо-машина для его системы постоянного тока 1884

1878 — Компания Ganz начинает использовать генераторов переменного тока в небольших коммерческих установки в Будапеште.

1880 — Чарльз У Ф. Браша было более 5000 дуговых ламп в эксплуатации, что представляет 80 процентов всех ламп в мире. Экономическая сила электричества возраст начался.

1880-1886 — Системы переменного тока разрабатываются в Европе совместно с Siemens, Сабастьян Ферранти, Люсьен Голар и другие. Динамо DC правит лидерство на прибыльном американском рынке, многие скептически инвестировать в АС. Генераторы переменного тока были мощными, однако генератор само по себе не было самой большой проблемой. Системы управления и распределения мощности переменного тока необходимо улучшить, прежде чем она сможет конкурировать с ДК на рынке.

1886 — В изобретатели североамериканского рынка, такие как William Стэнли , Джордж Вестингауз, Никола Тесла и Элиу Thomson разрабатывает собственный кондиционер системы и схемы генераторов. Большинство из них использовали Сименс и генераторы Ферранти как основу их изучения. Уильям Стэнли быстро смог изобрести лучший генератор, будучи неудовлетворенным с генератором Сименса, который он использовал в своем первом эксперимент.

Выше: Генераторы переменного тока Siemens использовались в Лондоне в 1885 году, в США Эдисон не хотел прыгнуть в область переменного тока, в то время как в Европе технология развивалась быстро.


1886-1891 — Многофазные Генераторы переменного тока разработаны CS Bradly (США), August Haselwander. (Германия), Михаил Доливо-Добровский (Германия/Россия), Галилео Феррарис (Италия) и др. Системы переменного тока, которые включают в себя лучший контроль и мощный электродвигатели позволяют переменному току конкурировать.


1891 — Трехфазный Сила переменного тока оказалась лучшей системой для производства электроэнергии и распространение на Международном Электротехническая выставка во Франкфурте.

Трехфазный генератор конструкции Михаила Доливо-Добровского на выставке видно слева.

1892 — Чарльз П. Стейнмец представляет свой доклад AIEE по гистерезису. понимание Штайнмеца математики переменного тока публикуется и помогает революционизировать Проектирование энергосистемы переменного тока, включая большие генераторы переменного тока.

1890-е годы — Генератор дизайн быстро улучшается благодаря коммерческим продажам и имеющиеся деньги на исследования. Вестингауз, Сименс, Эрликон, и General Electric разрабатывают самые мощные генераторы в мире. Некоторые генераторы все еще работают 115 лет спустя. (Механивилл, Нью-Йорк)

Выше: 1894 Элиу Томсон разработал множество Генераторы переменного тока для General Electric

Более поздний генератор Westinghouse 2000 кВт 270 Вольт от после 1900

3. Видео

Механивилль Генераторы с объяснением истории (1897 г.), разработанные вдохновителем переменного тока. Чарльз П. Стейнмец

Генератор Westinghouse в настоящее время построен и испытан (1905 г. ), спроектирован Оливером Шалленбергером, Тесла и другие в Westinghouse.

1895 Ранние мощные генераторы используется в Фолсоме, Калифорния (разработан Элиу Томпсоном, доктором Луи Беллом и другие в GE)

1891 Генератор производства Oerlikon для Международной электротехнической выставки (разработан Добровольского в Германии)

Связанные темы:


Тепловозы электрические

Трансформеры

История питания переменного тока

Силовая передача

Электродвигатели

Провода и кабели

Источники:
-The General Electric Story — Зал истории , Скенектади, Нью-Йорк, 1989 г. Второе издание
— Википедия (Генераторы, Чарльз Браш)
— Википедия (Коммутатор)
— Принципы электричества — General Electric
— История переменного тока — Технический центр Эдисона
— Руководство по электрике Хокинса

Фотографии / Видео:
-Авторское право 2011 Технический центр Эдисона. Снято на месте в Немецком музее, Мюнхен
— Некоторые генераторы сфотографированы в Техническом центре Эдисона, Скенектади, NY

Как работает генератор? И другие вопросы и ответы | Центр знаний

10 минут | 05 окт 2021

Здесь мы отвечаем на самые распространенные вопросы о генераторах, чтобы помочь вам понять, что они делают, из каких частей они состоят и как они работают. В Essentra Components мы не производим генераторы, но мы разрабатываем, производим и распространяем многие из небольших основных компонентов, необходимых для создания этих жизненно важных машин.

Вы можете узнать больше о том, как мы помогаем инженерам-проектировщикам с их потребностями, из нашего Краткое руководство: Компоненты для вашего промышленного генератора.

Несколько слов о лексике. Кто-то может задаться вопросом: «Что такое генератор?» Кто-то другой может спросить: «Что такое электрический генератор?» Это одно и то же. Мы используем их взаимозаменяемо в этих вопросах и ответах, поскольку нам задают вопросы, используя оба термина.

Для чего используется генератор?

В районах с экстремальной погодой часто случаются перебои в подаче электроэнергии, поэтому генераторы просто необходимы. Генераторы обеспечивают надежное резервное питание больниц, предприятий и домов. Для предприятий и людей, которые работают из дома, генераторы предотвращают простои. Для больниц повсюду генераторы гарантируют свет и электроэнергию, необходимые для работы спасательных машин. Для людей, которые полагаются на медицинские устройства дома, такие как оборудование для диализа, генераторы обеспечивают душевное спокойствие, а также мощность, необходимую их устройствам для продолжения работы.

Генераторы могут также обеспечивать постоянное питание, например, на строительных площадках и при добыче нефти и газа.

Как генератор производит электричество?

Нет. Хотя существуют разные типы генераторов, все они выполняют одну и ту же функцию: они преобразуют механическую энергию в электрическую. Принцип работы генераторов относительно прост. Они улавливают силу движения и превращают ее в электрическую энергию. Они делают это, заставляя электроны из внешнего источника проходить через электрическую цепь.

Как питаются генераторы?

Это зависит от внешнего источника или механической энергии, упомянутой выше, и может варьироваться. Подумайте, например, о гидравлических турбинах на плотинах. Помимо воды, к обычным внешним источникам также относятся пар, солнечная энергия, ветер, дизельное топливо, газ или природный газ (пропан). Как работает электрический генератор? Как работает газогенератор? Газовый генератор — это электрический генератор, который использует газ в качестве внешнего источника.

Как генераторы используют магниты для выработки электричества?

Поместите проводник в переменное магнитное поле, и электроны в проводнике начнут двигаться. Этот процесс называется индукцией и отвечает на вопрос , как генератор создает токи ?

Как работают генераторы: шаг за шагом:

  1. Когда электроны движутся, они превращаются в электрические токи.
  2. В генераторах медная катушка, намотанная на металлический сердечник, действует как проводник и вращается между полюсами подковообразного магнита. Эта проводящая катушка вместе с сердечником называется якорем.
  3. Ротор соединяется с валом внешнего источника с помощью вращающихся магнитов. В качестве альтернативы эти катушки проволоки также могут вращаться с помощью магнитных полей.

Какой ток производит генератор?

Некоторые преобразуют механическую энергию в переменный ток (AC), а другие преобразуют в постоянный ток (DC). Электрический ток в генераторе переменного тока периодически меняет направление, в то время как в генераторе постоянного тока он течет в одном направлении. Генератор переменного тока использует магниты для создания электричества: катушка неподвижна, а магниты движутся. В генераторе постоянного тока катушки вращаются в постоянном магнитном поле. Принцип работы генераторов постоянного тока немного отличается. Они используют ротор для преобразования тока в переменное напряжение. Как работает генератор переменного тока? Он использует так называемый коммутатор для преобразования в постоянное напряжение.

Генераторы постоянного тока обычно используются для питания очень больших двигателей, таких как железные дороги. Генераторы переменного тока идеально подходят для питания бытовой техники.

Какие магниты используются в генераторах?

Они могут быть постоянными или электрическими, которые являются двумя основными типами магнитов. Небольшие генераторы обычно используют постоянные магниты и не нуждаются в независимом источнике питания. Электрические магниты изготавливаются из железа или стали и обматываются проволокой. Магнитное поле создается при прохождении электричества по проводу. Это, в свою очередь, заставляет металл становиться магнитным.

Какие детали есть в электрогенераторе?

Бензиновые или дизельные генераторы наиболее популярны для промышленного и бытового использования. Однако детали генератора одинаковы. Например, оба канала подают электроэнергию по силовым кабелям, хотя, если мы говорим о портативной машине, вы можете подключить прибор непосредственно к розетке генератора. Для наших целей на схеме нашего электрогенератора изображена промышленная дизельная установка. Расположение частей генератора может варьироваться и часто зависит от размера генератора. В любом случае генератор и его части, такие как детали бензинового и дизельного генератора, будут одинаковыми.

Компоненты генератора

Детали и функции электрогенератора включают:

1. Двигатель

Что такое двигатель-генератор? Все генераторы имеют двигатели, независимо от того, какой у них внешний источник, будь то дизель или водород. Это двигатель, который подает энергию на генератор. Чем мощнее двигатель, тем больше электроэнергии может обеспечить генератор. К основным компонентам дизельного двигателя, а точнее к частям генераторного двигателя, также относятся:

1.a Топливная система

В данном случае дизель является внешним источником или механической энергией. Резервуар будет хранить ваше топливо, которое в большом генераторе, установленном на постоянной основе, обычно представляет собой отдельную конструкцию. Топливный бак для небольших портативных устройств обычно находится внутри генератора. Трубы будут подавать топливо к двигателю, подобно топливному насосу в автомобиле. Топливный фильтр удаляет загрязняющие вещества, попадающие в двигатель, а топливная форсунка нагнетает топливо в камеру сгорания.

1.b Системы охлаждения и выхлопа

Генераторам нужны системы охлаждения для регулирования тепла и предотвращения перегрева. Охлаждающая жидкость поглощает тепло и затем проходит через теплообменник, который направляет тепло в воздух или в другую охлаждающую жидкость.

Какая вентиляция нужна генератору? Выхлопные газы должны отводиться от двигателя и людей и обычно направляются по трубам и выбрасываются в наружный воздух. Управление по безопасности и гигиене труда (OSHA) рекомендует оставить от трех до четырех футов свободного пространства со всех сторон генератора для надлежащей вентиляции.

1.c Система смазки

Генераторы состоят из небольших движущихся компонентов. Поэтому их необходимо смазывать моторным маслом, чтобы обеспечить плавную работу и защитить их от чрезмерного износа.

2. Генератор переменного тока

Функция генераторов переменного тока в дизельных двигателях (или любых двигателях) заключается в том, что внешний источник, в данном случае дизель, преобразуется в электричество. Подвижные и неподвижные части создают магнитное поле и движение электронов. Это отвечает на другой распространенный вопрос: в чем разница между генератором переменного тока и генератором?

Генератор переменного тока — это устройство, в котором преобразование энергии происходит внутри генератора. Основные компоненты генератора переменного тока и его критические части включают:

— Арматура

Это основная часть генератора переменного тока, в которой вырабатывается напряжение. Он состоит из катушек, несущих полный ток нагрузки в генераторе.

— Поле

Где создается магнитный поток. В генераторах переменного тока магнитное поле изменяется при вращении катушек.

— Накладка Кольца

Это электрические соединения, проводящие ток от неподвижной части к вращающейся части.

— Статор

Невращающиеся электрические части генератора.

— Ротор

Вращающаяся часть генератора. Он создает магнитное поле в генераторе. В зависимости от генератора вращающейся частью может быть также якорь или магнитное поле.

3. Регулятор напряжения

Очень важно, чтобы генератор регулировал напряжение для получения постоянного тока для практического использования. Это работа регулятора напряжения, который помогает контролировать вырабатываемое электрическое напряжение. При необходимости он также преобразует электричество из переменного тока в постоянный. Обычно он находится либо в главном блоке управления генератора, либо в клеммной коробке генератора. На небольших портативных генераторах вы обычно найдете его под задней крышкой генератора.

Как работает регулятор напряжения на генераторе? Он автоматически сравнивает напряжение на клеммах генератора со стабильным опорным значением. Затем сигнал ошибки регулирует ток возбуждения по мере необходимости для статора возбудителя, который является частью генератора переменного тока. Это, в свою очередь, приведет либо к увеличению, либо к уменьшению напряжения на основных клеммах статора.

4. Зарядное устройство

Генератор заводится не только от аккумулятора, но и от аккумулятора. Аккумулятор можно заряжать либо от самого выхода генератора, либо от отдельного зарядного устройства.

5. Панель управления

Генератор управляется с панели управления и охватывает все, от запуска и остановки до частоты вращения двигателя и частоты сети переменного тока.

6. Рама/корпус

Это узел, который содержит генератор и удерживает его в одном месте. У вас есть несколько вариантов для этого, от водонепроницаемого корпуса до открытой структурной рамы, как показано здесь. Еще одна функция рамы или корпуса — безопасное заземление электрических компонентов генератора.

Детали переносного генератора не сильно отличаются. У них также есть двигатель, генератор переменного тока и топливный бак, а также розетки для подключения приборов и стартер, который может быть кнопкой или шнуром, похожим на газонокосилку.

Какое напряжение выдает генератор?

Важно отметить, что мощность генератора выражается в ваттах или киловаттах. Ватт — это количество энергии, которое генератор может безопасно выдать за заданное время, но давайте вернемся. Помните, что электричество — это поток электронов через проводник. Амперы, широко известные как амперы, являются мерой того, сколько электронов течет. Напряжение — это просто давление. Это сила, которая перемещает электроны по проводнику. Напряжение плюс ампер дает мощность, которая измеряется в ваттах.

Но что определяет выходное напряжение? Скорость, с которой проводник движется через фиксированное магнитное поле, в сочетании с силой этого поля. Эта скорость является результатом скорости вращения двигателя. По мере увеличения скорости двигателя растет и генерируемое напряжение. Обычное напряжение на коммерческих генераторах колеблется от 120 до 4160 вольт.

Что может привести к тому, что генератор не будет производить энергию?

Обычно это указывает на потерю остаточного магнетизма. Это может произойти из-за неиспользования генератора. Со временем запас магнетизма истощается, пока не иссякнет. Остаточный магнетизм также может быть потерян, когда генератор питает нагрузку, а вы его отключаете. Это приводит к тому, что нагрузка поглощает остатки магнетизма генератора. Еще одна причина потери остаточного магнетизма заключается в том, что генератор остается включенным слишком долго, не подключая его ни к чему.

Во избежание потери остаточного магнетизма время от времени используйте генератор, даже если вам не требуется резервное питание. Убедитесь, что вы не используете какие-либо подключенные нагрузки, когда выключите его, и, наконец, держите генератор подключенным к чему-либо, если вы не собираетесь его выключать.

Скачайте бесплатные САПР и попробуйте перед покупкой

Если вы проектируете свой собственный генератор, загрузите бесплатные САПР и запросите бесплатные образцы, которые доступны для большинства наших решений. Это отличный способ убедиться, что вы выбрали именно то, что вам нужно. Если вы не совсем уверены, какой продукт подойдет вам лучше всего, наши специалисты всегда рады проконсультировать вас. Что бы вам ни понадобилось, вы можете рассчитывать на быструю доставку.

Запросите бесплатные образцы или загрузите бесплатные CAD прямо сейчас.

Вопросы?

Напишите нам по телефону [email protected] или свяжитесь с одним из наших экспертов для получения дополнительной информации об идеальном решении для вашей области применения 800-847-0486.

  • Делиться
  • Твитнуть
  • Делиться
  • Отрасли:
  • Внутренние и наружные корпуса
  • Промышленность и машины
  • Оборудование
  • Решения:
  • Крепежные компоненты
  • Доступ к оборудованию
  • Провод и кабель
  • Материалы:

электрогенератор | инструмент | Британика

электрогенератор

Смотреть все СМИ

Ключевые люди:
Чарльз Протеус Стейнмец Рукс Эвелин Белл Кромптон Джон Хопкинсон Сильванус Филлипс Томпсон Эдвард Уэстон
Похожие темы:
магнитогидродинамический генератор энергии термоэмиссионный преобразователь энергии генератор переменного тока коммутатор статор

Просмотреть весь связанный контент →

Резюме

Прочтите краткий обзор этой темы

электрический генератор , также называемый динамо-машиной , любая машина, которая преобразует механическую энергию в электричество для передачи и распределения по линиям электропередач бытовым, коммерческим и промышленным потребителям. Генераторы также производят электроэнергию, необходимую для автомобилей, самолетов, кораблей и поездов.

Механическая мощность для электрического генератора обычно получается от вращающегося вала и равна крутящему моменту вала, умноженному на вращательную или угловую скорость. Механическая энергия может поступать из ряда источников: гидравлические турбины на плотинах или водопадах; Ветряные турбины; паровые турбины, использующие пар, полученный с использованием тепла от сжигания ископаемого топлива или ядерного деления; газовые турбины, сжигающие газ непосредственно в турбине; или бензиновые и дизельные двигатели. Конструкция и скорость генератора могут значительно различаться в зависимости от характеристик механического первичного двигателя.

Почти все генераторы, используемые для питания электрических сетей, генерируют переменный ток, который меняет полярность с фиксированной частотой (обычно 50 или 60 циклов, или двойных перемен в секунду). Поскольку несколько генераторов подключены к электрической сети, они должны работать на одной частоте для одновременной генерации. Поэтому они известны как синхронные генераторы или, в некоторых случаях, генераторы переменного тока.

Генераторы синхронные

Основная причина выбора переменного тока для силовых сетей заключается в том, что его постоянное изменение во времени позволяет использовать трансформаторы. Эти устройства преобразуют электроэнергию любого напряжения и силы тока в высокое напряжение и малый ток для передачи на большие расстояния, а затем преобразуют ее в низкое напряжение, подходящее для каждого отдельного потребителя (обычно 120 или 240 вольт для бытовых нужд). Конкретной используемой формой переменного тока является синусоида, которая имеет форму, показанную на рисунке 1. Она была выбрана потому, что это единственная повторяющаяся форма, для которой две волны, смещенные друг от друга во времени, могут быть сложены или вычтены и имеют такая же форма возникает в результате. В идеале тогда все напряжения и токи имеют синусоидальную форму. Синхронный генератор предназначен для воспроизведения этой формы настолько точно, насколько это практически возможно. Это станет очевидным, когда основные компоненты и характеристики такого генератора будут описаны ниже.

Викторина «Британника»

Энергия и ископаемое топливо

От ископаемого топлива и солнечной энергии до электрических чудес Томаса Эдисона и Николы Теслы — мир живет за счет энергии. Используйте свои природные ресурсы и проверьте свои знания об энергии в этой викторине.

Ротор

Простейший синхронный генератор показан в разрезе на рис. 2. Центральный вал ротора соединен с механическим первичным двигателем. Магнитное поле создается проводниками или катушками, намотанными в пазах, прорезанных на поверхности цилиндрического железного ротора. Этот набор катушек, соединенных последовательно, известен как обмотка возбуждения. Положение катушек возбуждения таково, что направленная наружу или радиальная составляющая магнитного поля, создаваемая в воздушном зазоре к статору, примерно синусоидально распределяется по периферии ротора. На рис. 2 плотность поля в воздушном зазоре максимальна снаружи вверху, максимальна внутрь внизу и равна нулю с двух сторон, что приблизительно соответствует синусоидальному распределению.

Статор простейшего генератора на рис. 2 состоит из цилиндрического кольца из железа, обеспечивающего свободный путь для магнитного потока. В этом случае статор содержит только одну катушку, две стороны которой размещены в пазах в железе, а концы соединены вместе изогнутыми проводниками по периферии статора. Катушка обычно состоит из нескольких витков.

Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

При вращении ротора в обмотке статора индуцируется напряжение. В любой момент величина напряжения пропорциональна скорости, с которой магнитное поле, окружаемое катушкой, меняется со временем, т. е. скорости, с которой магнитное поле проходит две стороны катушки. Следовательно, напряжение будет максимальным в одном направлении, когда ротор повернется на 90° от положения, показанного на рисунке 2, и будет максимальным в противоположном направлении через 180° позже. Форма сигнала напряжения будет приблизительно синусоидальной, показанной на рисунке 1. 9.0006

Конструкция ротора генератора на рис. 2 имеет два полюса, один для магнитного потока, направленного наружу, и соответствующий, для потока, направленного внутрь. В катушке статора индуцируется одна полная синусоида за каждый оборот ротора. Таким образом, частота электрической мощности, измеряемая в герцах (циклах в секунду), равна скорости вращения ротора в оборотах в секунду. Например, чтобы обеспечить подачу электроэнергии с частотой 60 герц, частота вращения первичного двигателя и ротора должна составлять 60 оборотов в секунду или 3600 оборотов в минуту. Это удобная скорость для многих паровых и газовых турбин. Для очень больших турбин такая скорость может быть избыточной по причинам механического напряжения. В этом случае ротор генератора выполнен с четырьмя полюсами, разнесенными с интервалом 90°. Напряжение, индуцируемое в катушке статора, расположенной под таким же углом в 90°, будет состоять из двух полных синусоид за один оборот. Требуемая скорость ротора для частоты 60 герц составляет тогда 1800 оборотов в минуту. Для более низких скоростей, используемых в большинстве водяных турбин, можно использовать большее количество пар полюсов. Возможные значения частоты вращения ротора в оборотах в минуту равны 120 f / p , где f — частота, а p — число полюсов.

Как работает генератор для производства электроэнергии?

Генератор преобразует механическую энергию в электрическую. Вы можете использовать свои генераторы во множестве приложений, включая портативные источники питания и резервные источники питания. Для питания фар на велосипеде можно использовать небольшие генераторы. А для очень крупных поставляют подавляющее большинство энергии в наши электросети.

Генераторы работают на дизельном топливе, бензине, пропане и даже на человеческой энергии. Несмотря на различные источники энергии, принцип работы большого дизельного генератора Caterpillar аналогичен принципу действия маленького генератора. Но как работает генератор для производства электроэнергии?

Возможно, вам будет полезно понять, что генераторы не столько производят электроэнергию, сколько облегчают ее. Это достигается с помощью электромагнитных принципов, впервые открытых Майклом Фарадеем в начале 1830-х годов. Работа Фарадея считалась очень важной. Говорят, Альберт Эйнштейн держал его фотографию на стене в своем кабинете.

Фарадей обнаружил, что при намотке двух изолированных витков провода на кольцо из железа и пропускании тока через один из них ток индуцируется во второй виток провода. Это основной принцип двигателей и генераторов по сей день. Это электромагнитная индукция.

Как компоненты генераторной установки работают вместе?

Компоненты генератора работают вместе, чтобы преобразовать механическую энергию в электричество. Для простоты мы используем двигатель в качестве источника механической энергии.

  • Двигатель: Чем мощнее двигатель генератора, тем большую мощность он будет производить. Большие генераторы работают на дизельном топливе.
  • Генератор переменного тока: Генератор переменного тока включает в себя неподвижный компонент, называемый статором, и второй подвижный компонент, называемый ротором. Именно ротор создает вращающееся магнитное поле одним из нескольких способов. Обычно это зависит от размера генератора. Например, большие генераторы создают магнитное поле за счет индукции. В небольших генераторах может использоваться постоянный магнит. В генераторах переменного тока также может использоваться возбудитель, питаемый от небольшого источника постоянного тока (DC) с использованием колец и щеток.
  • Регулятор напряжения: Регулятор напряжения регулирует напряжение, создаваемое генератором.

Вы должны подробно прочитать о том, как функционируют компоненты дизельных, переменного, постоянного тока, электрических и ветряных генераторных установок.

Узнайте больше о: Подержанные генераторы на продажу 

Как генераторы создают или производят электроэнергию?

Когда двигатель создает механическую энергию, регулятор напряжения работает с генератором в четырехступенчатом цикле, который продолжает повторяться, пока не будет достигнута максимальная мощность. Сначала регулятор напряжения принимает небольшое количество переменного напряжения, затем преобразует его в постоянный ток, который посылает на вторичные обмотки возбуждения статора. Эти вторичные обмотки возбудителя теперь имитируют первичные обмотки статора, создавая дополнительное напряжение переменного тока. Существует связь между вторичными обмотками возбудителя и вращающимися выпрямителями. Он преобразует переменный ток от обмоток в постоянный ток, который направляется на ротор. Это создает электромагнитное поле, которое является частью существующего вращающегося магнитного поля ротора. Ротор индуцирует это более высокое напряжение переменного тока в обмотках статора, что, в свою очередь, создает более высокое напряжение переменного тока от генератора.

Цикл продолжается до тех пор, пока не будет достигнута максимальная мощность генератора. По мере увеличения мощности регулятор напряжения будет производить все меньше и меньше постоянного тока. При оптимальной мощности происходит только достаточное количество постоянного тока, чтобы поддерживать работу на полную мощность. Когда выход уменьшается, происходит добавление нагрузки. Например, срабатывает регулятор напряжения, вновь создавая цикл для поддержания уровня мощности на уровне мощности. Это будет продолжаться до тех пор, пока генератор не отключится намеренно из-за нехватки топлива или, возможно, из-за механической поломки.

Другие аспекты больших генераторов

Хотя вышеизложенное описывает принцип работы генератора, оно не включает все компоненты большого генератора, такого как Caterpillar 3512C. Помимо двигателя, генератора переменного тока и регулятора напряжения, генераторам нужен источник топлива, например, топливный бак вместе с топливной системой. Размер топливного бака определяет, как долго генератор будет вырабатывать энергию до заправки. Большим генераторам нужна система охлаждения и способ рассеивания выхлопных газов. Панель управления упрощает работу с генератором, а зарядное устройство всегда будет держать генератор в готовности, когда это необходимо. Генераторы обычно устанавливаются на раму определенного типа, подходящую для его размера. При принятии решения о том, какой генератор подходит для вашего конкретного применения, важно учитывать не только мощность, и мы можем помочь.

Независимо от того, ищете ли вы новый дизельный генератор или подержанный дизельный генератор, мы рекомендуем вам связаться с нами по адресу Central States Diesel Generators. Будь то подержанный генератор Caterpillar 3412 или новый дизельный генератор, просмотрите наш ассортимент и свяжитесь с нами, если у вас возникнут вопросы. Получите необходимую мощность с помощью дизельных генераторов в Центральных штатах.

NEWS :: Siam Generator

Основные компоненты генератора можно в общих чертах классифицировать следующим образом

— Двигатель

— генератор

— Топливная система

— Регулятор напряжения

— Система охлаждения и выхлопа

— Система смазки

— Зарядное устройство

— Панель управления

-Main / Rame Asgisting

Двигатель

Двигатель является источником механической энергии, подаваемой на генератор. Размер двигателя прямо пропорционален максимальной выходной мощности генератора.

Существует ряд факторов, которые необходимо учитывать при оценке двигателя генератора. Следует проконсультироваться с производителем двигателя для получения полных спецификаций, графиков работы двигателя и технического обслуживания.

Тип используемого топлива — Генераторные двигатели работают на различных видах топлива, таких как дизельное топливо, бензин, пропан. (в жидкой или газообразной форме) или природный газ Небольшие двигатели обычно работают на бензине, а более крупные двигатели работают на дизельном топливе, сжиженном пропане, пропановом газе или природном газе. Некоторые двигатели также могут работать на двух видах топлива, как дизельном, так и газовом, в двухтопливном режиме.

Генератор переменного тока

Генератор переменного тока, также известный как «генератор», является частью генератора, который вырабатывает энергию от механического входа, обеспечиваемого двигателем. Он состоит из сборки движущихся и движущихся частей, заключенных в корпус машины. Компоненты работают вместе, вызывая относительное движение между магнитным и электрическим полями, которое, в свою очередь, генерирует электрический ток.

Топливная система

Как правило, топливный бак имеет достаточную емкость, чтобы поддерживать работу генератора в среднем от 6 до 8 часов. В случае небольшого генератора топливный бак является частью основания генератора или установлены. На верхней части рамы генератора Для коммерческого применения может потребоваться построить и установить внешний топливный бак.

Типичными особенностями топливной системы являются следующие:

— Соединение трубопроводов от топливного бака к двигателю Подающая линия подает топливо из бака в двигатель, а обратная линия подает топливо от двигателя к двигателю. бак.

— Выхлопная труба для масляного бака Топливный бак имеет вентиляционный шланг для предотвращения образования давления или вакуума во время заполнения и слива из бака. При заправке топливом убедитесь, что между форсункой и топливным баком имеется металлический контакт, чтобы избежать искрения.

— перепускной штуцер от топливного бака к сливному шлангу Это необходимо для того, чтобы перелив при заполнении бака не пролил жидкость на генераторную установку.

— Топливный насос Перекачка топлива из основной накопительной цистерны в расходную цистерну. Топливный насос обычно электрический.

— Топливный водоотделитель/топливный фильтр Отделяет воду и посторонние частицы от жидкого топлива для защиты других компонентов генератора от коррозии и загрязнения.

— Топливная форсунка Распыляет жидкое топливо и впрыскивает необходимое количество топлива в камеру сгорания двигателя.

Регулятор напряжения

Этот компонент регулирует выходное напряжение генератора. Это процесс регулирования напряжения цикла. Пока генератор не начнет вырабатывать выходное напряжение, эквивалентное возможности работы на полную мощность. По мере увеличения выходной мощности генератора регулятор напряжения производит меньше постоянного тока. Когда генератор полностью заработает, регулятор напряжения перейдет в равновесное состояние и будет производить постоянный ток, достаточный для поддержания выходной мощности генератора на полную мощность.

Системы охлаждения и выхлопа

— Система охлаждения Непрерывная работа генератора нагревает компоненты. Очень важно иметь систему охлаждения и вентиляции для отвода тепла, выделяющегося в процессе. Иногда в качестве охлаждающей жидкости для генератора используется сырая/пресная вода. Но они в основном ограничены такими ситуациями, как небольшие генераторы в городских условиях или очень большие агрегаты мощностью 2250 кВт и более. Иногда водород используется в качестве охлаждающей жидкости для обмоток статора крупных генераторов. Поскольку он более эффективно поглощает тепло, чем другие хладагенты, водород отводит тепло от генератора и передает его через теплообменник во вторичный контур охлаждения с деминерализованной водой в качестве смазки. холод Вот почему рядом с крупными генераторами и небольшими электростанциями часто стоят большие градирни. Для других распространенных применений, как жилых, так и промышленных, стандартные радиаторы и вентиляторы устанавливаются на генераторную установку и функционируют как первичная система охлаждения.

** Необходимо регулярно и ежедневно проверять уровень охлаждающей жидкости генератора. Систему охлаждения и насос сырой воды следует промывать каждые 600 часов, а теплообменник следует очищать каждые 2400 часов работы генератора. Генератор следует размещать в открытом, хорошо проветриваемом помещении с достаточным количеством свежего воздуха. Национальный электротехнический кодекс (NEC) требует, чтобы со всех сторон генератора оставалось как минимум 3 фута свободного пространства, чтобы обеспечить свободный поток холодного воздуха**.

Выхлопные газы

Выхлопная система генератора аналогична выхлопной системе. От дизельных или бензиновых двигателей и содержат высокотоксичные химические вещества, с которыми необходимо обращаться надлежащим образом. Поэтому крайне важно, чтобы была установлена ​​достаточная вытяжная система для удаления дымовых газов. Этот момент невозможно переоценить, так как отравление угарным газом остается одной из самых распространенных причин смерти в районах, пострадавших от ураганов, поскольку люди часто не задумываются об этом, пока не становится слишком поздно.

Выхлопные трубы обычно изготавливаются из чугуна, ковкого чугуна или стали. Глушитель обычно крепится к двигателю с помощью гибкого соединителя, чтобы уменьшить вибрацию и предотвратить повреждение выхлопной системы генератора. Необходимо убедиться, что выхлопная система генератора не подключена к какому-либо другому оборудованию. Кроме того, работа генератора должна быть одобрена местными властями или в соответствии с местным законодательством.

Система смазки

Поскольку генератор содержит движущиеся части двигателя, его необходимо смазывать. Для обеспечения долговечности и бесперебойной работы в течение длительного времени двигатель генератора смазывается маслом, хранящимся в насосе.

** Уровень смазки следует проверять каждые 8 ​​часов работы генератора. Утечки смазочного масла следует проверять и заменять каждые 500 часов работы генератора**.

Зарядка аккумулятора

Зарядное устройство поддерживает аккумулятор генератора заряженным, подавая точное «плавающее» напряжение. Если плавающее напряжение очень высокое, это сократит срок службы батареи. Зарядные устройства обычно изготавливаются из нержавеющей стали для предотвращения коррозии. Он также является полностью автоматическим и не требует каких-либо регулировок или изменений каких-либо настроек. Выходное напряжение постоянного тока зарядного устройства установлено на уровне 2,33 В на элемент, что является плавающим напряжением. Подходит для свинцово-кислотных аккумуляторов Зарядное устройство имеет отдельный выход постоянного напряжения, который будет мешать нормальной работе генератора.

Панель управления

— электрический запуск и отключение Панель управления автоматическим запуском автоматически запускает генераторную установку при отключении электроэнергии, контролирует работу генератора и автоматически отключается, когда он больше не нужен.

— датчики двигателя Различные датчики показывают важные параметры, такие как давление масла, температура охлаждающей жидкости. Напряжение аккумуляторной батареи, частота вращения двигателя и период работы. Постоянное измерение и контроль этих параметров позволяет отключать встроенный генератор, когда они пересекают соответствующий пороговый уровень.

— манометр генератора На панели также есть метр для измерения выходного тока и напряжения, а также рабочей частоты.

— Прочие органы управления, переключатель фаз, переключатель частоты и переключатель управления двигателем. (ручной режим, автоматический режим) и многое другое.

Основная часть / рама в сборе

Переносной или стационарный генератор Каждая единица имеет индивидуальный корпус, обеспечивающий опорную конструкцию. Рама также допускает заземление в целях безопасности.

Работает на Froala Editor

При поддержке Froala Editor

При поддержке Froala Editor

При поддержке Froala Editor

При поддержке Froala Editor

Как электрические генераторы производят электричество?

Команда ADE Power Generators 4 сентября 2018 г.

Электрогенератор — это машина, которая использует двигатель для выработки электроэнергии. Этот блог объяснит, как работают электрогенераторы и их основные компоненты.

Электрогенераторы могут использоваться для самых разных целей, от небольших электроинструментов до крупных промышленных предприятий. Это популярная альтернатива использованию энергии сети, вырабатываемой ветряными турбинами или ископаемым топливом, и паровой турбины высокого напряжения на электростанции или электростанции.

Существует множество типов генераторов, от бензиновых, портативных и инверторных до домашних генераторов, которые могут работать на природном газе, резервных генераторов на случай отключения электроэнергии и промышленных генераторов гораздо большего размера. Однако в этой статье мы будем говорить конкретно о дизельных генераторах, также известных как генераторные установки.

Простое объяснение этого состоит в том, что дизельные генераторы работают как механические и электрические машины, которые преобразуют один источник энергии в другой вид энергии. В этом случае генератор энергии работает, получая механическую энергию и преобразовывая ее в электрическую энергию.

Вопреки тому, что многие могут предположить, на самом деле никакого реального «создания» электричества не существует. Один электрический генератор или несколько синхронных генераторов не могут создать электричество из воздуха. Все это связано с теорией электромагнитной индукции Майкла Фарадея, о которой мы поговорим подробнее, когда будем рассматривать различные части генератора.

Основные части дизельного генератора

Каждый дизельный генератор состоит как минимум из девяти различных, но одинаково важных частей. Это:

  • Дизельный двигатель
  • Генератор
  • Топливная система
  • Регулятор напряжения
  • Система охлаждения и выхлопная система
  • Система смазки
  • Зарядное устройство
  • Панель управления
  • Основная сборочная рама или салазки

Чтобы лучше понять, как работает генератор для преобразования механической энергии в электрическую, мы рассмотрим роли всех этих компонентов, начиная с дизельного двигателя.

Дизельный двигатель

Это просто базовый дизельный двигатель, он мало чем отличается от двигателей легковых автомобилей, фургонов, грузовиков и других крупных транспортных средств. Это источник механической энергии, и размер двигателя имеет значение. Если вам нужна большая электрическая мощность, вам нужен двигатель большего размера. Чем больше двигатель генератора, тем больше электроэнергии вы сможете генерировать.

Двигатели-генераторы

Генератор переменного тока

По сути, это компонент, отвечающий за выработку выходной мощности. Здесь мы видим, как в игру вступает концепция электромагнитной индукции.

Генератор переменного тока состоит из множества сложных компонентов, но одним из наиболее важных компонентов является ротор. Это вал, который вращается за счет механической энергии, подаваемой двигателем, с несколькими постоянными магнитами, закрепленными вокруг него. При этом создается магнитное поле.

Это создаваемое магнитное поле непрерывно вращается вокруг другой критической части генератора: статора. Проще говоря, это разновидность разных электрических проводников, которые туго намотаны на железный сердечник. Здесь вещи начинают становиться немного более научными. Согласно принципу электромагнитной индукции, если электрический проводник остается неподвижным, а вокруг него движется магнитное поле, то индуцируется электрический ток.

Таким образом, генератор переменного тока получает механическую энергию, создаваемую дизельным двигателем, которая приводит в движение ротор, создавая магнитное поле, которое перемещается вокруг статора, что, в свою очередь, генерирует переменный ток.

Топливная система

Топливная система в основном состоит из топливного бака с трубой, соединяющей его с двигателем. Здесь дизельное топливо может подаваться непосредственно в двигатель, что затем запускает весь процесс, описанный выше. Размер топливного бака в конечном итоге определяет, как долго генератор может оставаться активным.

Наши бесшумные генераторы с навесом обычно поставляются с топливными баками, встроенными в основание электрогенератора в стандартной комплектации. Если требуется больший объем топлива, мы можем спроектировать и изготовить топливный бак по индивидуальному заказу, или установка может быть прикреплена к дополнительному отдельно стоящему объемному топливному баку.

Для крупных проектов по производству электростанций, требующих установки генераторной установки в акустическом кожухе или контейнере, отдельные топливные системы обычно устанавливаются или располагаются либо внутри кожуха, либо под кожухом, либо иногда даже в обоих случаях.

Регулятор напряжения

Здесь у нас самая сложная часть электрогенератора. Регулятор напряжения служит одной довольно очевидной цели: регулировать выходное напряжение. Здесь происходит слишком много всего, чтобы объяснять в одной этой статье, нам, вероятно, понадобится совершенно отдельная статья, чтобы описать весь процесс регулирования напряжения.

Проще говоря, он обеспечивает выработку генератором электроэнергии стабильного напряжения. Без него вы бы увидели огромные колебания, зависящие от того, насколько быстро работает двигатель. Излишне говорить, что все электрооборудование, которое мы используем, не сможет справиться с таким нестабильным питанием. Итак, эта часть творит чудеса, чтобы все было гладко и стабильно.

Система охлаждения и выхлопная система

Эти два компонента играют очень важную роль, и хорошая новость заключается в том, что их легко понять! Система охлаждения помогает предотвратить перегрев генератора. В генераторе выделяется охлаждающая жидкость, которая нейтрализует всю дополнительную тепловую энергию, вырабатываемую двигателем и генератором. Затем охлаждающая жидкость забирает все это тепло через теплообменник и избавляется от него вне генератора.

Выхлопная система работает так же, как выхлоп вашего автомобиля. Он собирает любые газы, производимые дизельным двигателем, пропускает их через систему трубопроводов и выбрасывает из генераторной установки.

Система смазки

Этот компонент крепится к двигателю и прокачивает через него масло, обеспечивая плавную работу всех деталей и отсутствие трения друг о друга. Без него двигатель сломается.

Зарядное устройство для аккумулятора

Все дизельные двигатели нуждаются в маленьком электрическом моторе, чтобы привести его в действие. Для этого небольшого двигателя требуется батарея, которую необходимо заряжать. Зарядное устройство поддерживает его в хорошем состоянии и полностью заряжает, либо от внешнего источника самого генератора.

Панель управления

Панель управления предназначена для управления и управления генератором. На генераторе с электрическим запуском (или автоматическим запуском) вы найдете здесь целый ряд элементов управления, которые позволяют вам делать разные вещи или проверять определенные цифры. Это может быть что угодно, от кнопки запуска и переключателя частоты до индикатора уровня топлива в двигателе, индикатора температуры охлаждающей жидкости и многого другого.

Что такое панель управления генератором?

Основная сборочная рама

Каждый генератор нужно как-то сдерживать, и это то, что представляет собой основная монтажная рама. В нем находится генератор, и на нем собраны все различные части. Он удерживает все вместе и может быть открытой конструкции или закрытой (навесной) для дополнительной защиты и шумоподавления. Наружные генераторы обычно размещаются в защитном корпусе, защищенном от непогоды, чтобы предотвратить повреждения.

Итак, вот как работает электрический генератор. Дизельный двигатель снабжает генератор механической энергией, которая затем преобразуется в электрический ток благодаря магнитному полю, создающему электромагнитную индукцию.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *