Как работает vvti: Система Toyota VVT-i

Содержание

Система Toyota VVT-i

10.07.2006

Рассмотрим здесь принцип функционирования системы VVT-i второго поколения, которая применяется сейчас на большинстве тойотовских двигателей. Система VVT-i (Variable Valve Timing intelligent — изменения фаз газораспределения) позволяет плавно изменять фазы газораспределения в соответствии с условиями работы двигателя. Это достигается путем поворота распределительного вала впускных клапанов относительно вала выпускных в диапазоне 40-60° (по углу поворота коленвала). В результате изменяется момент начала открытия впускных клапанов и величина времени «перекрытия» (то есть времени, когда выпускной клапан еще не закрыт, а впускной — уже открыт).

1. Конструкция

Исполнительный механизм VVT-i размещен в шкиве распределительного вала — корпус привода соединен со звездочкой или зубчатым шкивом, ротор — с распредвалом.
Масло подводится с одной или другой стороны каждого из лепестков ротора, заставляя его и сам вал поворачиваться.

Если двигатель заглушен, то устанавливается максимальный угол задержки (то есть угол, соответствующий наиболее позднему открытию и закрытию впускных клапанов). Чтобы сразу после запуска, когда давление в масляной магистрали еще недостаточно для эффективного управления VVT-i, не возникало ударов в механизме, ротор соединяется с корпусом стопорным штифтом (затем штифт отжимается давлением масла).


Управление VVT-i осуществляется при помощи клапана VVT-i (OCV — Oil Control Valve).
По сигналу блока управления электромагнит через плунжер перемещает основной золотник, перепуская масло в том или ином направлении. Когда двигатель заглушен, золотник перемещается пружиной таким образом, чтобы установился максимальный угол задержки.

2. Функционирование

Для поворота распределительного вала масло под давлением при помощи золотника направляется к одной из сторон лепестков ротора, одновременно открывается на слив полость с другой стороны лепестка. После того, как блок управления определяет, что распредвал занял требуемое положение, оба канала к шкиву перекрываются и он удерживается в фиксированном положении.


При повороте распредвала в сторону более раннего открытия клапанов


При повороте распредвала в сторону более позднего открытия клапанов


В режиме удержания

Функционирование системы VVT-i определяется условиями работы двигателя на различных режимах.

Режим

Фазы

Функции

Эффект

Холостой ход

1

Установлен угол поворота распределительного вала, соответствующий самому позднему началу открытия впускных клапанов (максимальный угол задержки).
«Перекрытие» клапанов минимально, обратное поступление газов на впуск минимально.
Двигатель стабильнее работает на холостом ходу, снижается расход топлива

Низкая нагрузка

2

Перекрытие клапанов уменьшается для минимизации обратного поступление газов на впуск. Повышается стабильность работы двигателя

Средняя нагрузка

3

Перекрытие клапанов увеличивается, при этом снижаются «насосные» потери и часть отработавших газов поступает на впуск Улучшается топливная экономичность, снижается эмиссия NOx

Высокая нагрузка, частота вращения ниже средней

4

Обеспечивается раннее закрытие впускных клапанов для улучшения наполнения цилиндров Возрастает крутящий момент на низких и средних оборотах

Высокая нагрузка, высокая частота вращения

5

Обеспечивается позднее закрытие впускных клапанов для улучшения наполнения на высоких оборотах
Увеличивается максимальная мощность

При низкой температуре охлаждающей жидкости

Устанавливается минимальное перекрытие для предотвращения потерь топлива Стабилизируется повышенная частота вращения холостого хода, улучшается экономичность

При запуске и остановке

Устанавливается минимальное перекрытие для предотвращения попадания отработавших газов на впуск Улучшается запуск двигателя

3. Вариации

Приведенный выше 4-лепестковый ротор позволяет изменять фазы в пределах 40° (как, например, на двигателях серий ZZ и AZ), но если требуется увеличить угол поворота (до 60° у SZ) — применяется 3-лепестковый или расширяются рабочие полости.

Принцип действия и режимы работы этих механизмов абсолютно аналогичны, разве что за счет расширенного диапазона регулировки становится возможным вообще исключить перекрытие клапанов на холостом ходу, при низкой температуре или запуске.

При повороте распредвала в сторону более раннего открытия клапанов При повороте распредвала в сторону более позднего открытия клапанов В режиме удержания

Евгений, Москва
© Легион-Автодата


Комментарии и вопросы
можно направлять на
arco@autodata. ru

Принцип работы муфты изменения фаз газораспределения VVTI

Муфта VVTI позволяет плавно изменять фазы газораспределения в соответствии с условиями работы двигателя. Это стало возможно благодаря повороту впускного распределительного вала относительно ведущей звездочки в диапазоне 40 ° (угол поворота коленчатого вала). Для регулировки поворота распредвала используется электродвигатель, который меняет угол положения распределительного вала в зависимости от температуры, оборотов и давления масла в двигателе. Угол поворота распредвала выпускных клапанов относительно ведущей звездочки достигает диапазона 35 °. Привод начинает работать с момента запуска двигателя и устанавливает распредвал в оптимальное положение для лёгкого запуска.

Сроки привода (серия UR). 1 — двигатель VVT-iE, 2 — соленоид управления VVT-i, 3 — датчик положения коленчатого вала, 4 — датчик положения распределительного вала (впуск), 5 — датчик положения распределительного вала (выпускной), 6 — датчик температуры воды, 7 — датчик положения распределительного вала

Привод VVTI.  1 — двигатель, 2 — крышка (статорная шестерня), 3 — ротор, 4 — ведомая шестерня, 5 — спиральная пластина, 6 — рычаги, 7 — опора, 8 — корпус (звездочка), 9 — впускной распределительный вал.

Главная цепь привода ГРМ приводит в движение впускной распределительный вал, а затем по короткой соединительной цепи приводной распредвал тоже приходит в движение.
Привод VVTI состоит из рычажного механизма и циклоидального редуктора. Рычажный механизм состоит из корпуса (соединен со звездочкой ГРМ), держателя (соединен с распределительным валом) и соединяющих их спиральной пластины и рычагов. 

Циклоидный редуктор муфты VVTI состоит из крышки (с редуктором статора), ротора (соединенного с электродвигателем) и ведомой шестерни (которая имеет на 1 зубец больше, чем шестерня статора), соединенной с ротором. Когда вращения коленвала двигателя увеличивается на 1000 оборотов, ведомая шестерня смещается на 1 зуб.

Работа редуктора VVTI.
 1 — несущая, 2 — статорная, 3 — ведомая передача, 4 — отметка.

Спиральная пластина, соединенная с ведомой шестерней, приводится в действие через редуктор. Рычаги передают вращение спиральной пластины на держатель, распределительный вал и муфту VVTI.

Система VVTI состоит из электродвигателя постоянного тока, который не имеет щёток, блока управления EDU и датчика Холла. Блок управления EDU служит посредником между ECM и электродвигателем, контролируя скорость и направление вращения.

VVTI мотор. 1 — ЭДУ, 2 — электродвигатель, 3 — датчик Холла.

Регулировка фаз газораспределения основана на разнице скоростей между двигателем и распределительным валом. В режиме удержания скорость двигателя и распредвала равна. В режиме опережения двигатель вращается быстрее, чем распределительный вал. В режиме замедления наоборот медленнее или в обратную сторону.

Режимы работы двигателя.

По сигналу ECM двигатель муфты VVTI начинает вращаться быстрее, чем распределительный вал. Спиральная пластина поворачивается по часовой стрелке через редуктор. Рычаги, вставленные в спиральные канавки, перемещаются к центральной оси распределительного вала и вращают его с ускорением по отношению к коленчатому валу.

По сигналу ECM двигатель вращается ниже, чем распределительный вал. Спиральная пластина поворачивается против часовой стрелки через редуктор. Рычаги, вставленные в спиральные канавки, сдвигаются от центральной оси распределительного вала и вращают распределительный вал по отношению к коленчатому валу с замедлением.

После достижения заданного момента коленчатый вал двигателя вращается с той же скоростью, что и распределительный вал. Рычажный механизм фиксируется и удерживает фазы газораспределения.

Муфта VVTI с лопастным ротором устанавливается на распредвал выпускных клапанов. Когда двигатель заглушен, стопорный штифт удерживает ротор, сдвинутым до упора вперёд для нормального запуска. 
Вспомогательный пружинный механизм служит для возврата ротора и надежной работы замка после выключения двигателя.

Привод VVTI. 1 — корпус, 2 — ротор, 3 — стопорный штифт, 4 — звездочка, 5 — распределительный вал, 6 — вспомогательная пружина.а — останов, б — работа, в — давление масла.

Контроллер ЭСУД управляет потоком масла в камерах муфты VVTI с помощью соленоида, основываясь на сигналах датчиков положения распределительного вала. На заглушенном двигателе золотник клапана перемещается пружиной на максимальный угол наклона.

a — пружина, b — втулка, c — золотник клапана, d — к приводу (передняя камера), e — к приводу (обратная камера), f — слив, g — давление масла, h — катушка, j — поршень.

ЭСУД переключает соленоид в положение опережения и перемещает золотник регулирующего клапана. Моторное масло под давлением подается в ротор в камеру опережения, поворачивая его вместе с распределительным валом в направлении опережения.

ЭСУД так же переключает соленоид в положение запаздывания и перемещает золотник регулирующего клапана в противоположную сторону. Моторное масло под давлением подается к ротору в камеру замедления, поворачивая его вместе с распределительным валом в направлении замедления.

Контроллер ЭСУД рассчитывает целевой угол в соответствии с параметрами работы двигателя и после достижения заданного положения переключает регулирующий клапан в нейтральное положение до следующего изменения внешних условий, удерживая масло в контуре. 

Достаточно часто проблемы и неисправности муфты VVTI связаны с загрязнением её компонентов. Эффективный средством, помогающем решить эту проблему является промывка масляной системы BG 109. В 8-ми из 10 случаев она помогает устранить неисправность без разбора.

KLIK!

Статьи — Информация — AUTOSPACE.BY

Технология VVT-i

VVT-i (Variable Valve Timing with intelligence) — система газораспределения с изменяемыми фазами от Toyota. Является разновидностью технологии VVT и CVVT. Включает в себя, по мере развития, технологии VVT-i, VVTL-i,Dual VVT-i, VVT-iE и Valvematic.

Технология VVT-i была впервые выпущена на рынок в 1996 году и заменила собой первое поколение VVT (1991 год, двигатель 4A-GE).

В зависимости от условия работы двигателя, система VVT-i плавно изменять фазы газораспределения. Это достигается путем поворота распределительного вала впускных клапанов относительно вала выпускных в диапазоне 20-30° (по углу поворота коленвала). В результате изменяется момент начала открытия впускных клапанов и величина времени «перекрытия» (то есть времени, когда выпускной клапан еще не закрыт, а впускной — уже открыт).

Основным элементом устройства является муфта VVT-i интегрированная в шкив, который выполняет роль корпуса муфты. Ротор муфты находится внутри и непосредственно соединен с распределительным валом.

Изначально фазы впускных клапанов установлены таким образом, чтобы добиться максимального крутящего момента при низкой частоте вращения коленвала. После того, как обороты значительно увеличиваются в корпусе муфты сделано несколько полостей, к которым по каналам подводится моторное масло из системы смазки.

Возросшее давление масла открывает клапан VVT-i, заполняя ту или иную полость, обеспечивает поворот ротора относительно корпуса и, соответственно, смещение распределительного вала на определенный угол.

Кулачки имеют определенную форму и при повороте коленчатого вала открывают впускные клапана немного раньше, а закрывают позже, что благоприятно сказывается на увеличении мощности и крутящего момента на высоких оборотах.

Технология VTEC

VTEC (Variable valve Timing and lift Electronic Control) — система динамического изменения фаз газораспределения, фирменная разработка компании Honda. Вначале система VTEC была успешно реализована в двигателях, применяемых в спортивных автомобилях, а затем, после признания и успеха данная система использована на двигателях гражданских автомобилей.

Особенность системы VTEC заключается в том, что возможно конструировать компактные, но очень мощные (в соотношении объем/л.с.) двигатели без применения дополнительных устройств (турбин, компрессоров), при этом технология производства подобных двигателей остается недорогой, а автомобиль с установленной на нем системой VTEC не испытывает проблем, характерных для турбированных автомобилей.

Принцип работы VTEC, в классическом виде по сравнению с другими системами газораспределения, конструктивно выглядит просто, — на распредвале между основными кулачками разместили один дополнительный кулачок большего профиля. Получается, что на каждый цилиндр приходится по одному дополнительному кулачку.

За наполнение топливной смесью камеры сгорания на низких и средних оборотах работы двигателя, отвечают два внешних кулачка, а центральный задействуется на высоких оборотах. Обратите внимание, что непосредственно на клапана воздействуют не кулачки распредвала, а через так называемые коромысла/рокеры, которых тоже три. Внешние кулачки воздействуют на рокеры, обеспечивающие открытие клапанов независимо друг от друга, а центральная пара кулачек-рокер, хотя и работает, но работает, что называется вхолостую. Клапаны имеют минимальную высоту подъема, фазы ГРМ характеризуются малой продолжительностью.

Как только двигатель достигает определенного количества оборотов, т. е. переходит в режим высоких оборотов, система VTEC активируется. Под давлением масла происходит смещение синхронизирующего штифта внутри рокеров таким образом, что все три рокера как бы становятся одной целой конструкцией, и после этого усилие на впускные клапаны передается от большого кулачка распредвала. Таким образом, увеличивается ход клапанов и фазы газораспределения.

При снижении количества оборотов система возвращается в исходную позицию.

Недостатками такой системы являются ступенчатый переход с одного режима на другой и конструктивная сложность реализации процесса блокировки.

Разновидности VTEC

На сегодняшний день существует несколько разновидностей системы VTEC. Первая категория рассчитана на увеличение мощности. Второй, VTEC-E, ставились совсем иные задачи — экономия топлива, о чем и говорит приставка «E» — econom. Итак, разновидности:

  • DOHC VTEC 1989-2001 гг, cамый мощный в семействе VTEC до 2001 года
  • SOHC VTEC 1991-2001 гг, средняя, более простая конструкция по сравнению с DOHC VTEC, но и менее мощная
  • SOHC VTEC-E 1991-2001 гг, самый экономичный VTEC
  • 3-stage VTEC-E 1995-2001 гг, совместил SOHC VTEC и VTEC-E, в отличие от них различает низкие, средние и высокие обороты
  • DOHC і-VTEC c 2001 года
  • SOHC і-VTEC c 2006 года
  • 3-stage i-VTEC (только на «гибридах») c 2006 года

Особенность данного двигателя заключается в том, что в городском цикле у автомобиля с системой VTEC-E, расход топлива составляет около 6,5-7 литров бензина на 100 км пути. Это поистине выдающийся результат, учитывая то, что такие двигатели Honda развивают мощность 115 «лошадиных сил». Но автомобили с таким двигателем лишены драйверских ощущений.

Такой результат достигается за счет того, что при небольших оборотах двигатель работает на обедненной топливовоздушной смеси, которая поступает в его цилиндры только через один впускной клапан. Это происходит по причине того, что на втором клапане, кулачек управляющий открытием и закрытием клапана, имеет профиль кольца и поэтому реально работает только один клапан.

За счёт несимметричности потока поступающей горючей смеси (один клапан закрыт, а второй открыт) возникают завихрения, происходит лучше и равномернее заполнение камеры сгорания, что позволяет двигателю работать на довольно бедной смеси. При увеличении оборотов (2500 оборотов и выше) срабатывает система VTEC, синхронизирующий шток под давлением масла перемещается, и рокер первичного клапана входит в зацепление с рокером вторичного клапана и оба клапана работают синхронно.

i-VTEC

Очередной разработкой компании Honda газораспределительного механизма с изменяемыми фазами VTEC является система, получившая обозначение i-VTEC (где буква «i» означает «Intellegence» — «интеллектуальный»).

«Интеллектуальность» же данной системы заключалась в следующем — управление изменением фаз осуществляется компьютером, при помощи функции поворота распредвала, регулируя угол опережения. Система i-VTEC позволила двигателям Honda получить больший крутящий момент на низких оборотах, что было постоянной проблемой для двигателей компании, — при высокой мощности они отличались малым крутящим моментом, получаемым на высоких оборотах.

Версия i-VTEC если не устранила, но существенно подкорректировала этот недостаток. Система i-VTEC начала устанавливаться на мощные моторы серии К и некоторых серии R, например, в автомобилях серии Type R, или Acura RSX. Другая версия, напротив, получила «экономичное» направление, и стала устанавливаться в гражданской серии двигателей (например на автомобилях CR-V, Accord, Element, Odyssey, и других).

Принцип работы SOHC i-VTEC

Компания Honda реализовала работу SOHC i-VTEC на простых принципах, которые заключаются, в том, что когда мы управляем автомобилем, то мы придерживаемся в основном двух различных стилей вождения.

Первый стиль вождения мы принимаем за спокойную езду без резких ускорений, с пустым багажником и без пассажиров. В таком режиме обороты двигателя, как правило, не превышают порог в 2,5 – 3,5 тысяч оборотов в минуту, а усилия на педаль газа минимальны. Такие условия являются наиболее благоприятными для экономии топлива.

В классическом виде воздействуя на педаль газа, мы открываем или закрываем дроссельную заслонку и регулируем подачу количества воздуха. В зависимости от количества попадающего воздуха, электронная система управления двигателем в нужной пропорции подает топливо для образования топливно-воздушной смеси. Чем сильнее нажимаем на педаль газа, тем больше открывается дроссельная заслонка (увеличивается поперечное сечение впускного канала). В это же время дроссельная заслонка являлась препятствием для прохождения воздуха.

Дроссельная заслонка — элемент впускной системы, которая регулирует подачу воздуха в двигатель.

По идее, такое поведение дроссельной заслонки должно способствовать экономии топлива — поступает меньше воздуха и соответственно компьютер уменьшает дозу подаваемого топлива. Однако это не совсем так. В такой ситуации дроссельная заслонка выступает в качестве силы сопротивления, препятствуя прохождению воздуха, когда этого требует рабочий процесс. Получается поршень, опускаясь в цилиндре вниз нижней мертвой точки, должен всасывать топливно-воздушную смесь, затрачивая на это собственную энергию. Энергию, которая в конечном итоге должна была полностью передаться на колеса. Этот побочный эффект прозвали «насосными потерями».

Попытаемся взглянуть на это с практической точки зрения на примере системы SOHC i-VTEC. Ведь именно устранение насосных потерь – преимущество нового i-VTEC на двигателях с одним распредвалом.

Все, что надо было сделать – это на низких оборотах двигателя дроссельную заслонку оставить открытой, а регулировку подачи топливно-воздушной смеси доверить системе i-VTEC. На деле, разумеется, не все так просто.

Следует учитывать следующий момент, что в период, когда дроссельная заслонка полностью открыта, во впускную систему поступает чрезмерно много воздуха и соответственно в цилиндры много топливно-воздушной смеси.

В стандартных двигателях на фазе впуска впускные клапаны открыты, поршень движется вниз к нижней мертвой точке (НМТ). Как только поршень достигает нижней мертвой точки, впускные клапаны синхронно закрываются, а поршень, начиная фазу сжатия, поднимается к верхней мертвой точке (ВМТ).

Но смесь не сгорает, как вы, наверное, подумали. Фишка системы состоит в том, что один из двух впускных клапанов в цилиндре после фазы впуска закрывается значительно позже второго.

Двигатель с SOHC i-VTEC работает несколько иначе. На фазе впуска – поршень движется к НМТ, впускные клапаны открыты. На фазе сжатия поршень начинает движение вверх к ВМТ. По условию работы i-VTEC в режиме экономии один из впускных клапанов остается открытым и под давлением движущегося вверх поршня, лишняя топливно-воздушная смесь, которая попала в цилиндр благодаря полностью открытой дроссельной заслонке, беспрепятственно возвращается во впускной коллектор.

Механизм SOHC i-VTEC

Механизм системы SOHC i-VTEC аналогичен механизму VTEC предыдущих поколений. Все двигатели с системой SOHC i-VTEC имеют два впускных клапана и два выпускных на каждый цилиндр, т.е 16 клапанов на 4 цилиндра. На каждую пару клапанов приходится 3 кулачка – два обычных крайних и один центральный большего профиля VTEC. Кулачки распредвала традиционно воздействуют на клапаны не непосредственно, а через рокеры, которых тоже три на два клапана.

При отключенной системе i-VTEC внешние кулачки обеспечивают открытие клапанов и каждый рокер работает независимо друг от друга, а центральный кулачок, хотя и вращается вместе с остальными, но работает вхолостую.

Как только двигатель переходит в режим работы, которую система Drive by Wire определяет как благоприятную для работы системы — посредством давления масла система смещает шток внутри рокеров таким образом, что два из трех рокеров работают, как единая конструкция. И с этого момента, рокер впускного клапана, который синхронизирован штоком с рокером кулачка системы VTEC, открывает клапан на величину и продолжительность в соответствии с профилем кулачка системы VTEC. Практически, как обычная система газораспределения с изменяемыми фазами VTEC, с той лишь разницей, что работают системы при разных условиях и в разных фазах.

Drive by Wire (DRW) или «управление по проводам» — электронная цифровая система управления автомобилем.

В обычной системе VTEC два внешних кулачка отвечают за работу двигателя на низких оборотах, а центральный кулачок системы VTEC, подключается на высоких оборотах, таким образом, обеспечивая большее высоту и период открытия, чтобы в цилиндры поступило как можно больше топливно-воздушной смеси. В «умном» SOHC i-VTEC все работает наоборот — рабочая зона системы находится в диапазоне от 1000 до 3500 оборотов в минуту. На «верхах» же мотор вступает в стандартный режим работы.

Однако, диапазон оборотов не единственный фактор по которому система Drive by Wire определяет момент включения и выключения системы. Иначе новый i-VTEC мало чем отличался бы от предшественников.

Новый SOHC i-VTEC в паре с «Drive by Wire» дополнительно определяет нагрузку на двигатель и в зависимости от ее величины принимает решение включать VTEC или нет.

Именно символ «i» в названии системы указывает на работу этих двух систем. Получается, что система VTEC работает при определенных оборотах двигателя и определенной величине нагрузки на двигатель. Поэтому «Drive by Wire», которая и определяет оптимальные условия, является наиважнейшей составляющей системы в целом.

Общий рабочий диапазон SOHC i-VTEC демонстрирует график. Красная зона на графике и есть благоприятная среда для работы системы.

V-TEC, Vanos и VVT-i: как же они все работают?

Системы изменения фаз газораспределения стали революцией для двигателей внутреннего сгорания, а популярными они стали благодаря японским моделям 90-ых. Но как же самые известные системы отличаются в работе друг от друга?

Двигатели внутреннего сгорания с самого своего создания не были максимально эффективными. Средний КПД таких моторов равен 33 процентам — вся остальная энергия, созданная сгорающей топливо-воздушной смесью, тратится впустую. Поэтому любой способ сделать ДВС более энергоэффективным был востребован, а система изменения фаз газораспределения стала одним из самых удачных решений.

Система меняет фазы газораспределения (момент, в который каждый клапан открывается и закрывается во время рабочего цикла), их длительность (момент, когда клапан открыт) и подъём (насколько клапан может открыться).

Как вы знаете, впускной клапан в двигателе запускает в цилиндр топливо-воздушную смесь, которая затем сжимается, сжигается и выталкивается в открывающийся выпускной клапан. Эти клапана приводятся в движение толкателями, которыми управляет распредвал, используя набор кулачков для идеального соотношения закрытия и открытия.

К сожалению, обычные распредвалы делаются таким образом, что можно управлять только открытием клапанов. В этом и заключается проблема, так как для максимальной эффективности клапана должны закрываться и открываться по-разному на разных оборотах двигателя.

Например, на большой скорости работы мотора впускной клапан нужно открывать несколько раньше из-за того, что поршень движется настолько быстро, что не даёт попасть внутрь достаточному количеству воздуха. Если клапан открыть чуть раньше, то в цилиндр попадёт больше воздуха, что увеличит эффективность сгорания.

Поэтому вместо компромисса между распредвалами для больших и малых оборотов появилась система изменения фаз газораспределения, признанная одной из наиболее эффективных в этой области. Разные компании по-разному интерпретировали эту технологию, поэтому давайте разберёмся с самыми популярными из них.

VTEC.

Решение от Honda заключалось в форме распредвала, так как каждый распредвал имел два набора кулачков, смена между которыми происходила в зависимости от оборотов двигателя. VTEC (Variable Valve Timing and Lift Electronic Control) при помощи гидравлики выбирает между одним набором кулачков, когда мотор работает на низких оборотах, и другим, когда он приближается к красной зоне. Такая система в свою очередь позволила одновременно и снизить расход топлива, и повысить мощностные показатели при использовании одного распредвала, сделав моторы Honda очень разносторонними.

Гидравлическое переключение контролируется блоком управления, который использует информацию о давлении масла, температуре двигателя, скорости автомобиля и оборотов двигателя. После этого программа решает, какой из двух вариантов кулачков использовать, используя соленоид, который отправляет масляное давление посредством специфического клапана, а затем запирает механизм штифтом, закрепляя выбор за одним из вариантов.

Такая смена вариантов кулачков подразумевала, что двигатели Honda с VTEC в самом высоком диапазоне оборотов выдают максимальную мощность, как раз после того, как система «срабатывает». И пусть эффект от неё не такой, как от турбины, но многие фанаты всё равно останутся верны VTEC-моторам, рассказывая о том, как они едут на самых высоких оборотах.

VVT-i.

Система изменения фаз газораспределения от Toyota создана по пути использования шестерён распредвала для изменения отношений между ремнём или цепью ГРМ и распредвалом. Специальный ротор внутри шкива распредвала может вращаться под нагрузкой от пружины, поворачивая распредвал на дополнительные несколько градусов, задерживая или опережая взаимодействие между зубьями шкива и вращающейся цепи.

Такая система сдвига фаз газораспределения, при которой внутренний ротор в шкиве распредвала может влиять на положение распредвала, тем самым изменяя время взаимодействия кулачков и толкателей, применяется на многих моторах Toyota. Впервые технология была представлена на двигателе 2JZ-GE, устанавливаемом на знаменитую Toyota Supra в кузове A80.

Vanos.

Vanos (или Variable Nockenwellensteuerung) — попытка компании BMW создать систему изменения фаз газораспрделения, и впервые она была применена на моторе M50, устанавливаемом на 5-серию в 90-ых годах прошлого века. Он также использует принцип задерживания или опережения взаимодействия механизмов ГРМ, но с использованием зубчатой передачи внутри шкива распредвала, которая двигается вместе или против распредвала, изменяя фазы работы. Этот процесс контролируется электронным блоком управления, который использует давление масла для движения зубчатой передачи вперёд или назад.

Как и в случае с остальными системами, зубчатая передача движется вперёд для того, чтобы открывать клапана немного раньше, увеличивая количество воздуха, поступающего в цилиндры и увеличивая выходную мощность двигателя. На самом деле, сначала BMW представили одиночный Vanos, который работал только на впускном распредвале в определённых режимах на разных оборотах двигателя. Немецкая компания позже разработала систему с двумя Vanos, которая считается более продвинутой, так как влияет на оба распредвала, а также регулирует положение дроссельной заслонки. Двойной Vanos был создан для S50B32, который ставили на BMW M3 в кузове E36, а также Z3 M.

Сейчас практически у каждого крупного производителя есть собственной название для системы фаз газораспределения — у Rover это VVC, у Nissan — VVL, а Ford разработали VCT. И в этом нет ничего удивительного, учитывая, что это одна из самых удачных находок для двигателей внутреннего сгорания. Благодаря ей производители смогли и уменьшить расход, и увеличить мощность своих моторов.

Но с приходом пневматического управления клапанами эти системы уйдут на покой. Однако сейчас — как раз их время.

Подпишись на наш Telegram-канал

устройство и очистка своими руками

На чтение 6 мин. Просмотров 6.6k.

Клапан vvti является системой смещения газораспределяющих фаз автомобильного двигателя внутреннего сгорания от производителя фирмы «Тойота».

Клапан Vvt-i является системой смещения газораспределяющих фаз автомобильного двигателя внутреннего сгорания от производителя фирмы Тойота.

В данной статье размещены ответы на такие довольно распространенные вопросы:

  • Что собой представляет клапан Vvt-i?
  • Устройство vvti;
  • В чем заключается принцип действия vvti?
  • Как правильно проводится чистка vvti?
  • Как провести ремонт клапана?
  • Как правильно проводится замена?
Клапан VVTI

Устройство Vvt-i

Основной механизм размещается в шкиве распредвала. Корпус соединяется вместе с зубчастым шкивом, а ротор с распредваликом. Смазывающее масло доставляется к механизму клапана с любой из сторон каждого лепесткового ротора. Таким образом клапана и распределительный валик начинает вращаться. В тот момент, когда автомобильный двигатель находится в заглушенном состоянии устанавливается максимальный угол задержания. Это означает что определяется угол, который соответствует самому последнему произведению открытия и закрытия впускающих клапанов. Благодаря тому, что ротор соединен с корпусом при помощи стопорного штифта сразу после запуска, когда давление маслянистой магистрали недостаточно для произведения эффективного руководства клапаном, не могут возникать какие-либо удары в механизме клапана. После этого стопорной штифт открывается при помощи давления, которое оказывает на него масло.

В чем же заключается принцип действия Vvt-i? Vvt-i обеспечивает возможность плавного изменения газораспределительных фаз, соответствуя со всеми условиями функционирования автомобильного двигателя. Такая функция обеспечивается благодаря произведению поворота распредвала впускающих клапанов по отношению к валикам выпускающих клапанов, по углу поворачивания коленчатого валика от сорока до шестидесяти градусов. В итоге происходит изменение момента начального открывания впускающего клапана, а также количество времени, когда выпускающие клапаны находится в закрытом положении, а выпускающие в открытом. Руководство представленным типом клапана происходит благодаря сигналу, который исходит от блока руководства. После поступления сигнала электронный магнит по плунжеру передвигает главный золотник, пропуская при этом масло в любом направлении.

В тот момент, когда автомобильный двигатель не функционирует, золотник передвигается при помощи пружинки так, чтобы расположиться максимальный угол задержки.

Для произведения распредвала масло под определенным давлением с помощью золотника перемещается в одну из сторон ротора. В этот же момент происходит открытие полости с другой стороны лепестков для сливания масла. После определения блоком руководства расположения распределительного валика, все каналы шкива закрываются, таким образом, он удерживается в зафиксированном положении. Работа механизма данного клапана осуществляется несколькими условиями функционирования автомобильного двигателя с различными режимами.

Установленный клапан VVTI

Всего существует семь режимов функционирования автомобильного двигателя и вот их перечень:

  1. Передвижение на холостом ходу;
  2. Передвижение на низкой нагрузке;
  3. Передвижение со средней нагрузкой;
  4. Передвижение с высокой нагрузкой и низким уровнем частоты вращения;
  5. Передвижение с высокой нагрузкой и высоким уровнем частоты вращения;
  6. Передвижение с низкой температурой жидкости охлаждения;
  7. Во время запуска и остановки двигателя.

Процедура самостоятельного очищения а Vvt-i

Нарушение функционирования, как правило, сопровождается множеством признаков, поэтому логичнее всего будет сначала рассмотреть эти признаки.

Итак, к основным признакам нарушения нормального функционирования являются такие:

  • Автомобиль резко глохнет;
  • Транспортное средство не может удерживать обороты;
  • Заметно каменеет тормозная педаль;
  • Не тянет педаль тормоза.

Теперь можно переходить к рассмотрению процесса очищения Vvti. Проводить очищение Vvti мы будем пошагово.

Итак, алгоритм проведения очищения Vvti:

  1. Снимаем пластмассовую крышку автомобильного двигателя;
  2. Откручиваем болтики и гаечки;
  3. Снимаем железную крышку, основной задачей которой является фиксация генератора машины;
  4. Снимаем с Vvti разъем;
  5. Откручиваем болтик на десять. Не бойтесь, вы не сможете допустить ошибку, так как он там только один.
  6. Снимаем Vvti. Только ни в коем случае не тяните за разъем, потому как он достаточно плотно прилегает к нему и на нем размещено уплотняющее кольцо.
  7. Очищаем Vvti при помощи любого очистителя, который предназначен для очищения карбюратора;
  8. Для полного очищения Vvti снимаем фильтр системы Vvti. Представленный фильтр располагается под клапаном и имеет вид заглушки с отверстием для шестигранника, но этот пункт необязателен.
  9. Очищение завершено вам остается только собрать все в обратном порядке и натянуть ремень, не упираясь в Vvti.
Самостоятельный ремонт Vvt-i

Довольно часто возникает необходимость проведения ремонта клапана, так как просто его очищение не всегда эффективно.

Итак, для начала давайте разберемся с основными признаками необходимости проведения ремонта:

  • Автомобильный двигатель не удерживает холостые обороты;
  • Тормозит двигатель;
  • Невозможно передвижение автомобиля на низких оборотах;
  • Нет тормозного усилителя;
  • Плохо переключаются передачи.

Давайте рассмотрим основные причины неисправности клапана:

  • Оборвалась катушка. В таком случае клапан не сможет правильно реагировать на передачу напряжения. Определить данное нарушение можно с помощью произведения измерения сопротивления обмотки.
  • Заедает шток. Причиной заедания штока может послужить накопление грязи в канале штока или деформации резинки, которая располагается внутри штока. Удалить грязь из каналов можно отмачиванием или же отмачиванием.

Алгоритм проведения ремонта клапана:

  1. Снимаем регулирующую планку генератора автомобиля;
  2. Снимаем крепеж замочка капота машины, благодаря этому вы сможете получить доступ к осевому болтику генератора;
  3. Откручиваем болтик, который закрепляет клапан;
  4. Снимаем клапан. Только ни в коем случае не тяните за разъем, потому как он достаточно плотно прилегает к нему и на нем размещено уплотняющее кольцо.
  5. Снимаем фильтр системы Vvti. Представленный фильтр располагается под клапаном и имеет вид заглушки с отверстием для шестигранника.
  6. Если клапан и фильтр сильно загрязнены, то очищаем их при помощи специальной жидкости для очищения карбюратора;
  7. Проверяем работоспособность клапана, при помощи кратковременной подачи двенадцати вольт на контакты. Если вас устраивает, как он функционирует, то можете остановиться на этом этапе, если же нет, то выполняйте следующие действия.
  8. Ставим пометки на клапане, для того чтобы не допустить ошибку во время обратной установки;
  9. С помощью маленькой отвертки разбираем клапан с двух сторон;
  10. Достаем шток;

  1. Промываем и очищаем клапан;
  2. Если кольцо клапана деформировано, то заменяем его на новое;
  3. Завальцуйте внутреннюю сторону клапана. Сделать это можно при помощи полотка, надавливаниями на шток, для прижатия нового уплотняющего кольца;
  4. Смените масло, которое находится в катушке;
  5. Заменяем кольцо, которое располагается с внешней стороны;
  6. Завальцуйте внешнюю сторону клапана, для прижатия внешнего кольца;
  7. Ремонт клапана завершен и вам остается только собрать все в обратном порядке.
Процедура самостоятельной замены клапана Vvt-i

Нередко очищение и ремонт клапана не дает особы результатов и тогда возникает необходимость полной его замены. К тому же, многие автолюбители утверждают, что после проведения замены клапана транспортное средство станет работать намного лучше и затраты топлива снизятся приблизительно до десяти литров.

Следовательно, возникает вопрос: Как правильно нужно заменять клапан?. Проводить замену клапана мы будем пошагово.

Итак, алгоритм замены клапана:

  1. Снимите регулирующую планку генератора автомобиля;
  2. Снимите крепеж замочка капота машины, благодаря этому вы сможете получить доступ к осевому болтику генератора;
  3. Откручиваем болтик, который закрепляет клапан;
  4. Вытаскиваем старый клапан;
  5. Устанавливаем новый клапан на место старого;
  6. Закручиваем болтик, закрепляющий клапан;
  7. Замена клапана завершена и вам остается только собрать все в обратном порядке.

Vvti принцип работы

Клапан VVT-i что это и для чего нужен

Что такое VVT-i?

VVT-i — это фирменная система газораспределительного механизма Toyota. С английского Variable Valve Timing with intelligence переводится как интеллектуальное изменение фаз газораспределения.

Принцип работы

Основным управляющим устройством является муфта VVT-i. Изначально фазы открытия клапанов спроектированы для хорошей тяги на низких оборотах. После того, как обороты значительно увеличиваются, а вместе с этим увеличивается давление масла, которое открывает клапан VVT-i. После того как клапан открыт, распределительный вал поворачивается на определенный угол относительно шкива. Кулачки имеют определенную форму и при повороте коленчатого вала открывают впускные клапана немного раньше, а закрывают позже, что благоприятно сказывается на увеличении мощности и крутящего момента на высоких оборотах.

При работе системы изменяется положение впускного вала относительно звездочки и относительно ВМТ и выпускного вала. 

Диаграмма работы VVT-i 1NZ-FE

Верхняя точка — TDC, она же ВМТ — верхняя мертвая точка.

Нижняя точка BDC она же НМТ — нижняя мертвая точка

Черной стрелкой обозначено открытие выпускного клапана — открывается он за 42 градуса до НМТ во время горения ТВС, закрывается на 2 градуса позже верхней мертвой точки, во время впуска.

Белая стрелка — впускной клапан. Причем стрелки две, одна соответствует максимально раннему открытию 33 градуса до ВМТ, вторая максимально позднему 7 градусов после ВМТ. В первом случае перекрытие клапанов составляет 35 градусов, во втором перекрытия совсем нет.

Режимы работы двигателя

1. Холостой ход

В этом режиме нужна стабильная работа на самых низких из возможных оборотов.

2. Низкие обороты и низкая нагрузка (режим обычной спокойной езды)

При спокойной езде давление во впускном коллекторе низкое, обороты небольшие. В этом режиме открытие клапанов сдвигается в раннюю стороу. Из-за низкого давления во впуске часть газов попадает во впуской коллектор, но благодаря достаточным оборотам нестабильности в работе двигателя не возникает. Мы получаем эффект ЕГР – рециркуляции выхлопных газов, когда часть газов из выхлопа повторно идет во впуск и догорает в камере сгорания, что положительно сказывается на расходе топлива и чистоте выхлопа.

3. Полная нагрузка

На полной нагрузке нужен максимальный момент.

Давление в коллекторе близко к атмосферному или выше, если имеет место наддув.

Во время перекрытия выхлопные газы засасывать во впуск не будет, кинетическая энергия выхлопных газов растет с повышением оборотов и улучшаются эффективность продувки и утрамбовки.

При разгоне на максимальной нагрузке на низких оборотах делаем перекрытие максимально большим, но так, чтобы не случилось перепродувки. При увеличении оборотов начинаем двигать угол в сторону более позднего закрытия впускного клапана, чтобы улучшить утрамбовку с увеличением оборотов. При этом, примерно в середине диапазона оборотов (для сток двигателя, как правило, 3500-4200) обязательно будет точка, в которой будет оптимальное по длительности время продувки и утрамбовки, и в этой точке произойдет максимальное наполнение цилиндра.

4. Полная нагрузка – большие обороты

После точки с максимальным наполнением (где максимально эффективно работает и продувка и запрессовка ТВС), наполнение начинает падать, но сдвигая впускной вал в более позднюю сторону, мы обеспечиваем увеличение времени запрессовки, тем самым обьемную эффективность и наполнение.

Где находится VVTI-клапан и как его проверить?

Устройство клапана системы VVTI автомобилей «Тойота»

Элемент состоит из корпуса. В наружной части находится управляющий соленоид, отвечающий за движение клапана. Кроме этого есть уплотнительные кольца и разъем для подключения датчика.

Общий принцип работы системы

После того как этот клапан откроется, распределительный вал повернется в определенное положение относительно шкива. Кулачки на валу имеют специальную форму, и в процессе поворота элемента впускные клапаны будут открываться немного раньше. Соответственно, позже закрываться. Это должно самым лучшим образом сказаться на мощности и крутящем моменте двигателя на высоких оборотах.

Подробное описание работы

Главный управляющий механизм системы- муфта — устанавливается на шкиву распределительного вала двигателя. Корпус его соединяется со звездочным либо зубчатым шкивом.

Ротор соединяется непосредственно с распределительным валом.

Масло из системы смазки подается с одной либо с двух сторон к каждому лепестку ротора на муфте, заставляя тем распределительный вал поворачиваться.

Когда двигатель не запущен, система автоматически устанавливает максимальные углы задержки. Они соответствуют самому позднему открытию и закрытию впускных клапанов.

Когда мотор запустится, давление масла недостаточно сильное, чтобы открыть VVTI-клапан.

Чтобы избежать любых ударов в системе, ротор соединяется с корпусом муфты штифтом, который при росте давления смазки будет отжиматься самим маслом.

Управление работой системы осуществляется посредством специального клапана.

По сигналу с ЭБУ электрический магнит при помощи плунжера начнет перемещать золотник, тем самым пропуская масло в одном либо в другом направлении.

Когда мотор остановлен, этот золотник двигается за счет пружины так, чтобы выставить максимальный угол задержки.

Чтобы повернуть распределительный вал на определенный угол, масло под высоким давлением посредством золотника подводится к одной из сторон лепестков на роторе. Одновременно с этим открывается на слив специальная полость. Она расположена с другой стороны лепестка. После того как ЭБУ поймет, что распределительный вал повернут на нужный угол, каналы шкива перекрываются и он будет далее удерживаться в этом положении.

Типовые симптомы неполадок системы VVTI

Если автомобиль не удерживает холостые обороты на одном уровне, это значит, что VVTI-клапан не работает так, как нужно. Также о различных неполадках в системе скажет «торможение» двигателя.

Часто при проблемах с этим механизмом изменения фаз отсутствует возможность мотора работать на низких оборотах.

О проблемах с клапаном может говорить ошибка P1349. Если на прогретом силовом агрегате высокие холостые обороты, автомобиль совсем не едет.

Возможные причины неисправности клапана

1. Обрывы в катушке. В данном случае элемент не сможет верно реагировать на передачи напряжения. Диагностика неисправности легко осуществляется при помощи проверки измерения сопротивления обмотки катушки датчика.

2. Заедания в штоке из-за загрязнений в канале. Избавиться от этого можно путём отмачивания или вымачивания элемента в специальных жидкостях.

Как очистить клапан?

Многие неисправности можно вылечить при помощи очистки датчика. Для начала нужно найти клапан VVTI. Где находится этот элемент, можно увидеть на фото ниже. Он обведен на картинке.

Для демонтажа датчика снимают пластиковую крышку силового агрегата. Затем снимают металлическую крышку, которая фиксирует генератор. Под крышкой будет виден нужный клапан. С него необходимо отключить электрический разъем и открутить болт. Ошибку здесь допустить очень трудно – это болт здесь единственный. Затем клапан VVTI 1NZ можно снять. Но для этого не нужно тянуть за разъем. Он очень плотно прилегает к датчику. Также на нем устанавливается резиновое уплотнительное кольцо.

Очистку можно провести с помощью жидкостей для очистки карбюраторов. Чтобы полностью прочистить систему, снимают и фильтр. Этот элемент находится под клапаном – он представляет собой заглушку, в которой имеется отверстие под шестигранник. Фильтр также нужно очищать этой жидкостью. После всех операций остается только собрать все в обратном порядке, а затем установить ремень генератора, не упираясь при этом в сам клапан.

Как проверить клапан VVTI?

Проверить, работает ли клапан, очень просто. Для этого подают на контакты датчика напряжение в 12 В. Необходимо помнить, что долго держать элемент под напряжением нельзя, так как он не может работать в таких режимах столько времени. В момент подачи напряжения шток втянется внутрь. А когда цепь разомкнется, он вернется обратно.

Если шток перемещается легко, то клапан полностью исправен. Его нужно только промыть, смазать и можно эксплуатировать. Если же он работает не так, как нужно, тогда поможет ремонт либо замена клапана VVTI.

Самостоятельный ремонт клапана

Сперва демонтируют регулирующую планку генератора. Затем снимают крепеж замка капота. Это откроет доступ к осевому болту генератора. Далее откручивают болт, который удерживает сам клапан, и снимают его. После снимают фильтр. Если последний элемент и клапан загрязнены, тогда эти детали очищают. Ремонт представляет собой проверку и смазку. Также можно заменить уплотняющее кольцо. Более серьезный ремонт не представляется возможным. Если деталь не работает, проще и дешевле заменить ее на новую.

Самостоятельная замена клапана VVTI

Часто очистка и смазка не обеспечивает необходимый результат, и тогда встает вопрос полной замены детали. К тому же многие автовладельцы после замены утверждают, что машина стала работать значительно лучше и снизился расход топлива.

Для начала снимают регулирующую планку генератора. Затем снимают крепеж замка капота и получают доступ к болту генератора. Откраивают болт, которым удерживается нужный клапан. Старый элемент можно вытащить и выбросить, а на место старого ставят новый. Затем закручивают болт, и автомобиль можно эксплуатировать.

Источники:

Понравилась статья? Расскажите друзьям: Оцените статью, для нас это очень важно:

Проголосовавших: 3 чел.
Средний рейтинг: 5 из 5.

Как работает клапан vvti

VVTI – это разработанная «Тойотой» система изменения фаз газораспределения. Если перевести эту аббревиатуру с английского языка, то данная система отвечает за интеллектуальное смещение фаз. Сейчас на современных японских двигателях установлено второе поколение механизмов. А впервые VVTI начали устанавливать на автомобили с 1996 года. Система представляет собой муфту и специальный VVTI-клапан. Последний выполняет роль датчика.

Устройство клапана системы VVTI автомобилей «Тойота»

Элемент состоит из корпуса. В наружной части находится управляющий соленоид. Он отвечает за движение клапана. Также в устройстве имеются уплотнительные кольца и разъем для подключения датчика.

Общий принцип работы системы

Главное управляющее устройство в данной системе смещения фаз газораспределения – это муфта VVTI. По умолчанию разработчики двигателя проектировали фазы открытия клапанов так, чтобы получить хорошую тягу на низких оборотах мотора. По мере роста оборотов растет и давление масла, за счет которого открывается клапан VVTI. «Тойота-Камри» и ее двигатель 2,4 литра работает по такому же принципу.

После того как этот клапан откроется, распределительный вал повернется в определенное положение относительно шкива. Кулачки на валу имеют специальную форму, и в процессе поворота элемента впускные клапаны будут открываться немного раньше. Соответственно, позже закрываться. Это должно самым лучшим образом сказаться на мощности и крутящем моменте двигателя на высоких оборотах.

Подробное описание работы

Главный управляющий механизм системы (а это муфта) устанавливается на шкиву распределительного вала двигателя. Корпус его соединяется со звездочным либо зубчатым шкивом. Ротор соединяется непосредственно с распределительным валом. Масло из системы смазки подается с одной либо с двух сторон к каждому лепестку ротора на муфте, заставляя тем распределительный вал поворачиваться. Когда двигатель не запущен, система автоматически устанавливает максимальные углы задержки. Они соответствуют самому позднему открытию и закрытию впускных клапанов. Когда мотор запустится, давление масла недостаточно сильное, чтобы открыть VVTI-клапан. Чтобы избежать любых ударов в системе, ротор соединяется с корпусом муфты штифтом, который при росте давления смазки будет отжиматься самим маслом.

Управление работой системы осуществляется посредством специального клапана. По сигналу с ЭБУ, электрический магнит при помощи плунжера начнет перемещать золотник, тем самым пропуская масло в одном либо в другом направлении. Когда мотор остановлен, этот золотник двигается за счет пружины так, чтобы выставить максимальный угол задержки. Чтобы повернуть распределительный вал на определенный угол, масло под высоким давлением посредством золотника подводится к одной из сторон лепестков на роторе. Одновременно с этим открывается на слив специальная полость. Она расположена с другой стороны лепестка. После того как ЭБУ поймет, что распределительный вал повернут на нужный угол, каналы шкива перекрываются и он будет далее удерживаться в этом положении.

Типовые симптомы неполадок системы VVTI

Итак, система должна изменять фазы работы газораспределительного механизма. Если с ней возникают какие-либо проблемы, тогда автомобиль не сможет нормально функционировать в одном либо в нескольких рабочих режимах. Можно выделить несколько симптомов, которые скажут о неисправностях.

Так, автомобиль не удерживает холостые обороты на одном уровне. Это говорит о том, что VVTI-клапан не работает так, как нужно. Также о различных неполадках в системе скажет «торможение» двигателя. Часто при проблемах с этим механизмом изменения фаз отсутствует возможность мотора работать на низких оборотах. Еще о проблемах с клапаном может говорить ошибка P1349. Если на прогретом силовом агрегате высокие холостые обороты, автомобиль совсем не едет.

Возможные причины неисправности клапана

Основных причин неисправностей клапана не так уж и много. Можно выделить две, которые встречаются особенно часто. Так, VVTI-клапан может выходить из строя по причине того, что есть обрывы в катушке. В данном случае элемент не сможет верно реагировать на передачи напряжения. Диагностика неисправности легко осуществляется при помощи проверки измерения сопротивления обмотки катушки датчика.

Вторая причина, по которой клапан VVTI (Toyota) работает неправильно или же не работает вообще – это заедания в штоке. Причиной таких заеданий может быть банальная грязь, которая со временем скопилась в канале. Также возможно, деформирована уплотняющая резинка внутри клапана. В этом случае восстановить механизм очень просто – достаточно очистить грязь оттуда. Это можно сделать с помощью отмачивания или вымачивания элемента в специальных жидкостях.

Как очистить клапан?

Многие неисправности можно вылечить при помощи очистки датчика. Для начала нужно найти клапан VVTI. Где находится этот элемент, можно увидеть на фото ниже. Он обведен на картинке.

Для демонтажа датчика снимают пластиковую крышку силового агрегата. Затем снимают металлическую крышку, которая фиксирует генератор. Под крышкой будет виден нужный клапан. С него необходимо отключить электрический разъем и открутить болт. Ошибку здесь допустить очень трудно – это болт здесь единственный. Затем клапан VVTI 1NZ можно снять. Но для этого не нужно тянуть за разъем. Он очень плотно прилегает к датчику. Также на нем устанавливается резиновое уплотнительное кольцо.

Очистку можно провести с помощью жидкостей для очистки карбюраторов. Чтобы полностью прочистить систему, снимают и фильтр. Этот элемент находится под клапаном – он представляет собой заглушку, в которой имеется отверстие под шестигранник. Фильтр также нужно очищать этой жидкостью. После всех операций остается только собрать все в обратном порядке, а затем установить ремень генератора, не упираясь при этом в сам клапан.

Как проверить клапан VVTI?

Проверить, работает ли клапан, очень просто. Для этого подают на контакты датчика напряжение в 12 В. Необходимо помнить, что долго держать элемент под напряжением нельзя, так как он не может работать в таких режимах столько времени. В момент подачи напряжения шток втянется внутрь. А когда цепь разомкнется, он вернется обратно.

Если шток перемещается легко, то клапан полностью исправен. Его нужно только промыть, смазать и можно эксплуатировать. Если же он работает не так, как нужно, тогда поможет ремонт либо замена клапана VVTI.

Самостоятельный ремонт клапана

Сперва демонтируют регулирующую планку генератора. Затем снимают крепеж замка капота. Это откроет доступ к осевому болту генератора. Далее откручивают болт, который удерживает сам клапан, и снимают его. После снимают фильтр. Если последний элемент и клапан загрязнены, тогда эти детали очищают. Ремонт представляет собой проверку и смазку. Также можно заменить уплотняющее кольцо. Более серьезный ремонт не представляется возможным. Если деталь не работает, проще и дешевле заменить ее на новую.

Самостоятельная замена клапана VVTI

Часто очистка и смазка не обеспечивает необходимый результат, и тогда встает вопрос полной замены детали. К тому же многие автовладельцы после замены утверждают, что машина стала работать значительно лучше и снизился расход топлива.

Для начала снимают регулирующую планку генератора. Затем снимают крепеж замка капота и получают доступ к болту генератора. Откраивают болт, которым удерживается нужный клапан. Старый элемент можно вытащить и выбросить, а на место старого ставят новый. Затем закручивают болт, и автомобиль можно эксплуатировать.

Заключение

Современные автомобили одновременно и хорошие, и плохие. Плохие они тем, что не каждую операцию, связанную с ремонтом и обслуживанием, можно выполнить самостоятельно. Но вот замену этого клапана своими руками выполнить можно, и это большой плюс японскому производителю.

При обслуживании своей демки столкнулся с клапаном (VVT-i) выкладываю интересную статейку может кому будет интересно освежить свои знания. Сам пока не лазил не смотрел что за «зверёк» но планирую и вылажу фотоотчёт.

При неисправности клапана симптомы следующие:
✓ на холостых держатся высокие обороты ≈ 2 тысячи;
✓ при включении передачи — обороты падают до 200-300;
✓ при кратковременном нажатии на газ — глохнет;
✓ все эти глюки появляются на прогретом моторе, а на холодную не бывает проблем.

Более подробно как всё это работает можно найти в этой статье.
Рассмотрим здесь принцип функционирования системы VVT-i второго поколения, которая применяется сейчас на большинстве двигателей.

Система VVT-i (Variable Valve Timing intelligent — изменения фаз газораспределения) позволяет плавно изменять фазы газораспределения в соответствии с условиями работы двигателя. Это достигается путем поворота распределительного вала впускных клапанов относительно вала выпускных в диапазоне 40-60° (по углу поворота коленвала).

В результате изменяется момент начала открытия впускных клапанов и величина времени «перекрытия» (то есть времени, когда выпускной клапан еще не закрыт, а впускной — уже открыт).

Исполнительный механизм VVT-i размещен в шкиве распределительного вала — корпус привода соединен со звездочкой или зубчатым шкивом, ротор — с распредвалом. Масло подводится с одной или другой стороны каждого из лепестков ротора, заставляя его и сам вал поворачиваться. Если двигатель заглушен, то устанавливается максимальный угол задержки (то есть угол, соответствующий наиболее позднему открытию и закрытию впускных клапанов).

Чтобы сразу после запуска, когда давление в масляной магистрали еще недостаточно для эффективного управления VVT-i, не возникало ударов в механизме, ротор соединяется с корпусом стопорным штифтом (затем штифт отжимается давлением масла).

Управление VVT-i осуществляется при помощи клапана VVT-i (OCV — Oil Control Valve). По сигналу блока управления электромагнит через плунжер перемещает основной золотник, перепуская масло в том или ином направлении. Когда двигатель заглушен, золотник перемещается пружиной таким образом, чтобы установился максимальный угол задержки.

Для поворота распределительного вала масло под давлением при помощи золотника направляется к одной из сторон лепестков ротора, одновременно открывается на слив полость с другой стороны лепестка. После того, как блок управления определяет, что распредвал занял требуемое положение, оба канала к шкиву перекрываются и он удерживается в фиксированном положении.

Машина Тойота Витц 1,3 VVT-i, 4-х ступенчатый автомат, 1999г, двигатель 2NZ.

Началось всё с того, что начало глючить переключение между третьей и четвёртой передачей, не могла никак включится последняя пеердача, секунды 3-4 включалась, приходилось нажимать кнопку выключения 4-й и когда скорость была около 80 руками включать её. Потом начали пропадать тормоза, точнее стал выключаться вакуумный усилитель при резком торможении, а иногда просто на сильно прогретом двигателе(от 30 мин. езды). Холостые обороты на прогретом двигателе держались около 2000 об/мин., при этом при отпущенном тормозе машина сама разгонялась свыше 40 км/ч. Вакуумник почти не работал, особенно на маленькой скорости. Причем если машина не сильно прогретая (до 30 мин езды) то все в порядке. На холостом ходу (когда её 2 часа гоняли чтобы выявить причину), проблема не появлялась. То есть появлялась она только после получаса активной езды. А вот поведение на скорости: нажимаешь педаль тормоза, вакуумник работает, нажимаешь сильнее – он резко выключается, тогда, естественно, начинаешь давить со всей силы пяткой в пол, и он снова включается. Надо ли говорить что каждое торможение напоминало езду по крутому сафари с резкими рывками. Далее, при разгоне на светофоре нажимаешь педаль газа, машина не хочет переключать передачу и разгоняться, двигатель на очень-очень низких оборотах уже вот-вот заглохнет, но, всё-таки, передача переключалась, и машина плавно и нехотя стартовала.

Никаких ошибок двигатель не выдавал. Диагностика в автосервисе (а понять, что происходит, пытались неделю) выявила только одно – где-то есть подсос воздуха в двигатель.

Нашёл на просторах России нужный вакуумный усилитель и поменял его — проблема осталась. Поменял одну катушку зажигания, с трещинкой, с 3-й на 4-ю передачу коробка стала переключаться лучше, проблема уменьшилась, но не исчезла. Перечитал кучу форумов, и, вооружившись новыми знаниями, начал применять метод научного тыка. Проверил все шланги, всё в порядке, проверил адсорбер – тоже всё в порядке. Почистил парогенератором МАП – сенсор, стало лучше, но не на много. Проверил сеточку фильтра системы VVT-i – всё в порядке. В конце концов, когда, после очередной порции ремонта, двигатель на стоянке опять начал держать обороты выше 2000, я открыл капот, встал перед машиной, смотрю на работающий двигатель и думаю – что же делать?! И тут я вспомнил, что когда я пытался снять клапан VVT-i, магнит снялся отдельно от клапана. Дай, думаю, отключу этот клапан и посмотрю, что будет. Вынимаю разъём, и, о чудо, двигатель чуть чихнул и заработал нормально!

Оказывается инженерами Тойоты всё предусмотрено, и с отключённым клапаном двигатель работает как обычный, без системы изменения фаз газораспределения. Приёмистость довольно заметно пострадала, но зато ушли абсолютно все проблемы, особенно отключение вакуумного усилителя!

Потом, когда через месяц поставил новый клапан, я уже научился по звуку и поведению машины определять момент его включения. Старый клапан включался скачком: при плавном непрерывном утапливании педали газа сначала изменений не было, потом он скачком включался и машина, как от пинка под зад, стартовала. Новый клапан включался плавно, вместе с утапливанием педали газа, с небольшим запаздыванием по положению педали. Почитав ещё форумы на просторах интернета, выяснил, что довольно часто, если двигатель при старте глохнет, виноват клапан системы VVT-i. Правда на форумах этого не написано, в основном крик «помогите», так что проблема массовая. Ещё один удачный опыт – починил таким образом (отключением клапана) тойоту короллу 2002г, глохла на старте.

Так что симптомов может быть много, а ответ один. И нигде на форумах или в статьях я не встречал информации о том, что если этот клапан отключить, то можно спокойно ездить. Расход бензина, кстати, увеличивается немного: в городе – на 0,5-1,0л/100 км, и по трассе тоже ест чуть больше – где-то на 1л, ну может 1,5л, точно не смог замерить – больно большая погрешность получилась, но зато выяснил, что расход довольно сильно зависит от количества и интенсивности разгонов (сильнее чем с работающим клапаном).

Как работает система изменения фаз газораспределения?

Современные автомобили оснащены всеми типами датчиков и устройств, а также имеют центральную компьютерную систему для бесперебойной работы. Под капотом происходит так много всего, и вам даже не нужно знать функции половины из этих частей. Однако, если вы автолюбитель, вы должны знать о некоторых важных компонентах, и система изменения фаз газораспределения (VVT) является одним из них.

Определение регулируемых фаз газораспределения

Системы изменения фаз газораспределения видны в камере внутреннего сгорания двигателя.Он выполняет работу по изменению момента открытия и закрытия клапана и работает вместе с системой подъема клапана.

Этот компонент важен, поскольку его правильное использование может улучшить работу двигателя, повысить топливную экономичность и снизить выбросы.

Система изменения фаз газораспределения. (Источник фото: Picasa)

Двухтактные двигатели не имеют VVT, но в них используются системы клапанов привода для обеспечения тех же характеристик.

Важные части VVT

Вся система VVT и ее компоненты зависят от циркуляции моторного масла.Если возникнут проблемы с потоком масла, все детали могут выйти из строя.

Двумя наиболее важными частями этой системы являются:

Соленоиды

Каждый распределительный вал имеет соленоид, который воздействует на давление масла в распределительном валу. Он может изменять давление в зависимости от нагрузки и скорости двигателя. Это также помогает добиться правильной работы двигателя за счет увеличения или блокировки положения кулачка.

Этот компонент может выйти из строя по двум причинам — нерегулярная замена масла в фильтрах и двигателе и низкий уровень масла в двигателе.

ПОДРОБНЕЕ:

Звездочки

Это устройство, также известное как фазер кулачка, обеспечивает максимальную кривую крутящего момента и увеличивает мощность двигателя. Это гарантирует, что ваш автомобиль получит максимальную производительность от двигателя при меньшем выбросе углекислого газа.

Как работает система изменения фаз газораспределения?

Внутри камеры сгорания двигателя находится несколько клапанов. Они отвечают за контроль потока газа, входящего и выходящего из цилиндра сгорания.Без VVT синхронизация всех клапанов будет одинаковой для каждого состояния и скорости двигателя. Это снижает производительность, потому что время должно адаптироваться к этим факторам. Система изменения фаз газораспределения позволяет изменять фазы газораспределения в зависимости от частоты вращения и состояния двигателя.
Существует два основных типа систем VVT. Посмотрим:

VVT в действии. (источник фото: philipus / 123RF)

Cam Phasing

Он поворачивает распределительный вал в диапазоне 60 градусов для повышения или контроля подъема клапана.Например, клапан может открываться и закрываться при 5 и 185 градусах коленчатого вала соответственно до и после верхней мертвой точки. Если синхронизация клапана ограничивает события подъема на 10 градусов, клапан откроется и закроется на 10 градусов позже, соответственно. Это поможет двигателю выработать лучшую мощность на высоких оборотах, в то время как опережение синхронизации увеличит мощность на низких оборотах.

Кулачок сменный

Изменяет угол наклона фазы распредвала к коленчатому валу вместе с формой выступов распредвала.Эти изменения влияют на открытие клапана и время, на которое он будет оставаться открытым. Такое изменение времени работы клапанов помогает автомобилю достичь максимальной эффективности.

Регулируемая синхронизация клапана (VVT)

Регулируемый клапан ГРМ (VVT)

Базовый Теория

После мультиклапанная технология стала стандартом в конструкции двигателя, регулируемые фазы газораспределения становится следующим шагом к увеличению мощности двигателя, независимо от мощности или крутящего момента.

Как ты знаете, клапаны активируют дыхание двигателя. Время дыхания, которое время впуска и выпуска воздуха регулируется формой и фазой угол кулачков. Чтобы оптимизировать дыхание, двигатель требует разных фаз газораспределения на разных оборотах. Когда обороты увеличиваются, продолжительность такта впуска и выпуска уменьшается, так что свежий воздух не достаточно быстро, чтобы попасть в камеру сгорания, при этом выхлоп становится не быстрым достаточно, чтобы покинуть камеру сгорания.Поэтому лучшее решение — открыть впускные клапаны раньше и закрытие выпускных клапанов позже. Другими словами, Перекрытие между периодом впуска и периодом выпуска должно быть увеличивается с увеличением оборотов.


Без переменной Технология Valve Timing, инженеры использовали для выбора лучшего компромиссного времени. Например, фургон может иметь меньшее перекрытие из-за преимущества низкой скорости. выход.Гоночный двигатель может иметь значительное перекрытие для высокой скорости мощность. Обычный седан может принять оптимизацию фаз газораспределения. для средних оборотов, так что и управляемость на низких скоростях, и выход на высоких скоростях будут не нужно слишком много жертвовать. Независимо от того, какой из них, результат просто оптимизируется для конкретной скорости.

с Регулируемая синхронизация клапана, мощность и крутящий момент могут быть оптимизированы в широком диапазоне оборотов. Наиболее заметные результаты:

    • Двигатель может вращаться выше, тем самым повышается пиковая мощность.Например, 2-литровый Neo VVL от Nissan. мощность двигателя на 25% больше пиковой мощности, чем у его версии без VVT.
    • Низкоскоростной крутящий момент увеличивается, тем самым улучшая управляемость. Например, двигатель Fiat Barchetta 1.8 VVT обеспечивает максимальный крутящий момент 90%. от 2000 до 6000 об / мин.


Причем все эти преимущества приходят без каких-либо недостатков.

переменная Подъемник

В некоторых конструкции, высота подъема клапана также может изменяться в зависимости от частоты вращения двигателя.На высоком скорость, более высокий подъем ускоряет впуск и выпуск воздуха, таким образом, еще больше оптимизируя дыхание. Конечно, на меньшей скорости такой подъемник вызовет противодействующие эффекты, такие как ухудшение процесса смешивания топлива и воздух, что снижает мощность или даже приводит к пропускам зажигания. Поэтому подъемник должен изменяться в зависимости от частоты вращения двигателя.

1) Кулачок сменный VVT

Honda впервые применила VVT для дорожных автомобилей в конце 80-х. запустив свою знаменитую систему VTEC (Valve Timing Electronic Control).Первый появился в Civic, CRX и NS-X, затем стал стандартным для большинства моделей.

Можно рассматривайте это как 2 набора кулачков разной формы, чтобы обеспечить различное время и поднимать. Один комплект работает на нормальной скорости, скажем, ниже 4500 об / мин. Другой заменяет на более высокой скорости. Очевидно, такая компоновка не допускает непрерывного изменение фаз газораспределения, поэтому двигатель работает скромно ниже 4500 об / мин, но выше этого он внезапно превратится в дикое животное.

Это Система действительно улучшает пиковую мощность — она ​​может поднять красную линию почти до 8000 об / мин. (даже 9000 об / мин в С2000), как двигатель с гоночными распредвалами, и увеличить максимальную мощность на целых 30 л.с. за 1.6-литровый двигатель !! Тем не мение, чтобы использовать такой прирост мощности, вам нужно поддерживать кипение двигателя на уровне выше пороговые обороты, поэтому требуется частое переключение передач. Как низкоскоростной крутящий момент слишком мало (помните, кулачки нормального двигателя обычно 0-6000 об / мин, при этом «медленные кулачки» двигателя VTEC еще должны обслуживать на 0–4500 об / мин), ходовые качества не будут слишком впечатляющими. Коротко, Система кулачкового переключения лучше всего подходит для спортивных автомобилей.

Honda уже улучшил свой 2-ступенчатый VTEC до 3-ступенчатого для некоторых моделей.Конечно, чем больше в нем ступеней, тем более утонченным он становится. Он по-прежнему предлагает менее широкий распространение крутящего момента, как и в других бесступенчатых системах. Однако кулачковый система остается самой мощной VVT, так как никакая другая система не может изменить Lift клапана как это делает.

Преимущество:

Мощный на верхнем конце

Недостаток:

2 или только 3 этапа, непостоянно; нет значительного улучшения крутящего момента; комплекс

Кто используй это ?

Honda VTEC, Mitsubishi MIVEC, Nissan Neo VVL.

Хонды последний 3-ступенчатый VTEC был применен в Civic sohc двигатель в Японии. Механизм имеет 3 кулачка с разным синхронизирующим и подъемным профилем. Обратите внимание, что их размеры тоже разные — средний кулачок (быстрый тайминг, высокий подъем), как показано на диаграмме выше, является самым большим; кулачок правой стороны (медленный ГРМ, средний подъем) среднего размера; левый кулачок (медленный выбор времени, низкий лифт) самый маленький.

Это механизм работает так:

Этап 1 (низкая скорость): 3 шт. коромысел перемещается самостоятельно. Поэтому левый коромысел, который приводит в действие левый впускной клапан приводится в действие левым кулачком пониженного подъема. Правая коромысла, которая приводит в действие правый впускной клапан, приводится в движение правым кулачком среднего подъема. Оба синхронизация кулачков относительно медленная по сравнению со средним кулачком, который не срабатывает. клапан сейчас.

Этап 2 (средняя скорость) : гидравлическое давление (на картинке окрашен в оранжевый цвет) соединяет левую и правую коромысла вместе, оставляя среднюю коромысло и кулачок работать самостоятельно.Поскольку правый кулачок больше, чем левый, эти соединенные коромысла на самом деле приводится в движение правым кулачком. В результате оба впускных клапана работают медленно, но средний лифт.

Этап 3 (высокая скорость): гидравлическое давление соединяет все 3 коромысла вместе. Поскольку средний кулачок самый большой, оба впускных клапаны фактически приводятся в движение этим быстрым кулачком. Таким образом, быстрое время и высокий подъем достигается в обоих клапанах.

Очень похож на систему Хонды, но правильный и левые кулачки с таким же профилем.На малой скорости приводятся оба коромысла. независимо от этих медленных, малоподъемных правого и левого кулачков. На высоком скорости, 3 коромысла соединены вместе таким образом, что они приводятся в движение быстродействующий средний кулачок с высоким подъемом.

Вы может подумать, что это должна быть двухступенчатая система. Нет это не так. Начиная с Nissan Neo VVL дублирует такой же механизм в выпускном распредвале, может быть 3 ступени получается следующим образом:

Этап 1 (низкая скорость): как впускной, так и выпускной клапаны находятся в медленном состоянии.
Stage 2 (средняя скорость): быстро конфигурация впуска + конфигурация медленного выпуска.
Этап 3 (высокая скорость): оба впускные и выпускные клапаны в быстрой комплектации.

2) Кулачок VVT

Кулачковый VVT — самый простой, дешевый и наиболее часто используемый механизм на данный момент. Тем не менее, его прирост производительности также минимален, очень действительно справедливо.

В основном, он изменяет фазу газораспределения, изменяя фазовый угол распредвалов.Для Например, на высоких оборотах распредвал впускных клапанов будет повернут заранее на 30, так что для более раннего приема. Это движение контролируется системой управления двигателем. система в соответствии с потребностями и приводится в действие шестернями гидравлического клапана.

Обратите внимание, что фаза кулачка VVT не может изменять длительность. открытия клапана. Он просто позволяет раньше или позже открыть клапан. Ранее открыт приводит, конечно, к более раннему закрытию. Он также не может изменять подъем клапана, в отличие от кулачковый VVT.Однако VVT с фазированием кулачка — самая простая и дешевая форма VVT, потому что каждому распределительному валу нужен только один гидравлический привод фазирования, в отличие от другие системы, использующие индивидуальный механизм для каждого цилиндра.

Непрерывный или дискретный

Проще фазировка кулачка VVT имеет 2 или 3 фиксированных угла сдвига на выбор, например как 0 или 30. Лучшая система имеет непрерывное переключение переменной, скажем, любое произвольное значение от 0 до 30, зависит от оборотов.Очевидно, это обеспечивает наиболее подходящие фазы газораспределения на любой скорости, таким образом значительно повысить гибкость двигателя. Более того, переход настолько гладкий, что практически незаметен.

Впускной и выхлоп

Некоторые дизайн, такой как система BMW Double Vanos, имеет фазовращение VVT как на впускном, так и на выпускном распредвалах, это дает больше перекрытие, следовательно, более высокая эффективность. Это объясняет, почему BMW M3 3.2 (100 л.с. / литр) более эффективен, чем его предшественник M3 3.0 (95 л.с. / литр), VVT которого ограничены впускными клапанами.

В E46 3-й серии, Двойной Ванос сдвигает впуск распредвал в пределах максимального диапазона 40. Выпускной распредвал 25.

Преимущество:

Дешево и простой, непрерывный VVT улучшает передачу крутящего момента на всем обороте диапазон.

Недостаток:

Отсутствие переменного подъема и переменной продолжительности открытия клапана, что снижает мощность на верхнем конце чем кулачковый VVT.

Кто используй это ?

Мост автопроизводители, такие как:

Audi V8 — впускной, 2-ступенчатый дискретный

BMW Double Vanos — впуск и выпуск, непрерывный

Феррари 360 Модена — выхлоп, 2-ступенчатый дискретный

Fiat (Альфа) СУПЕР ПОЖАР — впускной, 2-ступенчатый дискретный

Ford Puma 1.7 Zetec SE — впускной, 2-ступенчатый дискретный

Jaguar AJ-V6 и обновленный AJ-V8 — впускной, непрерывный

Lamborghini Diablo SV двигатель — впускной, 2-ступенчатый дискретный

Porsche Variocam — впускной, 3-ступенчатый дискретный

Рено 2.0-литровый — впускной, 2-ступенчатый дискретный

Toyota VVT-i — впускной, непрерывный

Volvo 4/5/6 цилиндров модульные двигатели — впускные, непрерывного действия

По картинке легко понять его работу. Конец распределительный вал имеет зубчатую резьбу. Нить соединена колпачком, который может двигайтесь по направлению к распределительному валу и от него. Поскольку резьба шестерни не в параллельно оси распределительного вала, фазовый угол сместится вперед, если крышка толкнул в сторону распредвала.Аналогичным образом снимаем колпачок с распредвала. приводит к сдвигу фазового угла назад.

Ли толкать или тянуть определяется гидравлическим давлением. Есть 2 камеры рядом с крышкой, и они заполнены жидкостью (эти камеры окрашены в зеленый и желтый цвета соответственно на картинке) Тонкий поршень отделяет Эти 2 камеры, первая жестко крепится к крышке. Жидкость попадает в камеры через электромагнитные клапаны, которые регулируют гидравлическое давление действующие на какие камеры.Например, если система управления двигателем сигнализирует клапан в зеленой камере открывается, затем гидравлическое давление действует на тонкую поршень и подтолкните его вместе с крышкой к распределительному валу, таким образом сдвинуть фазовый угол вперед.

Непрерывный вариацию по времени легко реализовать, поместив колпачок на подходящую расстояние в зависимости от оборотов двигателя.


Макрос иллюстрация привода фазирования

Toyota VVT-i (Регулируемая синхронизация клапана — Интеллектуальная) распространяется на все больше и больше его модели, от крошечного Yaris (Vitz) к Supra.Его механизм более или менее такой же, как у BMW Vanos, но это также бесступенчатая конструкция.

Однако слово «Integillent» подчеркивает умный программа управления. Не только меняет время в зависимости от оборотов двигателя, но и рассмотрите другие условия, такие как ускорение, подъем или спуск.

3) Замена кулачка + Кулачковый Фазинг VVT

Комбинация VVT с переключением кулачков и VVT с фазированием кулачка может удовлетворить требование максимальной мощности и гибкости на всем обороте диапазон, но он неизбежно более сложен.На момент написания только Toyota и Porsche имеют такие конструкции. Однако я верю, что в будущем будет все больше и больше спортивных автомобилей. принять на вооружение этот вид VVT.

Toyota VVTL-i это самая сложная конструкция VVT на сегодняшний день. Его мощные функции включают:

    • Непрерывный фаза газораспределения регулируемая фаза газораспределения
    • 2-ступенчатая переменная подъем клапана плюс продолжительность открытия клапана
    • Применяется к обоим впускные и выпускные клапаны


Система может быть рассматривается как комбинация существующих VVT-i и Honda VTEC, хотя механизм вариатора отличается от Хонда.

Нравится VVT-i, изменение фаз газораспределения реализовано сдвиг фазового угла всего распределительного вала вперед или назад с помощью Гидравлический привод закреплен на конце распредвала. Время рассчитывается системой управления двигателем с частотой вращения двигателя, ускорением, при подъеме или спуске и т. д. с учетом. Более того, изменение непрерывно в широком диапазоне до 60, поэтому Одна только переменная синхронизация — это, пожалуй, самый совершенный дизайн на сегодняшний день.

Что делает VVTL-i лучше обычного VVT-i — это буква «L», что означает «подъем» (подъем клапана). как всем известно. Давайте посмотрим на следующую иллюстрацию:

Как и VTEC, в системе Toyotas используется одиночный качающийся рычаг. толкатель для приведения в действие обоих впускных клапанов (или выпускных клапанов). Он также имеет 2 камеры лепестки действуют на толкатель коромысла, лепестки имеют другой профиль — один с более длительным профилем времени открытия клапана (для высокой скорости), другой с более короткий профиль продолжительности открытия клапана (для низкой скорости).На низкой скорости медленный кулачок приводит в действие толкатель коромысла через роликовый подшипник (для уменьшения трения). Высокоскоростной кулачок не влияет на толкатель коромысла, потому что под его гидравлическим толкателем имеется достаточный зазор.

<Плоский крутящий момент выход (синяя кривая)

Когда скорость увеличилась до пороговой, скользящий штифт толкается гидравлическое давление для заполнения промежутка. Включается высокоскоростной кулачок.Обратите внимание, что быстрый кулачок обеспечивает более длительное открытие клапана, в то время как скользящий штифт увеличивает подъем клапана. (для Honda VTEC как продолжительность, так и подъемная сила равны реализуется кулачками)

Очевидно, переменная продолжительность открытия клапана является двухступенчатой ​​конструкцией, в отличие от непрерывной конструкции Rover VVC. Однако VVTL-i предлагает регулируемый подъемник, что значительно увеличивает его выходную мощность на высоких скоростях. Сравнивать с Honda VTEC и аналогичными конструкциями для Mitsubishi и Nissan система Toyotas имеет бесступенчатую регулировку. фаза газораспределения, которая помогает ему достичь гораздо лучших низких и средних оборотов гибкость.Поэтому это, несомненно, лучший VVT на сегодняшний день. Однако это также более сложный и, вероятно, более дорогой в сборке.

Преимущество:

Непрерывный VVT улучшает передачу крутящего момента во всем диапазоне оборотов; Регулируемый подъемник и длительность подъема на высоких оборотах.

Недостаток:

Подробнее сложный и дорогой

Кто используй это ?

Тойота Селика GT-S

Variocam Plus использует гидравлический фазирующий привод и регулируемые толкатели

Variocam из 911 Carrera

использует цепь привода ГРМ для

фазировка кулачка.


Porsches Variocam Plus, как сообщается, был разработан на основе Variocam, который обслуживает Carrera. и Боксстер. Однако я нашел их механизмы практически ничего не поделитесь. Variocam был первым введен в 968 в 1991 году. В нем использовалась цепь привода ГРМ для изменения фазового угла распределительного вала, при этом предусмотрена 3-ступенчатая система изменения фаз газораспределения. 996 Carrera и Boxster также используют ту же систему. Этот дизайн уникальный и запатентованный, но на самом деле он уступает гидравлическому приводу, который предпочитают другие автопроизводители, особенно он не позволяет столько же вариаций фазового угла.

Следовательно, Variocam Plus, используемый в новом 911 Turbo, наконец Follow использует популярный гидравлический привод вместо цепи. Один известный Эксперт Porsche охарактеризовал систему изменения фаз газораспределения как непрерывную, но, похоже, противоречит официальному заявлению, сделанному ранее, в котором раскрывается система имеет 2-х ступенчатые фазы газораспределения.

Однако Самым значительным изменением «Плюса» является добавление регулируемый подъем клапана. Это реализуется за счет использования регулируемых гидравлических толкателей.В виде Как показано на рисунке, каждый клапан обслуживается 3 кулачками, центральная часть имеет очевидно меньший подъем (всего 3 мм) и меньшее время открытия клапана. В Другими словами, это «медленный» кулачок. Два наружных выступа кулачка точно так же, с быстрой синхронизацией и большим подъемом (10 мм). Выбор камеры лепестки выполнены регулируемым толкателем, который на самом деле состоит из внутреннего толкатель и внешний (в форме кольца) толкатель. Они могли быть заперты вместе проходящий через них штифт с гидравлическим приводом.Таким образом, «быстрый» выступы кулачка приводят в действие клапан, обеспечивая высокий подъем и длительное открытие. Если толкатели не заблокированы вместе, клапан будет приводиться в действие «медленный» выступ кулачка через внутренний толкатель. Внешний толкатель будет двигаться независимо от толкателя клапана.

Как Как видно, механизм регулируемого подъема необычайно прост и экономит место. В регулируемые толкатели лишь немного тяжелее обычных толкателей и зацепляются почти не осталось места.

Тем не менее, на данный момент Variocam Plus предлагается только для впускные клапаны.

Преимущество:

VVT улучшает передачу крутящего момента на низкой / средней скорости; Переменный подъем и продолжительность подъемник на высоких оборотах.

Недостаток:

Подробнее сложный и дорогой

Кто используй это ?

Порше 911 Турбо

4) Ровера уникальный Система ВВЦ

Rover представил собственные системные вызовы VVC (Variable Valve Control) в MGF в 1995 г.Многие эксперты считают его лучшим VVT по универсальности. способность — в отличие от кулачкового VVT, он обеспечивает плавную регулировку времени, таким образом улучшается передача крутящего момента на низких и средних оборотах; и в отличие от кулачкового VVT, он может увеличивать продолжительность открытия клапанов (и непрерывно), тем самым увеличивая мощность.

В основном, VVC использует эксцентриковый вращающийся диск для привода впускных клапанов каждых двух цилиндр. Поскольку эксцентричная форма создает нелинейное вращение, открытие клапанов период можно варьировать.Все еще не понимаете? ну, любой хитрый механизм должен трудно понять. В противном случае Rover будет не единственным автопроизводителем, использующим Это.

ВВЦ имеет один недостаток: поскольку каждый отдельный механизм обслуживает 2 соседних цилиндра, Для двигателя V6 нужно 4 таких механизма, а это недешево. V8 тоже нужно 4 таких механизм. V12 невозможно установить, так как недостаточно места для установите эксцентриковый диск и ведущие шестерни между цилиндрами.

Преимущество:

Постоянно изменяемые сроки и продолжительность открывания позволяют добиться как управляемости, так и высокой скорость мощность.

Недостаток:

Нет в конечном итоге такой же мощный, как VVT с переключением кулачков, из-за отсутствия переменной поднимать; Дорого для V6 и V8; невозможно для V12.

Кто используй это ?

Ровер Двигатель 1.8 VVC, обслуживающий MGF, Caterham и Lotus Elise 111S.

EGR (рециркуляция выхлопных газов) принятый метод снижения выбросов и повышения топливной экономичности.Однако это VVT действительно раскрывает весь потенциал системы рециркуляции отработавших газов.

В Теоретически необходимо максимальное перекрытие между впускными и выпускными клапанами открывается всякий раз, когда двигатель работает на высоких оборотах. Однако когда машина работает на средней скорости по шоссе, другими словами, двигатель работает на небольшая нагрузка, максимальное перекрытие может быть полезно как средство уменьшения расхода топлива потребление и выбросы. Поскольку выпускные клапаны не закрываются, пока впускные клапаны были открыты некоторое время, некоторые выхлопные газы рециркулируют обратно в цилиндр одновременно с впрыскивается новая топливно-воздушная смесь.В составе топливно-воздушной смеси заменяется на выхлопные газы, нужно меньше топлива. Поскольку выхлопные газы состоят в основном из негорючий газ, такой как CO2, двигатель работает нормально на бедном топливе / воздушная смесь не загорается.

Что такое система изменения фаз газораспределения и как она на самом деле работает?

VVT расшифровывается как Variable Valve Timing:

Попробуем разобраться вначале, почему нужно варьировать Valve Timing / VVT?

Во-первых, сначала прочтите здесь, что такое «Регулировка фаз газораспределения двигателя»? Автомобильный двигатель фактически «дышит» (вдыхает / выдыхает) через свои клапаны, как это делают люди.Скорость, с которой люди дышат, в основном зависит от работы, выполняемой людьми. Например, если человек сидит или спит, он будет дышать медленнее, чем при ходьбе или беге. Кроме того, при занятиях плаванием или поднятием тяжестей людям также необходимо открывать рот, чтобы получить больше воздуха.

Это происходит потому, что когда человеческое тело подвергается тяжелой работе, увеличивается потребность во всасывании воздуха. Таким образом, это вызывает более быстрое дыхание и / или более широкое открытие рта для получения большего количества воздуха.Аналогично, когда двигатель работает на высоких оборотах; ему необходимо открывать впускные клапаны раньше, быстрее и на более длительный период. Это связано с тем, что для выработки большей мощности он должен всасывать больше топливовоздушной смеси (заряда) для горения.

В более старых традиционных двигателях время, в течение которого клапаны оставались открытыми, было оптимизировано только для одной скорости двигателя. Однако по мере увеличения частоты вращения значительно сокращается время, необходимое для полного заполнения цилиндров, в результате чего двигатель будет получать меньшее количество заряда (воздушно-топливной смеси), что приводит к потере мощности, особенно когда двигатель работает на высоких оборотах. скорость.

Чтобы преодолеть этот недостаток, инженеры разработали VVT или механизм «регулируемого времени клапана». VVT изменяет время открытия и закрытия клапанов для нескольких оборотов двигателя. На высокой скорости впускные клапаны открываются гораздо раньше, так что в цилиндры поступает больше топливовоздушной смеси или «заряда». Это помогает улучшить «дыхание» двигателя, что также в значительной степени улучшает его «объемный КПД».

Как работает VVT?

Система изменения фаз газораспределения дополнительно оптимизирует время открытия и закрытия клапанов для нескольких оборотов двигателя.В конструкции VVT первого поколения используется двухступенчатая вариация, которая оптимизирует двигатель для двух различных скоростей вращения. Эта конструкция позволяет использовать два разных набора таймингов, включая один для состояния «частичной нагрузки», то есть до 3500 об / мин, и другой для состояния «полной нагрузки», то есть выше 3500 об / мин. Кроме того, VVT чаще повышает производительность и снижает выбросы. Кроме того, VVT предлагает лучшее из обоих миров. Таким образом, он обеспечивает плавный холостой ход на низких оборотах и ​​максимальную мощность на высоких оборотах.

Диаграмма изменения фаз газораспределения

Кроме того, в конструкции VVT нового поколения реализована система непрерывной регулировки фаз газораспределения или CVVT.Кроме того, CVVT непрерывно (или бесконечно) изменяет фазы газораспределения, которые в цифровом виде контролируются ЭБУ двигателя. Кроме того, он оптимизирует фазы газораспределения для всех оборотов двигателя и условий. Хотя существуют разные механизмы для достижения изменения, это в основном достигается за счет использования «распределительного вала с изменяемой синхронизацией» и соленоидных клапанов.

Кроме того, в CVVT используется гибкое гидравлическое соединение между распределительным валом и его звездочкой. Он приводится в действие давлением моторного масла и электромагнитным клапаном управления маслом, которым управляет ЭБУ двигателя.Кроме того, он перемещает распределительный вал вперед и опережает время открытия впускных клапанов. Некоторые более продвинутые конструкции используют «Dual» системы, то есть «Dual VVTi» — по одной для независимого изменения времени впускного и выпускного клапана.

Двойной двигатель VVTi (изображение любезно предоставлено Toyota)

Что такое VVL / VVEL / VVTL?

Термин VVL означает « Variable Valve Lift », а VVEL означает « Variable Valve Event and Lift ». Термин VVTL означает « Variable Valve Timing and Lift », который представляет собой усовершенствованную систему поддержки для изменения «подъема» клапанов.В настоящее время система «VVL» все чаще используется в сочетании с системами «Variable Valve Timing» (VVT) для повышения производительности.

Кроме того, эта конструкция также изменяет подъем (или ход) впускных клапанов вместе с фазами газораспределения в зависимости от частоты вращения двигателя. Таким образом, он обеспечивает « малоподъемный » впускных клапанов на холостом ходу или малых скоростях и « высокий подъем » на высоких скоростях. Также он обеспечивает точное управление клапанами при открытии / закрытии. Кроме того, чтобы соответствовать более строгим нормам выбросов, производители разработали множество других вспомогательных систем.Это электромеханические или электрогидравлические подъемники клапанов, системы без кулачковых клапанов и т. Д.

VVL: Схема регулируемого подъема клапана

Кроме того, разные производители используют специальные сокращения для своих систем VVT, а именно:

Сокращения

SL. Сокращение

Полная форма

Компания

1 CVVT

Непрерывная регулировка фаз газораспределения

Рено

2 CVVT

Непрерывная регулировка фаз газораспределения

Volvo

3 ДКТ

Регулируемая синхронизация кулачка

Форд

4 VVT

Регулируемая синхронизация клапана

Сузуки

5 VVT

Регулируемая синхронизация клапана

Фольксваген

6 DCVCP

Двойной непрерывный регулируемый кулачок с фазированием

GM

7 VVTi

Регулируемая синхронизация клапана (интеллектуальная)

Тойота

8 VTVT

Переменная синхронизация и клапанный механизм

Hyundai

9 Н-ДКТ

Nissan-Variable Cam Timing

Nissan

10 S-VT

Последовательная синхронизация клапана

Мазда

11 MIVEC

Инновационная электронная система управления фазами газораспределения Mitsubishi

Мицубиси

12 i-VTEC

Intelligent — Электронное управление с регулируемой синхронизацией клапана и подъемом

Хонда, Акура

13 Camtronic

Мерседес Бенц

14 VANOS

Переменный Nockenwellensteuerung

BMW

15 Клапанный подъемник

Audi

16 VarioCam

Порше

Кроме того, посмотрите анимацию Honda i-vtec здесь:

Подробнее: Что такое синхронизация клапанов двигателя? >>

О компании CarBikeTech

CarBikeTech — технический блог.Его члены имеют опыт работы в автомобильной сфере более 20 лет. CarBikeTech регулярно публикует специальные технические статьи по автомобильным технологиям.

Посмотреть все сообщения CarBikeTech

(VVT) Регулируемая синхронизация клапанов — как это работает

(VVT) Регулируемая синхронизация клапанов — как это работает — как она может выйти из строя

(VVT) Регулируемая синхронизация клапанов — это 2-ступенчатая система фазирования кулачков с гидравлическим управлением.

Так как двигатели совершенствуются и становятся дешевле; (VVT) система изменения фаз газораспределения, продолжает улучшать производительность и экономичность.
В настоящее время производители внедрили различные (VVT) системы регулирования фаз газораспределения, конструктивные подходы и технологии. Самое главное контролировать фазы газораспределения и как долго; впускной и выпускной клапаны остаются открытыми.

Система изменения фаз газораспределения (VVT) использует давление моторного масла для изменения положения впускного распредвала. Как следствие, оптимизация фаз впускных клапанов для условий эксплуатации. Примечание: учитывается только потребление.

Также, в зависимости от потребностей двигателя, система может вращать распределительный вал; в опережающем или запаздывающем направлении.Регулировка времени перекрытия между закрытием выпускного клапана и открытием впускного клапана; приводит к повышению эффективности двигателя.

(VVT) Технология изменения фаз газораспределения, контролирует три ключевые характеристики; впускных и выпускных клапанов:

  • Выбор фаз газораспределения — точки движения поршня, в которых клапаны открываются и закрываются.
  • Продолжительность — Как долго клапаны остаются открытыми.
  • Высота подъема клапана — насколько физически открываются клапаны (их отверстие для открытия).

Для этого используются различные датчики, например датчики расхода воздуха и положения распредвала; передать информацию в автомобиль (ECU). Наконец, с помощью различных механизмов для управления вышеупомянутыми характеристиками клапана.

Итак, как работает (VVT) регулируемый клапан синхронизации
(VVT) система изменения фаз газораспределения, изменяет время подъема клапана; для повышения производительности и экономичности в определенных дорожных ситуациях.
(VVT) Зубчатый механизм регулируемого клапана

Визуализируйте это как полую закрытую шестерню внутри; где две звездообразные шестерни размещены одна внутри другой.Наружная шестерня — это соединение шестерни распределительного вала; к ремню или цепи, которая его приводит. Внутренняя шестерня соединяется с самим распредвалом. Обычно они сцеплены друг с другом, зубчатое колесо против зубца и вращаются с одинаковой скоростью.

Таким образом, при введении давления масла шестерни можно разъединить. Следовательно, меняют свои скорости относительно друг друга на мгновение. Наконец, это увеличивает или уменьшает частоту вращения распределительного вала; относительно времени привода двигателя. Кроме того, это, в свою очередь, изменяет продолжительность подъема клапана для управления впуском и выпуском.

(VVT) Регулируемая синхронизация клапана в основном бывает двух типов:
  • Одиночный — (VVT) — Постоянно изменяет фазу газораспределения впускного распредвала.
  • Dual — (VVT) — Постоянное изменение фаз газораспределения впускного и выпускного распредвала.

Итак, двойная (VVT) система помогает двигателю более эффективно «вдыхать» и «выдыхать». Следовательно, путем непрерывной регулировки фаз впускных и выпускных клапанов; для повышения мощности, топливной экономичности и выбросов выхлопных газов.

(VVT-i) — Регулировка фаз газораспределения

Кроме того, двойной (VVT) помогает обеспечить:
  • Повышенная топливная эффективность на всех оборотах двигателя.
  • Более высокий крутящий момент на низких оборотах с меньшей вероятностью «детонации» двигателя, снижающего мощность.
  • Превосходная мощность в лошадиных силах при более высоких оборотах двигателя, без лишнего шума и вибрации.
  • Пониженные выбросы на всех оборотах двигателя.

Кроме того, двойной (VVT) помогает двигателю обеспечить необходимую мощность и топливную экономичность; при сохранении оптимального качества выбросов.

Итак, в чем разница между одиночным и дуэльным (VVT)
  • Технология Single (VVT), регулирует синхронизацию только впускных клапанов.
  • Dual (VVT), регулирует как впускные, так и выпускные клапаны (двойного действия).

В обоих случаях распределительный вал имеет два профиля для впускных клапанов:

  • Экономичный профиль, (ниже 6000 об / мин).
  • Профиль производительности (выше 6000 об / мин).

Следовательно, когда (VVT) «срабатывает», давление масла оказывается на приводе; который слегка сдвигает распределительный вал, включая настройку «производительность».

(VVT) Performance Setting

Итак, с двойным (VVT) — регулируемым временем клапана происходит то же самое; разница на этот раз в том, что выпускные клапаны активированы. Теперь распределительный вал имеет по два профиля для впуска и выпуска. Двойной (VVT) также минимизирует давление сжатия при запуске / остановке; регулируя последовательность перекрытия между впускными и выпускными клапанами.

Возможность одновременного открытия как впускных, так и выпускных клапанов; также обеспечивает максимальную очистку от заряда внутри цилиндра.Обеспечение очень высокой (RPM) и огромной мощности; от того же двигателя, который может похвастаться впечатляющим крутящим моментом на низких оборотах.

Преимущества, полученные с (VVT) регулируемым клапаном синхронизации, включают:
  • Повышенная производительность и одновременно экономичность.
  • Более быстрый нагрев каталитического нейтрализатора за счет улучшенного контроля выхлопных газов.
  • Повышенная эффективность в широком диапазоне рабочих скоростей двигателя.
  • Улучшены, синхронизация двигателя.

Коды общих ошибок двигателя Чтение кодов неисправностей двигателя

Два общих кода двигателя: P0011 и P0021 (датчик положения распределительного вала «ряд 1» и датчик положения распределительного вала «ряд 2» соответственно).

Наиболее часто встречающиеся проблемы:
  • ГРМ
  • Масляный регулирующий клапан
  • Сетка фильтра масляного регулирующего клапана
  • Распредвал / шестерни
  • Разъемы электрические и провода
  • (PCM) или (ECM)

Следовательно, грязное масло может привести к накоплению осадка; которые могут засорить масляные каналы в кулачке, что приведет к выходу кулачка из строя. Таким образом, отсутствие регулярного обслуживания — большая проблема для систем (VVT).

Замена масла сейчас важнее, чем когда-либо прежде Отсутствие регулярной замены масла

Наиболее важно то, что соленоид (VVT) нуждается в чистом моторном масле для правильной работы. Итак, что происходит, когда моторное масло забивается мусором, грязью или другими инородными частицами? Он имеет тенденцию засорять проход от соленоида до цепи (VVT) и шестерни.

Следовательно, отсутствие регулярной замены масла может привести к повреждению соленоида (VVT), цепи (VVT) и зубчатой ​​передачи.Итак, чтобы избежать этой ситуации, не забудьте заменить моторное масло; в соответствии с рекомендациями производителя автомобиля. Низкий уровень масла также может вызвать проблемы с соленоидом (VVT) и другими компонентами системы газораспределения.

с (VVT) регулируемым клапаном синхронизации (у вас больше нет клапана (EGR)) Клапан рециркуляции выхлопных газов (EGR)

Итак, системы (VVT) сделали клапаны рециркуляции выхлопных газов (EGR) устаревшими. Клапаны (рециркуляции отработавших газов) возвращают во впускной коллектор смог, вызывающий оксиды азота.Следовательно, система (VVT) контролирует синхронизацию, чтобы оставить инертный газ в камере для следующего цикла сгорания. Кроме того, контроль температуры горения и образования оксидов азота.

Заключение

Итак, большинство систем (VVT) и их компонентов зависят от постоянной циркуляции моторного масла. Наконец, если возникнут какие-либо проблемы с потоком масла, многие детали могут выйти из строя.

Поделитесь, пожалуйста, машинным порталом Дэнни.com Новости
Объяснение изменения фаз газораспределения

: оценка скорости работы двигателей | Особенность

Из выпуска за август 2017 г.

Когда дело доходит до многих переменных сгорания внутри двигателя, инженеры измеряют время ключевых событий в градусах вращения коленчатого вала, относительной системе отсчета, которая остается постоянной без необходимости компенсации изменения оборотов двигателя.При отсутствии знакомой, общепринятой шкалы времени легко недооценить, насколько быстро все движется в двигателе внутреннего сгорания. Добавьте к этому возможности современной электроники и средств управления, которые оптимизируют работу клапанов, впрыск топлива и искровое зажигание для повышения мощности или эффективности, и запуск всех цилиндров зависит от точности до миллисекунды.

В качестве всего лишь одного примера, рядный шестицилиндровый двигатель BMW N55 с турбонаддувом сочетает в себе регулируемое фазирование кулачков впускных и выпускных клапанов с регулируемым подъемом впускных клапанов.На холостом ходу двигателя 725 об / мин такты впуска, сжатия, мощности и выпуска вместе происходят всего за 0,2 секунды, буквально мгновение ока. События, определяющие это горение, например, как долго клапаны остаются открытыми, происходят в течение еще меньших долей секунды. И по мере того, как двигатель приближается к максимальной частоте вращения 7000 об / мин, весь процесс сжимается в окно, которое длится примерно одну десятую от времени на холостом ходу.

Чтобы дать вам представление о том, насколько быстро движутся современные двигатели, давайте взглянем на стратегию эксплуатации N55:

Время впускных клапанов: Фазер впускного распредвала BMW inline-six может смещать профиль кулачка до 70 градусов, но продолжительность открытия 255 градусов является фиксированной.Выдержка означает полное открытие 0,006 секунды для одного такта впуска при 7000 об / мин.

N55 Регулировка фаз газораспределения

Подъем впускного клапана: Система BMW Valvetronic эффективно играет роль дроссельной заслонки, дозируя воздух в цилиндры, прежде всего в зависимости от положения педали акселератора. Он может регулировать подъем впускного клапана в пределах 0,008 дюйма (что соответствует толщине четырех страниц журнала, который вы держите) при малых нагрузках и 0.4 дюйма для полной нагрузки с помощью быстродействующего двигателя постоянного тока, который управляет поворотом толкателей с кулачковыми роликами.

Время выпускных клапанов: Путем независимого регулирования фаз газораспределения контроллер двигателя может регулировать степень перекрытия — период, когда выпускной и впускной клапаны открыты. При движении с низкой нагрузкой и постоянной скоростью это перекрытие увеличивается, чтобы позволить части инертного выхлопного газа течь обратно в цилиндр во время такта впуска, снижая температуру сгорания и образование оксидов азота.На устойчивой скорости 50 миль в час с двигателем, работающим со скоростью 1500 об / мин, максимальное перекрытие N55 длится 0,2 секунды. Для максимальной мощности на красной линии полностью минимизированное перекрытие клапанов длится всего 0,0005 секунды — время, необходимое звуку, чтобы пройти всего семь дюймов при комнатной температуре.

    Время зажигания: Время зажигания обычно увеличивается во время работы с малой нагрузкой, чтобы предотвратить детонацию бедных топливовоздушных смесей. Как на холостом ходу, так и на красной линии в N55 искра возникает примерно на шесть-восемь градусов до того, как поршень достигает верхней мертвой точки, но разница в оборотах двигателя — это разница между искрой, возникающей на 0.002 секунды и 0,0002 секунды до пика поршня. Это в 10 и 100 раз быстрее, чем взмахнуть крыльями колибри. Система также замедляет опережение зажигания, когда двигатель холодный, работая в сочетании с поздним впрыском топлива и более ранним открытием выпускного клапана, чтобы быстрее довести каталитические нейтрализаторы до рабочей температуры.

    Этот контент создается и поддерживается третьей стороной и импортируется на эту страницу, чтобы помочь пользователям указать свои адреса электронной почты.Вы можете найти больше информации об этом и подобном контенте на сайте piano.io.

    Как работает система регулировки фаз газораспределения VTEC компании Honda

    Из выпуска за август 2015 г.

    Эрозия товарных знаков может не повлиять на окружающую среду, но маркетологи отметили лексикографическое скольжение некоторых торговых марок в общие этикетки. Kleenex, Band-Aid, Xerox и Zamboni (да, другие компании производят оборудование для восстановления льда) — все претерпели преобразования, а система Honda VTEC, или электронное управление с регулируемой синхронизацией и подъемом, балансирует на грани взаимозаменяемости имени с другими регулируемыми клапанами. -системы синхронизации — в том числе некоторые из собственных вариаций на тему.

    Когда Honda начала возиться с VTEC в начале 1980-х, это вызвало революцию в области внутреннего сгорания, которая распространилась почти на все марки. В простейшей из полученных систем с изменяемой фазой газораспределения используются фазовращатели или механизмы, которые изменяют соотношение между коленчатым валом и распределительным валом (валами). Фейзеры обеспечивают диапазон регулировки, но только для фаз газораспределения. VTEC, с другой стороны, работает ступенчато, переключаясь между двумя или более отдельными профилями кулачка для изменения трех переменных: фаз газораспределения, продолжительности и подъема.

    Honda объединила миры в 2001 году, добавив эти относительно простые фазовращатели к и без того сложной системе VTEC. Начав своего рода контролируемую эрозию товарных знаков, Honda превратила VTEC в семейство отдельных систем, охватывающих различные комбинации базового набора технологий. Вот как они работают:


    VTEC

    По мере увеличения оборотов компьютер направляет поток масла (A) через коромысло. Это сдвигает штифт (B) , который блокирует коромысла (C) на низких оборотах, воздействуя на два впускных клапана каждого цилиндра, на коромысло (D) на высоких оборотах.Это третье коромысло имеет другой профиль кулачка, оптимизированный для более высоких оборотов двигателя. Ранний VTEC работал почти так же, как сегодняшняя базовая система.


    VTC

    Регулировка фаз газораспределения — это, безусловно, наиболее распространенная форма регулирования фаз газораспределения на рынке. Все, от 1,0-литрового Ford до многолитрового Ferrari, используют одинаковые фазовращатели распредвала. Эти устройства используют давление масла (A) или электродвигатель для опережения или замедления синхронизации кулачка (B) относительно положения кривошипа.


    Клапан холостого хода

    Управляет половиной впускных клапанов. На низких оборотах только один из двух впускных клапанов работает, чтобы способствовать завихрению в цилиндре для повышения эффективности сгорания и снижения выбросов при холодном запуске. По мере увеличения нагрузки и частоты вращения второй клапан (A) включается за счет давления масла (B) на штифт (C) .


    VCM

    Variable Cylinder Management отключает некоторые цилиндры двигателя, когда максимальный крутящий момент не требуется.Он разъединяет коромысла цилиндра, отсоединяя штифт (A) , аналогичный штифту VTEC, так что коромысла (B) больше не открывают клапаны, эффективно герметизируя цилиндр. Он не только сокращает поток смеси к мертвым цилиндрам, но также снижает потери на насос и трение при активации.


    Ultimate VTEC

    Инженеры давно мечтают полностью отказаться от распредвалов. Теоретически клапаны с электромагнитным управлением могут иметь бесконечную изменчивость без механических ограничений.Бескулачковый двигатель мог работать по циклу Аткинсона так же легко, как и Otto, иметь небольшое или большое перекрытие клапанов и работать на одном или на всех своих цилиндрах. Но цена, надежность, шум и другие проблемы удержали концепцию от производства. У Koenigsegg есть система в разработке, и мы ожидаем, что она будет первой, которая выведет ее на рынок — ну, во всяком случае, рынок для однопроцентников.


    Этот контент создается и поддерживается третьей стороной и импортируется на эту страницу, чтобы помочь пользователям указать свои адреса электронной почты.Вы можете найти больше информации об этом и подобном контенте на сайте piano.io.

    Электромагнитный клапан с регулируемой синхронизацией клапана (VVT)

    Другие условия производителя для соленоида VVT

    Автопроизводители, использующие соленоид VVT

    Электронная система регулирования фаз газораспределения, впервые разработанная компанией Nissan в начале 90-х годов, теперь стала почти универсальной функцией на серийных автомобилях, чтобы соответствовать более строгим нормам выбросов.

    Технология VVT может быть обычным явлением, но многие компании используют разные торговые марки и патенты для одной и той же системы.

    Многие приложения для соленоида Spectra VVT носят другое название оригинального оборудования:

    Производитель Сокращение / термин Определение
    Audi Клапанный подъемник
    BMW VANOS Переменный Nockenwellensteuerung
    Fiat MultiAir
    Форд Ti-VCT / VCT Независимая система фаз газораспределения с двумя независимыми переменными фазами газораспределения / фаза фаз газораспределения с регулируемой передачей
    Дженерал Моторс DCVCP Двойной непрерывный регулируемый кулачок с фазированием
    Хонда, Акура VTEC, я-VTEC Электронное управление с изменяемой синхронизацией клапана и подъемом
    Hyundai, Kia, Volvo CVVT Бесступенчатая регулировка фаз газораспределения
    Hyundai, Киа VTVT Клапанный механизм с регулируемым распределением фаз
    Мазда S-VT Последовательная синхронизация клапана
    Мицубиси MIVEC Система электронного управления синхронизацией клапана Mitsubishi Innovative
    Nissan, Инфинити CVTCS / VVEL Непрерывное управление синхронизацией клапана / Событие и подъем клапана переменного тока Nissan
    Nissan N-VCT / VVL Nissan Variable Cam Timing / Nissan Ecology Oriented Variable Valve Lift and Timing
    Порше VarioCam
    Тойота, Лексус VVT-i, VVTL-i Регулируемая синхронизация клапана с интеллектуальным управлением
    Субару AVCS / AVLS Активная система управления клапаном

    Общие симптомы неисправности соленоида VVT

    • Неровный холостой ход двигателя
    • Проверьте свет двигателя
    • Пропуски зажигания в двигателе под нагрузкой

    Больше информации

    Общие причины сбоев

    Загрязнения в моторном масле являются основной причиной выхода из строя системы VVT.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *