Как проверить амперметр: Как проверить амперы мультиметром — самые полезные статьи в интернет-магазине радиодеталей и радиоэлектроники Electronoff

Проверка правильности показаний амперметра с помощью другого амперметра

Сила тока измеряется не только для проведения лабораторных работ по физике. Любой домашний мастер, собирающий электрические схемы, нуждается в точном измерении параметров электрических цепей.

  • Проверка параметров трансформатора, самодельного блока питания
  • Поиск токов утечки аккумулятора в электрической схеме автомобиля. Это наиболее популярное применение амперметра
  • Зарядка аккумуляторной батареи с ручной установкой параметров.

Все давно привыкли пользоваться цифровыми мультиметрами, не задумываясь о точности (точнее погрешности) измерений прибора.

Электрики КИП знают, как производится поверка измерительных приборов. Ремонтно-поверочные базы есть на каждом предприятии. Мы все помним, что на любом приборе обязательно нанесен штампик о поверке, а в документации указана дата последнего измерения, периодичность этой процедуры, и срок действия.

А как быть с популярными универсальными приборами, которые продаются на радио рынках, в магазинах электротоваров или на китайских интернет сайтах? Максимум, чего можно добиться от продавца, это полулегальную бумагу (паспорт или инструкцию), в которой указывается погрешность измерения.

Как проверить амперметр на исправность в бытовых условиях?

Самый беспроигрышный вариант – отдать амперметр (мультиметр) метрологам. В каждом городе есть лаборатория сертификации и стандартизации, с обширным ассортиментом ремонтно-поверочного оборудования. Обычно в этой организации принимают жалобы на несоответствие товара стандартам.

Ваш прибор проверят на исправность, проведут поверку точности измерений, и выдадут соответствующий сертификат. Даже штампик поставят, по вашему желанию. Есть одна проблема: эта услуга стоит определенных денег. Учитывая стоимость приборов из Поднебесной – цена услуги может быть сопоставима с ценой объекта поверки.

Второй вариант — проверить правильность с помощью другого амперметра.
Если опустить самое главное – где взять заведомо исправный «другой амперметр», процедура несложная.

    1. Собирается электрическая цепь из источника питания и надежного потребителя. Лучше взять мощный резистор с хорошей площадью охлаждения. Тогда ток в цепи будет стабильным, и не изменится из-за нагрева сопротивления. По закону Ома рассчитываете напряжение источника питания и сопротивление резистора.Для проверки точности измерения в разных диапазонах, в цепь последовательно добавляется переменный резистор. Сила тока должна регулироваться в пределах шкалы проверяемого прибора.

Важно! Тестируемый и эталонный прибор подключаются последовательно, безо всяких шунтов. Диапазон измерений обоих амперметров должен быть в одном пределе, иначе точность измерения будет невысокой.

  1. Подключаете питание, выставляете сопротивление подстроечного резистора R2 таким образом, чтобы стрелки приборов находились в середине шкалы. Это точка с наименьшей погрешностью. Ждете несколько минут, наблюдая за нагревом резисторов. Если показания прибора не отходят от первоначального значения – цепь годится для поверки.
  2. Регулируете силу тока переменным резистором, фиксируя значение на каждом делении основной разметки эталонного прибора. Записываете показания тестируемого амперметра. После прохождения всей шкалы, вы будете иметь картину погрешности прибора.
  3. Далее вы можете запомнить разницу в показаниях, произвести корректировку прибора (если есть регулировочный винт) или нанести новую разметку, в соответствии с показаниями эталона. Фактически – это калибровка амперметра.

Можно ли проверить правильность показаний амперметра без второго амперметра?

Есть метод косвенной поверки. Для этого потребуется качественный источник питания (батарея с полным зарядом или хорошо стабилизированный блок питания) и несколько прецизионных резисторов. Собрав цепь с резистором, по формуле закона Ома вычисляете предполагаемый ток, и проверяете свой прибор.

Меняя значение резистора R, вы сможете произвести поверку во всем диапазоне шкалы. Правда, точность такого способа далека от идеала.

Стрелочный амперметр 2 А и стрелочный амперметр 10 А

 Стрелочный амперметр 2 А и стрелочный амперметр 10 А

 Обзор


     Оглавление:
   1. Внешний вид и конструкция

   2. Тестовые испытания

   3. Окончательный диагноз и рекомендации
 

Предисловие

Несмотря на тотальное наступление цифровых измерительных приборов, стрелочные индикаторы не собираются сдаваться.

Да, цифровые индикаторы — точнее.

Но аналоговые стрелочные приборы тоже имеют массу достоинств, основные из них:

1. Их показания «в первом приближении» мгновенно схватываются глазами: осознать положение стрелки мозг может быстрее, чем величину, отображаемую несколькими цифрами;

2. Достоинство, вытекающее из предыдущего: динамика измеряемой величины (рост, снижение, колебания) лучше понятны и заметны на стрелочном индикаторе;

3. Стрелочные вольтметры и амперметры не требуют внешнего питания: они «питаются» измеряемым напряжением (током) и работают вечно без замены батареек.

В этом обзоре будут представлены и протестированы два стрелочных амперметра: на 10 Ампер и на 2 Ампера постоянного тока.

Цена на дату обзора на AliExpress с доставкой — около $3.5; проверить актуальную цену и/или купить можно здесь. Там же можно купить амперметры на 1 — 50 Ампер в таких же корпусах; при одновременной покупке нескольких приборов — скидка.

Внешний вид и конструкция стрелочных амперметров постоянного тока на 10 А и 2 А

Амперметры пришли из Китая в маленькой картонной коробке, внутри которой дополнительно они были завернуты в полиэтиленовые пакеты вместе со своими комплектами крепежа.

Так выглядят тестируемые стрелочные индикаторы:

 

Далее детально будем рассматривать стрелочный амперметр на 2 А  постоянного тока, так как приборы — абсолютно идентичные, и различаются только пределом измерений.

Габариты лицевой стороны амперметра — 44.8 x 44.5 мм (Ш x В), полная высота амперметра (длина) — 36 мм, высота части амперметра, расположенной сзади лицевой панели — 27.2 мм (приведены данные измерений).

Вид с лицевой стороны:

На шкале расположены только 20 делений — маловато будет! Никто не мешал сделать между ними промежуточные «маленькие» деления, тогда считывание результата было бы проще и точнее.

Справедливости ради надо сказать, что на стрелочном амперметре на 10 А делений больше, их — 25. Это уже лучше.

Нижняя часть лицевой панели (где расположена механическая часть амперметра) символически закрыта от любопытных глаз «матовой» частью переднего защитного стекла.

«Символически» — поскольку стекло можно снять и посмотреть, что за ним находится.

Это будет сделано далее.

В нижней части защитного стекла (которое на самом деле — пластик, разумеется) расположены два винта, которые удерживают его на приборе.

Вид амперметра снизу:

Знаками «+» и «-» обозначены контакты для подключения амперметра в цепь с измеряемым током (резьба М3), а два штыря с резьбой М3 в нижней части фото предназначены для закрепления амперметра на приборной панели.

Знаки  «+» и «-» выполнены в виде рельефного утолщения, и заметны не очень хорошо. Чтобы их различить, может потребоваться «повертеть» прибор, подбирая оптимальное падение внешнего освещения для различения знаков полярности.

Что интересно: обозначения полярности есть только на амперметре на 2 А, а на амперметре 10 А полярность не обозначена.

«Угадай-ка — интересная игра». 🙂

Теперь — вид амперметра в профиль сверху:

Толщина передней части амперметра, которая будет расположена наружу от приборной панели — 8.8 мм.

Теперь — снимаем защитное стекло и смотрим на механизм стрелочного амперметра:


 

Теперь — то же самое, но немного в другом ракурсе:

Механизм — стандартный, вполне соответствующий типовой схеме на протяжении последних ста лет (примерно).

Теоретически, есть даже возможность подстройки нуля, если он вдруг «уплывёт». Но, чтобы он не «ушел» сам, механизм регулировки застопорен красной краской.

Но одна вещь сделана здесь грубовато.

Обратите внимание на капельку припоя, напаянную на нерабочем конце стрелки (правый нижний угол механизма, примерно под буквой «S» магнитной системы).

Видимо, она напаяна для уравновешивания противоположных частей стрелки, чтобы её положение не менялось при повороте прибора из горизонтального положения в вертикальное и обратно.

Стрелка при этом, действительно, положения не меняет; хотя и достигнуто это не слишком изящным способом. Главное — результат!

И, наконец, снимаем шкалу и совсем оголяем механизм:

Здесь видна ещё одна деталь устройства — шунт, соединяющий внешние выводы прибора. За счет падения напряжения на шунте проходит ток через рамку и отклоняется стрелка.

Напряжение на шунте, соответствующее максимальному отклонению стрелки (2 А), составляет 94 мВ.

Шунт на стрелочном амперметре 10 А , соответственно, должен иметь сечение в 5 раз больше.

Кроме шунта, здесь хорошо видно кольцо вокруг магнитной системы прибора (точнее — цилиндр). Его назначение — защита от внешних магнитных полей (экранирование).

Контакты рамки подключены непосредственно к шунту. Из этого проистекает отсутствие термокомпенсации (обычно делается в виде дополнительного резистора, но часто стрелочные приборы производятся без термокомпенсации).

К точности механических компонентов есть претензии.

Я попробовал аккуратно подёргать стрелку прибора вперёд-назад, и обнаружилась её «болтанка» (люфт) примерно на 0.3 — 0.5 мм. Многовато будет!

В комплект амперметра входит также необходимый крепёж, и даже немного сверх необходимого:

На фото в правой стороне — 4 комплекта гаек М3 с необходимыми дополнениями для подключения амперметра к цепи и его монтажа на приборной панели; а в левой стороне — 2 комплекта гаек М4 с дополнениями, которые к прибору никак не подходят (да и не требуются).

Ладно, пусть будут: в кулацком хозяйстве всё пригодится! 🙂
 

Испытания стрелочных амперметров постоянного тока на 10 А и 2 А

Тестовый стенд состоял из следующих компонентов: лабораторного блока питания, охлаждаемого водой резистора, тестируемого амперметра и цифрового мультиметра, установленного на предел измерений 10 А. Все составные части были соединены последовательно.

Температура окружающей среды — 19 градусов.

Так эта конструкция выглядела в сборе (вид сверху):

При расчётах погрешности считаем показания цифрового мультиметра истинными (его погрешностью пренебрегаем и всю её «сваливаем» на стрелочный индикатор).

Сначала испытываем стрелочный амперметр на 2 А.

Проверка проходила при двух значениях тока: при отклонении стрелки на 1 А и на 2 А.

Вот результат для тока с отклонением стрелки на 1 А:

Погрешность — большая, 13.6%.

Следующий результат — для тока с отклонением стрелки на 2 А:

Здесь ситуация с погрешностью — получше: 6.4%; хотя и это — далеко не идеал.

Переходим к стрелочному амперметру на 10 Ампер.

Проверка производилась при токах с отклонением стрелки на 4 А, 6 А, 10 А.

Результат для тока с отклонением стрелки на 4 А:

Результат — почти абсолютно точный; погрешность — 0. 25%.

Далее — результат для тока с отклонением стрелки на 6 А:

Погрешность — 1.2%, очень неплохо.

И, последний результат, для показаний в 10 А:

Погрешность — 4.1%, приемлемо.

В заключение этой главы надо напомнить, что протестированный стрелочный прибор не имеет системы термокопенсации, и его показания будут сильно зависимы от температуры окружающей среды.

Это связано с тем, что сопротивление обмотки из медной проволоки на рамке прибора имеет температурный коэффициент около 0.4% на градус. Соответственно, при изменении температуры на 10 градусов погрешность увеличится на 4%.

А если прибор будет установлен на аппаратуре с сильным нагревом, то погрешность увеличится ещё больше.

Кстати, некоторые древнесоветские недорогие стрелочные приборы тоже строились без термокомпенсации, и факт увеличения погрешности отражался в инструкциях по эксплуатации.

Например, страница инструкции на сверхпопулярный в 1960-х и начале 1970-х годов прибор Ц-20 (нужная часть обведена красной рамкой):

Кстати, нормальной для этого прибора была указана температура +20±5 градусов, а весь допустимый диапазон температур составлял от +10 до +35 градусов.
 

Окончательный диагноз стрелочных амперметров на 2 А и 10 А

Точность протестированных приборов оставляет желать лучшего.

Но, по большому счету, они и не предназначены для точных измерений.

Стрелочные приборы, предназначенные для точных измерений, выглядят совсем по-другому. Это — приборы с крупной шкалой со множеством делений (а не 20 и 25 делений, как у протестированных приборов).

Часто в профессиональных стрелочных приборах делается ещё и «зеркальная» шкала для повышения точности считывания показаний (смотреть на шкалу надо так, чтобы стрелка и её отражение визуально совпали).

А протестированные стрелочные приборы предназначены лишь для приблизительной оценки тока в испытуемой цепи и проверки общего функционирования контролируемой аппаратуры.

Вот с последней задачей они вполне в состоянии справиться.

Что же касается погрешности измерений, то определённая в обзоре погрешность приборов относится именно к протестированным экземплярам приборов; и может рассматриваться только как ориентир, а не как окончательное значение.

Где купить: можно здесь. Там же можно купить амперметры на 1 — 50 Ампер в таких же корпусах; при одновременной покупке нескольких приборов — скидка.

  Ваш Доктор.
 25 февраля 2021 г.

Обзоры других измерительных приборов — здесь.

Весь раздел DIY электроника - здесь.

Вступайте в группу SmartPuls.Ru  Контакте! Анонсы статей и обзоров, актуальные события и мысли о них.


                Порекомендуйте эту страницу друзьям и одноклассникам                      

 

  Комментарии вКонтакте:

 

   Комментарии FaceBook:

При копировании (перепечатке) материалов ссылка на источник (сайт SmartPuls.ru) обязательна!

Как измерить ток в цепи с помощью амперметра

Цепи постоянного тока Основы электричества По редакции Обновлено

Ток является мерой скорости потока электрических зарядов по проводнику. Измеряется в единицах Ампер. Это измерение тока в цепи в основном выполняется амперметром .

Амперметр

Амперметр измеряет электрический ток в цепи. Название происходит от единицы измерения силы тока в системе СИ — ампера. Чтобы измерить электрический ток в цепи, амперметр должен быть подключен последовательно, потому что при последовательном соединении амперметр испытывает то же самое количество тока, которое протекает в цепи. Амперметр предназначен для работы с малыми долями вольта. Поэтому падение напряжения должно быть минимальным.

Обозначение амперметра

Заглавная буква обозначает амперметр в цепи.

Символ амперметра

Как пользоваться амперметром

Прежде чем мы начнем измерять ток, мы сначала установим диапазон амперметра. Поддержание максимального диапазона предотвратит перегорание внутреннего предохранителя амперметра. Затем установите тип тока, т. е. постоянный или переменный ток.

Теперь соедините клеммы амперметра последовательно с сопротивлением или нагрузкой. При таком расположении амперметр испытывает такое же количество тока, которое протекает в цепи. Например, предположим простую схему; лампочка подключена к аккумулятору. Положительная клемма батареи подключается к положительной клемме лампы, а отрицательная клемма батареи подключается к отрицательной клемме лампы.

Теперь отсоедините любую клемму лампочки и подключите амперметр так, чтобы один щуп амперметра был подключен к аккумулятору, а другой щуп к лампочке.

Теперь вы можете наблюдать за показаниями амперметра, и это количество тока, протекающего в вашей цепи.

Теперь, когда вы записали показания амперметра, отключите амперметр и подключите провода, как в простой схеме обратно.

ВНИМАНИЕ:

При измерении тока необходимо соблюдать некоторые меры предосторожности. Не подключайте щупы вашего амперметра напрямую к батарее, чтобы проверить ток этой батареи. Это вызовет короткое замыкание в амперметре, а иногда это может привести к перегоранию внутреннего предохранителя амперметра. Поэтому, пожалуйста, не выполняйте эту деятельность.

Если вы хотите проверить ток батареи. Добавьте сопротивление к аккумулятору и последовательно подключите амперметр. Показания будут правильными и точными, волноваться не о чем.

Амперметр Шунт

Другие методы измерения тока


Магнитный метод

Магнитный метод, мы используем эффект Холла для измерения тока. Когда провод лежит с потоком электронов, внутри него течет некоторый ток. Но в них нет электрического потенциала. Если этот провод поместить внутрь магнитного поля, разность потенциалов возникает перпендикулярно магнитному полю и направлению тока. Эта разность потенциалов будет прямо пропорциональна текущему потоку. Здесь заряды взаимодействуют с магнитным полем, вызывая изменение распределения тока, что создает напряжение Холла.

Преимущество этого магнитного метода заключается в том, что он позволяет измерять большие токи.

  Измерение тока с помощью гальванометра

Гальванометр — это устройство, которое используется только для обнаружения наличия тока в цепи. Отклонение в гальванометре дает направление тока, т.е. если отклонение вправо; ток течет в правильном направлении и наоборот. В гальванометре параллельно с катушкой гальванометра подключено соответствующее шунтирующее сопротивление, чтобы превратить его в амперметр для измерения тока.

Эти два метода широко используются помимо измерения с помощью амперметра.

Итак, вот как вы должны использовать амперметр со всеми предосторожностями и мерами. Амперметр сделал расчет тока в электрических устройствах очень простым, и теперь с помощью амперметра мы можем измерять малые токи в мА (миллиамперах) до больших токов в кА (килоамперах).

Электросчетчики

Вольтметры

Вольтметры — это инструменты, используемые для измерения разности потенциалов между двумя точками цепи. Вольтметр подключается параллельно измеряемому элементу, что означает создание альтернативного пути тока вокруг измеряемого элемента и через вольтметр. Вы правильно подключили вольтметр, если можете удалить вольтметр из цепи, не разорвав цепь. На схеме справа подключен вольтметр для правильного измерения разности потенциалов на лампе. Вольтметры имеют очень высокое сопротивление, чтобы свести к минимуму ток, протекающий через вольтметр, и влияние вольтметра на цепь.


Амперметры

Амперметры — это инструменты, используемые для измерения тока в цепи. Амперметр включен последовательно с цепью, так что измеряемый ток протекает непосредственно через амперметр. Цепь должна быть разорвана, чтобы правильно вставить амперметр. Амперметры имеют очень низкое сопротивление, чтобы свести к минимуму падение потенциала на амперметре и влияние амперметра на цепь, поэтому параллельное включение амперметра в цепь может привести к чрезвычайно высоким токам и может привести к выходу из строя амперметра. На схеме справа правильно подключен амперметр для измерения тока, протекающего по цепи.

 

Вопрос: На электрической схеме справа возможно расположение амперметра и вольтметра обозначены кружками 1, 2, 3 и 4. Где должен располагаться амперметр, чтобы правильно измерить общий ток и где должен ли вольтметр быть расположен правильно измерить общее напряжение?

Ответ: Для измерения полного тока амперметр необходимо поставить в положение 1, так как весь ток в цепи должен проходить по этому проводу, а амперметры всегда подключаются последовательно.

Для измерения общего напряжения в цепи вольтметр можно поместить либо в положение 3, либо в положение 4. Вольтметры всегда располагают параллельно анализируемому элементу цепи, а положения 3 и 4 эквивалентны, поскольку они соединены проводами ( и потенциал всегда одинаков в любом месте идеального провода).

 

 

Вопрос: На какой приведенной ниже схеме правильно показано подключение амперметра A и вольтметра V для измерения тока и разности потенциалов на резисторе R?

Ответ: (4) показывает амперметр последовательно и вольтметр параллельно резистору.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *