Какие двигатели бывают: виды, типы и особенности ДВС

Содержание

Типы поршневых двигателей внутреннего сгорания: виды

Автопроизводители с каждым годом разрабатывают все больше новых моторов. Они отличаются по размерам, объему и мощности.

Линейки моторов, устанавливающихся на конкретный автомобиль, пестрят ассортиментом. На одну модель производитель может предлагать до 15 вариантов двигателей. Вид топлива, лошадиные силы, количество цилиндров, наличие турбины, тип впрыска, количество клапанов — отличают моторы друг от друга. Но одним из самых главных критериев для различия двигателей является их тип. Именно его чаще всего отмечают дополнительным шильдиком на крышке багажника. Двигатели внутреннего сгорания (ДВС) можно разделить на рядные, V-образные, VR-образные, опозитные и W-образные. Также к ним можно отнести роторный мотор. Авто Информатор разобрался, в чем же характерные различия этих ДВС.

Вкратце о принципе работы самого распространенного четырехтактного поршневого двигателя внутреннего сгорания.

В таком двигателе цикл делится на 4 такта (4 хода поршня):

  1. Поршень идет вниз от верхней мертвой точки, освобождая камеру сгорания (цилиндр) и засасывая смесь из открытого впускного клапана.
  2. Поршень движется к верхней мертвой точке, сдавливая смесь. Когда поршень приближается к ней, в камеру сгорания подается искра.
  3. Свободный ход поршня. После подачи искры смесь детонирует и выдавливает поршень из камеры сгорания.
  4. Когда поршень совершает свой четвертый ход, открывается выпускной клапан, через который поршень выдавливает отработанные газы из камеры сгорания.

4 такта работы одного цилиндра ДВС

Рядный двигатель

Ход поршней в рядном ДВС (R6 — 6 цилиндров)

Один из самых простых типов двигателя. Он обозначается буквой «R» (R3, R4, R5 и так далее). В таком моторе цилиндры расположены в ряд. Их может быть от двух до шести. Самый распространенный из рядных двигателей — 4-х цилиндровый. Но в истории есть автомобили и с рядными 8-ми цилиндровыми моторами.

Их перестали устанавливать из-за большой длины. Рядные «четверки» устанавливаются почти на все машины, объем которых находится в диапазоне от 1 до 2,4 литра. «Пятерки» начали устанавливать еще в 1974 году на Mercedes-Benz W123. Позже они начали появляться на Audi, а в конце 80-х — на автомобилях Volvo и Fiat. Касаемо рядной шестерки, самым ярким носителем данного мотора является Volvo S80, с объемом 3,2 литра.

V-образный двигатель

Ход поршней в V-образном двигателе (V8 — 8 цилиндров)

Следующий по популярности после рядного мотора. В таком двигатели цилиндры расположены друг напротив друга под углом от 10° до 120° (наиболее часто 45°, 60° и 90°) в форме латинской буквы «V», с равным количеством «котлов» на обоих сторонах. В таких моторах поршни вращают один общий коленчатый вал. На шильдике буква «V» обозначает тип двигателя, а следующие за ней цифры — количество цилиндров. Такие моторы бывают V6, V8, V10, V12. (не путать с 16V или 20V, в случае когда буква «V» расположена после цифр, она обозначает количество клапанов «Valve»).

Почти всегда это машины с объемом двигателя более 3-х литров. Но бывают и меньше, например 2,8 v6 или 2,6 v6.

VR-образный двигатель

Так располагаются поршни в VR-образном двигателе

Знаменитый двигатель VR6 от Volkswagen, «V-образно-рядный» мотор (об этом и говорит обозначение VR). На таких двигателях применяется очень маленький развал блока, всего в 15°. Угол настолько мал, что такой мотор называют еще «смещённо-рядным». Самыми известными авто с таким мотором являются Golf VR6 и Passat VR6.

W-образный двигатель.

Ход поршней в W-образном двигателе (W16 — 16 цилиндров)

Этот мотор также разрабатывался компанией Volkswagen. Суть двигателя заключается в слиянии двух VR-образных моторов в один под углом 72°. Мотор W12 был презентован на концепт каре W12 Roadster. Он состоял из двух моторов VR6. Позже Volkswagen презентовал топовую версию Passat B5 с двигателем W8. Он компоновался из тех же двух VR6 моторов, только с «обрезанными» двумя цилиндрами с каждого. Самый известный W-образный мотор установлен на Bugatti Veyron. Его объем достигает 16,4 литра, а сделан он из двух моторов VR8.

Оппозитный двигатель

Ход поршней в оппозитном двигателе

Двигатель внутреннего сгорания, в котором угол между цилиндрами составляет 180°. Отличается от V-образного с развалом в 180° тем, что стоящие напротив поршни достигают верхней мертвой точки одновременно, а не поочередно. Оппозитный мотор очень активно устанавливается в автомобили марки Subaru.

Рекомендуем посмотреть наш репортаж с чемпионата по дрифту. Он прошел в Киеве на автодроме «Чайка».

Альтернативные силовые установки для транспортных средств

Двигатели внутреннего сгорания (ДВС) уже почти 200 лет служат человечеству. Однако их широкое использование оборачивается целым рядом экологических и ресурсных проблем. 26% всех выбросов антропогенных парниковых газов вызваны сжиганием ископаемого топлива. При этом более 90% топлива,  используемого для автомобилей, судов, локомотивов и самолетов, получено из нефти. При сгорании нефтепродуктов в атмосферу выделяются крайне вредные окись углерода, двуокись углерода, углеводороды, окислы азота и другие компоненты. Загрязнение воздуха выступает причиной каждой девятой смерти в мире и признано одним из крупнейших вызовов в области здравоохранения и окружающей среды. В ряде развитых стран принимаются активные меры по постепенному переводу транспорта с ДВС и расширению использования альтернативных источников топлива. Так, Германия приняла закон о запрете продажи новых автомобилей с ДВС с 2030 г. Страна планирует к 2050 г. сократить автомобильные выхлопы до нуля. Аналогичные инициативы обсуждаются в других странах ЕС, США, Индии.

Более активное использование современных альтернативных силовых установок позволит снизить объем вредных выбросов в атмосферу Земли, сократить расходы на содержание транспортных средств и увеличить их КПД. Разработка таких технологий даст возможность странам, испытывающим дефицит традиционного топлива, уменьшить свою энергетическую зависимость. Ниже рассмотрены перспективные технологии новых типов двигателей для автомобилей, работающих на альтернативном топливе: водородные и метанольные топливные элементы для электромобилей, а также двигатели внутреннего сгорания на диметиловом эфире.

Версия для печати: 

ВОДОРОДНЫЕ ТОПЛИВНЫЕ ЭЛЕМЕНТЫ ДЛЯ ЭЛЕКТРОМОБИЛЕЙ

Использование водорода в качестве топлива возможно в транпортных средствах как с ДВС, так и с водородными топивными элементами. Однако традиционные поршневые ДВС приспособить к работе на водороде и сложно, и дорого (стоимость эксплуатации и обслуживания такой водородной силовой установки примерно в 100 раз выше, чем у обычного двигателя внутреннего сгорания).

Альтернативные вариантом являются топливные элементы (ТЭ), преобразующие химическую энергию топлива в тепло и постоянный электрический ток, питающий электродвигатель или системы бортового питания транспортного средства. ТЭ представляет собой непрерывно перезаряжаемую батарею из двух покрытых катализатором электродов, между которыми находится электролит. Через один электрод подается водород, через другой — чистый кислород или кислород из воздуха, к которым постоянно добавляются химическое топливо и окислитель. Соединение водорода с кислородом обычно происходит внутри пористой полимерной мембраны. 

Водородные ТЭ намного более экологичны, эффективны (их КПД составляет 45%, современного автомобильного ДВС — 35%), надежны, способны работать при низких температурах, при этом менее габаритны. Они могут  применяться в качестве силовых установок в гибридных автомобилях, а в электромобилях — в качестве суперконденсаторов. 



 

Эффекты

  Экологичность: при сгорании водорода в двигателе образуется практически только вода

 Распределенное энергоснабжение: водород в виде неиспользованного электричестваможно применять для питания домашней электросети

 Возможное сокращение общего объема потребления нефти в секторе автомобильных перевозок на 40% к 2050 г.

Оценки рынка

70 тыс. в год 

к 2027 г. составит выпуск новых водородных автомобилей в мире 

Драйверы и барьеры

  Удобство использования автомобильной техники на ТЭ (не требуют перезарядки, моментально поставляют электроэнергию, выработка энергии ТЭ не зависит от времени суток, погодных условий и др.)

 В перспективе открытие более дешевых и эффективных катализаторов для получения водорода позволит значительно снизить стоимость производства водородных ТЭ

 Высокие затраты на выработку водорода: от $4 до $12 за килограмм в разных странах (бензин-галлоновая эквивалентная стоимость составляет от $1,60 до $4,80)

 Отсутствие автомобильной инфраструктуры

 Сложность в эксплуатации: уязвимость к ударным нагрузкам и сотрясениям, взрывоопасность, при низких температурах ТЭ требуют внешнего подогрева из-за замерзающей воды

 Отсутствие единых стандартов безопасности, хранения, транспортировки, распределения и применения водородных ТЭ






Международные

научные публикации
Международные

патентные заявки

Уровень развития

технологии в России

«Возможности альянсов» – наличие отдельных конкурентоспособных коллективов, осуществляющих исследования на выосоком уровне и способных «на равных» сотрудничать с мировыми лидерами.

 



МЕТАНОЛЬНЫЕ ТОПЛИВНЫЕ ЭЛЕМЕНТЫ

Метанол — высококачественное моторное топливо для ДВС — хорошо зарекомендовал себя и как энергоноситель в ТЭ, используемых в портативной электронике, транспортных приложениях, а также в электромобилях. В ТЭ метанол расщепляется при взаимодействии с атмосферным кислородом (воздухом), в результате этой реакции возникает электрический ток и образуется вода в качестве побочного продукта. 

В настоящее время разрабатываются технологии получения метанола из природного газа (минуя синтез-газ) посредством гидрирования из промышленных выбросов углекислого газа (в долгосрочной перспективе его научатся извлекать прямо из окружающего воздуха). Также ведутся разработки по производству биометанола из биомассы (лигноцеллюлозы), что послужит толчком к массовому распространению метанольных ТЭ.  



 

Эффекты

  Сокращение выбросов углекислого газа более чем на 70% при расщеплении биометанола в ТЭ

  Электромобили нового типа могут проезжать до 800 км на одном заряде батареи с применением метанольных ТЭ

Оценки рынка

40 млн ед.  

к 2020 г. составит объем рынка автотранспортных средств, работающих на метанольных ТЭ (благодаря чему на 104 млн т будут сокращены выбросы углекислого газа по сравнению с объемом выбросов от автомобилей на бензиновом ДВС)

Драйверы и барьеры

 Экологичность: метанол менее биологически опасен, чем нефтепродукты

 Возможность использования существующей транспортной инфраструктуры для заправки транспортного средства

  Простота эксплуатации: в частности, метанол не улетучивается при транспортировке

 Возможно создание технологии производства биометанола в промышленных масштабах, что увеличит его использование в ТЭ

 Высокая себестоимость производства метанола с помощью существующих технологий

 Используемые в качестве катализаторов в ТЭ драгоценные металлы (платиноиды) значительно повышают рыночную стоимость установок и вырабатываемой ими энергии






Международные

научные публикации
Международные

патентные заявки

Уровень развития

технологии в России

«Возможности альянсов» – наличие отдельных конкурентоспособных коллективов, осуществляющих исследования на выосоком уровне и способных «на равных» сотрудничать с мировыми лидерами.

 



ДВИГАТЕЛИ НА ДИМЕТИЛОВОМ ЭФИРЕ 

Серьезным конкурентом традиционным видам ископаемого и синтетического топлива и основной альтернативой дизелю может стать диметиловый эфир (ДМЭ). В сравнении с дизельным топливом эфир лучше горит и более экологичен (не содержит серы, в течение суток полностью разлагается в атмосфере на воду и углекислый газ). Это в целом более чистое топливо, некоррозионноактивное, нетоксичное, не вызывает мутаций, в том числе канцерогенного характера. 

Сегодня ДМЭ производится из переработанного угля, природного газа, биомассы, бытовых и промышленных отходов. Также разрабатывается синтетическое биотопливо второго поколения (BioDME), которое может быть изготовлено из лигноцеллюлозной биомассы. Преобразовать дизельный двигатель в ДМЭ-двигатель можно без больших затрат, что будет стимулировать массовое распространение технологии. 





 

Эффекты

    Значительное сокращение уровня вредных выбросов с отработавшими газами: оксидов азота в 3-4 раза, углеводородных соединений — в 3 раза, угарного газа — в 5 раз, при практически бездымной работе двигателя во всех режимах

 Повышение экономичности ДВС (до 5%) и его КПД по сравнению с работой на дизельном топливе

 Оптимизация расходов на производство и транспортировку топлива (сократятся в 10 раз относительно показателей сжиженного природного газа)

 Легкое преобразование ДМЭ в бензин, характеризующийся высокой стабильностью и повышенным экологическим качеством, минимальным содержанием нежелательных примесей (отсутствие серы, незначительное содержание бензола (0,1% при норме 1%), непредельных углеводородов (~1%))

 Создание дополнительных рабочих мест в добывающей промышленности благодаря развитию производства диметилового эфира из ископаемого сырья (природный газ, уголь) 

Оценки рынка

$9,7  млрд

к 2020 г. достигнет объем глобального рынка ДМЭ (среднегодовые темпы роста 16-19% в 2015-2020 гг.)

Драйверы и барьеры

 Ужесточение экологических стандартов

 Наличие соответствующей инфраструктуры: применение ДМЭ не требует серьезной конструкционной доработки дизельных двигателей и установки специальных фильтров. Использование ДМЭ на автомобилях с ДВС возможно даже при 30%-м его содержании в топливе без трансформации систем питания и зажигания двигателя.

 Масштабная сырьевая база: сырьем для производства ДМЭ является природный газ, доказанные запасы которого в России по состоянию на 2015 г. остаются крупнейшими в мире.

  Ряд нерешенных проблем с хранением ДМЭ

  Сравнительно высокая рыночная цена ДМЭ относительно других видов топлива

 При производстве ДМЭ затрачивается существенно больший объем сырьевого газа, чем для других топливных продуктов с эквивалентной теплотворной способностью

  При меньшей в 1,5 раза полноте сгорания по сравнению с дизельным топливом увеличивается расход ДМЭ в 1,5–1,6 раза

  ДМЭ является наркотическим галлюциногенным веществом






Международные

научные публикации
Международные

патентные заявки

Уровень развития

технологии в России

«Возможности альянсов» – наличие отдельных конкурентоспособных коллективов, осуществляющих исследования на выосоком уровне и способных «на равных» сотрудничать с мировыми лидерами.

 


Из чего делают современные двигатели: новые материалы на службе автопроизводителей

На протяжении многих десятков лет моторы изготавливали из самых обычных материалов — стали, чугуна, меди, бронзы, алюминия. Совсем немного пластика, иногда какие-то мелкие элементы, вроде корпусов карбюраторов, — из магниевых сплавов. На волне тенденции к всемерному облегчению конструкций и увеличению мощности при улучшении экологической составляющей состав материалов с тех времен заметно изменился. Из чего же сегодня делают двигатели? Разбираемся.

Большая часть автовладельцев наверняка знает главный тренд современного автомобилестроения: увеличение мощности двигателя при постоянном уменьшении его объема и массы. Секрет такого сочетания кроется в том числе в новых материалах и конструктивах. Ну и, разумеется, тщательной проработке всех элементов силового агрегата, а также уже не скрываемом отсутствии избыточных (читай: невыгодных) запасов прочности.

Как ни странно, всевозможные нанотрубки и прочий хай-тек, о котором постоянно говорят в СМИ, в моторостроении на самом деле почти не применяются. В серийных моторах самыми дорогими и сложными материалами являются кремнийникелевые покрытия, металлокерамический композит (например, известный как FRM у Honda), различные полимерно-углеродные композиции и постепенно появляющиеся в серийных двигателях титановые сплавы, а также сплавы с высоким содержанием никеля, например Inconel. В целом же двигателестроение остается очень консервативной областью машиностроения, где смелые эксперименты в серийном производстве не приветствуются.

Прогресс обеспечивается в основном «тонкой настройкой» и применением давно известных технологий по мере их удешевления. Основная масса серийных агрегатов состоит в основном из чугуна, стали и алюминиевых сплавов — по сути, самых дешевых материалов в машиностроении. Однако тут все же есть место для новых технологий.

Самая крупная деталь любого мотора — блок цилиндров. Она же самая тяжелая. Долгие десятки лет основным материалом для блоков служил чугун. Он достаточно прочен, хорошо льется в любую форму, его обработанные поверхности обладают высокой износостойкостью. Список достоинств включает и невысокую цену. Современные моторы небольшого рабочего объема по-прежнему льются из чугуна, и вряд ли в ближайшее время индустрия полностью откажется от этого материала.

Основная задача в совершенствовании сплавов чугуна — это сохранение высокой твердости поверхности при улучшении его вспомогательных качеств, иначе это может привести к необходимости использования чугунных же гильз для блока цилиндров из более износостойкого сплава. Так изредка делают, но в основном на грузовых моторах, где эта технология финансово оправданна.

Алюминий в качестве материала блока применяется также очень давно и совершенствуется примерно в том же направлении. Усилия направлены в основном на улучшение возможностей его обработки, на снижение коэффициента расширения при сохранении необходимой пластичности материала, повышение необходимых аспектов прочности сплавов.

Также развиваются технологии использования вторичного алюминия низкой очистки. Для таких сплавов применяются технологии, отличные от литья, причем налицо тенденция к изготовлению из алюминия блоков цилиндров более компактных моторов. Например, двигатель Volkswagen серии EA211 сегодня имеет алюминиевый блок, который оказался на 40% легче чугунного.

Магниевые сплавы значительно менее популярны. Они легче алюминиевых, но имеют значительно более низкую коррозийную стойкость, не переносят контакта с горячей охлаждающей жидкостью, со стальными крепежными деталями повышенной температуры. На рядных шестицилиндровых блоках моторов BMW серий N52 и N53, например, из магниевого сплава выполнена только внешняя часть блока, «рубашка» системы охлаждения. Для сравнительно длинного блока шестицилиндрового мотора это дает выигрыш в массе порядка 10 кг по сравнению с цельноалюминиевой конструкцией. Также магниевые сплавы используют для блок-картеров моторов с отъемными цилиндрами. В основном это двигатели мотоциклов.

Компоненты двигателя

Если с самой большой деталью мотора новые технологии и материалы не очень «дружат» в целом, то в частностях возможны интересные сюрпризы. Гильзы цилиндров у любого блока являются точкой приложения всех новейших технологий и материалов. Высокопрочный чугун, методы поверхностного упрочнения алюминиевых высококремнистых сплавов, гальванические покрытия на основе сплава карбида кремния с никелем, металлокерамические матрицы и стальное напыление широко используются даже на серийных моторах. Про чугун и высококремнистый алюминий говорить не будем, все же сами технологии не только старые, но и массовые. А вот про остальные материалы лучше рассказать чуть подробнее.

Упрочненные чугунные гильзы по технологии CGI (Compacted Graphite Iron) появились для реализации экстремально высокой степени форсирования у дизельных моторов. Этот чугун сильно отличается от распространенного серого чугуна. У него на 75% выше прочность на разрыв, на 40% выше модуль упругости, и он в два раза устойчивее к знакопеременным нагрузкам. А его сравнительно невысокая стоимость и прочность позволяют создавать литые чугунные блоки с массой меньше, чем у алюминиевых. Но в основном его применение ограничено гильзами и коленчатыми валами. Гильзы получаются очень тонкими, теплопроводными и при этом столь же технологичными и надежными, как обычные гильзы из чугуна. А коленчатые валы по прочности соперничают с коваными стальными при заметно меньшей себестоимости.

Покрытие по технологии Nicasil, в общем-то, не редкость и далеко не новинка, но оно остается одним из самых высокотехнологичных и перспективных в своей сфере. Изобрели его еще в 1967 году для роторно-поршневых двигателей, и засветиться в массовом автомобилестроении оно успело. Porsche его применял для гильз цилиндров с 1970-х, а в 1990-е его попытались применить и на более массовых моторах, например в BMW и Jaguar, но недостатки технологии и высокая цена заставили отказаться от него в пользу более дешевых методов поверхностного упрочнения высококремниевых сплавов, например по технологии Alusil.

Причем более вероятной причиной отказа является как раз повышенная стоимость блоков цилиндров с этим покрытием, связанная с низкой технологичностью процесса гальванического нанесения и высоким процентом не выявляемого сразу брака, который потом успешно списали на высокосернистые бензины.

Тем не менее это покрытие все еще остается лучшим выбором для создания рабочей поверхности в любом мягком металле, потому под различными торговыми наименованиями применяется в массовом и особенно гоночном двигателестроении. Например, под маркой SCEM в моторах Suzuki. Его недостатки в основном связаны с очень высокой стоимостью обработки и слабой приспособленностью к массовому производству при использовании с крупными многоцилиндровыми блоками.

Металлокерамическая матрица (MMC), более известная как FRM в моторах Honda, — еще один оригинальный и интересный материал. Например, двигатель на суперкаре NSX имел гильзы, выполненные по такой технологии. Опять же технология далеко не новая, но, как и материал, очень перспективная. Покрытие типа Nicasil тоже относится к MMC, но его приходится наносить гальваническим методом, и в качестве матрицы выступает достаточно твердый никель.

В технологии FRM материалом матрицы служит алюминий, а MMC получается в процессе заливки гильзы из волокнистого материала на основе карбоновой нити в алюминиевый блок. Использование углеродного волокна более технологично. К тому же матрица получается намного более толстой, чуть более мягкой, намного более упругой и абсолютно интегрированной в материал блока. Отслоение, как это происходило с Nicasil, попросту невозможно. Задиры и локальные повреждения в силу структуры материала ему почти не страшны, а в случае износа цилиндр можно расточить благодаря большому запасу по толщине.

Минусы у такого покрытия тоже имеются. Во-первых, немалая цена, во-вторых, жесткое отношение к поршневым кольцам, поскольку его структура плохо «настраивается». Тут не создать полноценной сетки хона, правда, масло хорошо удерживается в волокнах и без того. Края волокон очень жесткие, и даже сверхтвердые кольца имеют ограниченный ресурс, а поршень в местах контакта интенсивно изнашивается при малейшем биении, что подразумевает использование поршней с минимальным зазором и очень короткой юбкой. К тому же покрытие очень маслоемкое. В итоге у моторов постоянно наблюдался повышенный расход масла, что на определенном этапе не позволило выполнять жесткие экологические требования.

Впрочем, сейчас эта проблема уже не актуальна, новые катализаторы и новые поколения малозольных масел позволяют об этом не беспокоиться. Ну и, разумеется, цена нанесения покрытия такого типа заметно выше, чем у алюсила или чугунных гильз, но все же меньше, чем у Nicasil-подобных материалов.

Покрытия MMC разных типов также используются в целом ряде деталей двигателей. Например, в седлах клапанов в ГБЦ, упрочнениях крайних постелей распредвалов, особо нагруженных местах креплений элементов конструкции. Это позволяет широко применять цельноалюминиевые детали и снижать массу конструкции за счет упрощения. Некоторые детали двигателей могут иметь крупные элементы из MMC, например клапаны. Но это и сейчас удел не серийных конструкций.

Титановые сплавы также давно пытаются использовать в конструкции машин. В двигателях этот прочный, легкий и очень эластичный материал с превосходной химической стойкостью применяется очень ограниченно в силу высокой стоимости. Но можно найти серийные конструкции с деталями из титана. Титановые шатуны, например, давно устанавливаются в моторах Ferrari и тюнинговом подразделении AMG. Еще титан — неплохой выбор для пружин, шайб, рокеров и прочих элементов ГРМ, деталей теплообменников EGR, а также разных крепежных элементов. Кроме того, он используется для производства рабочих элементов высокопроизводительных турбин, а иногда —— для производства клапанов и даже поршней.

Теоретически детали из высококремнистых титановых сплавов с высоким содержанием интерметаллидов и сицилидов могут применяться в двигателях, но у большинства титановых сплавов наблюдается серьезная потеря прочности уже при температурах свыше 300 градусов — изменение пластичности в больших пределах и большой коэффициент расширения, что не позволяет создавать из них долговечные детали с низкой массой. Ограниченное применение имеет в двигателестроении и 3D-печать из титановых сплавов, например для создания выпускных систем на спорткарах.

А вот покрытия из нитрида титана — одни из самых популярных средств упрочнения поршневых колец. Этот материал отлично работает по кремниевому упрочненному слою гильз цилиндров. Его же используют как напыление на фаски клапанов, в том числе титановых, на торцы толкателей клапанного механизма и другие узлы двигателя. Начиная с 1990-х годов использование этого метода упрочнения неуклонно возрастает, и он вытесняет хромирование, азотирование и ТВЧ-закалку. Также нитрид титана является перспективным типом покрытия для гильз цилиндров: он может наноситься методом PA-CVD (плазмохимическое осаждение из газовой фазы), а значит, такие технологии могут стать серийными в ближайшее время, если будет спрос на новые износостойкие покрытия цилиндров.

Уже упомянутая 3D-печать также активно применяется для создания высокопрочных и высокоточных жаростойких деталей сплав Inconel. Это семейство никельхромовых жаростойких сплавов давно служит материалом для создания выпускных клапанов, верхних компрессионных колец, пружин и даже выпускных коллекторов, корпусов турбин и крепежного материала для высокотемпературного применения.

В последние годы, в связи с развитием технологий 3D-печати и активным использованием в них Inconel-сплавов, мелкосерийные ДВС все чаще обзаводятся деталями из этого очень перспективного материала. Рабочий диапазон деталей из него минимум на 150–200 градусов выше, чем у самых жаростойких сталей, и доходит до 1200 градусов. Как материал упрочнения сплавы Inconel используются серийно уже достаточно давно, так, в моторах Mercedes-Benz покрытие из Inconel применяется на моторах серий M272/M273.

Пластмассы также продолжают внедрять в конструкции двигателей. Выполненные из пластика элементы системы впуска и охлаждения — дело уже привычное. Но дальнейшее расширение номенклатуры маслостойких и теплостойких пластмасс с низким короблением позволило создать пластмассовые картеры ДВС, клапанные крышки, направляющие, корпуса малых конструкций внутри двигателя. Концепты моторов с блоком цилиндров из пластмассы, а точнее, из полимерно-углеродных композиций, уже были представлены публике. При незначительно меньшей прочности, чем у легких сплавов, пластик в производстве обходится дешевле и значительно лучше перерабатывается.

Каков итог?

Изучение вопроса применяемости материалов в двигателестроении показывает четкую направленность: для снижения массы и улучшения других характеристик применение каких-то суперматериалов либо не особо требуется, либо невозможно в принципе в силу физических и химических свойств. Развитие технологий идет путем эволюционным — усовершенствования как самого производства, так и традиционных материалов, реорганизации рабочего процесса и конструкторской оптимизацией. Так что даже в среднесрочной перспективе мы вряд ли увидим революцию в производстве ДВС, скорее речь будет идти о постепенном отказе от этого типа двигателя в принципе в пользу электротехнологий, хотя и там пока не наблюдается бурного технологического прорыва.

Судовой двигатель СУДОВЫЕ ДИЗЕЛИ, СУДОВЫЕ ДИЗЕЛЬНЫЕ ДВИГАТЕЛИ, СУДОВЫЕ ДВИГАТЕЛИ ВНУТРЕННЕГО СГОРАНИЯ —

Судовой двигатель

СУДОВОЙ ДВИГАТЕЛЬ

входит в состав судовой энергетической установки. Судовые двигатели различают  на главные судовые

двигатели (обеспечивающие движение судна) и вспомогательные судовые двигатели (для привода электрогенераторов, насосов, вентиляторов и т. п.). В качестве судового двигателя используют двигатели внутреннего сгорания (ДВС – СУДОВЫЕ ДИЗЕЛИ, СУДОВЫЕ ДИЗЕЛЬНЫЕ ДВИГАТЕЛИ, СУДОВЫЕ ДВИГАТЕЛИ ВНУТРЕННЕГО СГОРАНИЯ), паровые турбины, и газовые турбины.  Основными характеристиками судовых двигателей являются: большой ресурс, возможность реверсирования, умеренная трудоёмкость технического обслуживания, проводимого в судовых условиях, использование топлива в основном тяжёлых сортов, отсутствие жёстких ограничений по массе и размерам двигателя.

Чаще всего на судах используются ДВС — судовые дизели, обладающие наибольшей экономичностью из всех типов судовых двигателей. На транспортных, промысловых и вспомогательных судах применяются мало-, средне- и высокооборотные дизели с наддувом. Малооборотные судовые двигатели внутреннего сгорания используются как главные двигатели судов различных типов; их агрегатная мощность составляет 2,2—35 Мвт, число цилиндров 5—12, удельный эффективный расход топлива 210—215 г/ (квт×ч), частота вращения 103—225 об / мин. Среднеоборотные судовые двигатели внутреннего сгорания используются преимущественно в качестве главных двигателей судов среднего размера; их мощность достигает 13,2 Мвт, число цилиндров 6—20, эффективный расход топлива 205—210 г/(квт×ч), частота вращения 300—500 об/мин. Высокооборотные судовые двигатели внутреннего сгорания применяются в основном как главные двигатели на малых судах, а также в качестве вспомогательных двигателей на судах всех типов; их агрегатная мощность до 2 Мвт, число цилиндров 12—16, удельный эффективный расход топлива 215—230 г/(квт×ч), частота вращения свыше 500 об/мин.

Паровые турбины по степени распространённости несколько уступают двс; используются в качестве главных двигателей на крупных танкерах, контейнеровозах, газовозах и других судах, а также на судах с ядерной энергетической установкой (см. Атомный ледокол «Ленин»). Применяются также как вспомогательные двигатели. Мощность паротурбинных установок достигает 80 Мвт, удельный эффективный расход топлива 260—300 г/(квт×ч), частота вращения турбины 3000—4000 об/мин.

Газовые турбины в составе судовых двигателей применяются в основном в качестве главных двигателей на военных кораблях, транспортных судах на подводных крыльях и на судах на воздушной подушке. Примером газовых турбин является судовой газотурбинный двигатель. Эксплуатация судовых дизелей— подготовка дизельной установки к действию, пуск дизеля, обслуживание дизеля во время работы, вывод из действия (остановка) дизеля в соответствии с инструкцией завода-изготовителя и Правилами технической эксплуатации (ПТЭ).
РАЗДЕЛ «ОБОРУДОВАНИЕ»    

 


 
«Аппаратдизель», ООО  
Экспорт/импорт оборудования и запасных частей для агрегатов на базе отечественных дизелей размерности 6 ЧН 36/45, 6-8Ч23/30, 6Ч18/22, 3Д6, 4Ч9,5/11, 4Ч12/14 и их ремонтом. Диапазон оборудования базирующегося на этих двигателях: от электростанций больших мощностей 1000 кВт и до судовых установок главных и стационарных.
Роспромснаб  
Филиал ООО «АлтайРОСПРОМСНАБ» занимается материально-техническим снабжением флота.Мы специализируемся на поставке главных и вспомогательных судовых дизелей ЧН 15/18(дизели 3Д6, 3Д12, 7Д6, 7Д12), а также запасных частей к ним. На складе имеются : главные судовые дизели: 3Д6С2; 3Д6Н-235С2; 3Д12А, 3Д12А-1; 3КД12Н-520; 3КД12Н-520Р; ВАЗ-3415. Вспомогательные судовые дизели:7Д6-150; П 7Д6АФ-С2; 7Д12; 7Д12А-1; 1Д6БГС2-301; 1Д12В-300КС2-301.
Двигатель 3Д6, 3Д12, ЯМЗ запасные части  
Предлагаем Вам продукцию ОАО ХК Барнаултрансмаш, Турбомоторный завод : — Промышленные дизели (1Д6Н-250,2Д6Н, 1Д12-400БС,1Д12БС(БМС),2Д12, В2-450,В2-500) применяемые для привода механизмов буровой техники, маневровых тепловозов. — Стационарные дизели (1Д6-150,1Д6БА(БГС), 1Д12В-300), применяемые для привода дизель-генераторов 100-200кВт -Транспортные дизели (Д12А-525,Д12А-525А),применяемые для многоосных тягачей Типа МАЗ-537, 543, 7310, КЗКТ-7428, 74106 — Судовые дизели (3Д6, 3Д12, 7Д6, 7Д12) укомплектованные РРП 150-300 л.с. применяемые как главные и вспомогательные судовые дизели, а также предлагаем весь ассортимент запасных частей ОАО ХК Барнаултрансмаш с хорошим дисконтом. -Судовые дизели ЯМЗ ДРА 90-360 л.с. удовлетворяющих требованиям Российского Речного Регистра.
 
ОПИСАНИЕ ТЕРМИНОВ
Судовой газотурбинный двигатель
CГТД — тепловой двигатель, в котором газ сжимается и нагревается, а затем энергия сжатого и нагретого газа преобразуется в механическую работу на валу газовой турбины. Рабочий процесс ГТД может осуществляться с непрерывным сгоранием топлива при постоянном давлении или с прерывистым сгоранием топлива при постоянном объёме.
Основной источник электроэнергии на судах — дизель генератор.

Судовой дизель генератор
СДГ агрегат, состоящий из генератора и дизеля, образованный путём соед. их валов. Осн. достоинства Д.-г. — экономичность и быстрота запуска. Размеры Д.-г. тем меньше, чем больше частота вращения. Однако с ростом частоты вращения падает ресурс дизеля. Поэтому в составе осн. длительно работающих Д.-г. применяются средне-и малооборотные дизели с частотой вращения соотв. 750 и 250 об/мин. Потребление топлива Д.-г. составляет ок. 220-230 г на 1 кВт мощн. в теч. 1ч работы. В качестве генераторов на соврем. судах применяют в большинстве случаев синхронные явнополюсные генераторы с автомат. регуляторами напряжения. Регуляторы в зависимости от отклонения напряжения от установленного значения подают больший или меньший ток в обмотку возбуждения генератора, стабилизируя тем самым напряжение.
Дизель-компрессор судовой
ДКС — уст-во, использующее  хим.энергию топлива для сжатия воздуха и наполнения воздушных баллонов. Представляет собой агрегат, состоящий из одноцилиндрового двухтактного двигателя внутреннего сгорания и поршневого компрессора. Противоположно движущиеся поршни в цилиндре ДВС непосредственно соединены с поршнями компрессора. Д.-к. по конструктивному исполнению и принципу работы близок к свободопоршневому генератору газа. Выпускные газы дизельной части после приведения в действие поршней дизеля и компрессора отводятся в атмосферу. В суд. Д.-к. давление достигает 40 МПа, а их производительность -10 л/мин. Достоинством Д.-к. является независимость его работы от др. суд. оборудования, высокая экономичность расхода энергии на 1л сжатого воздуха и небольшие габариты.  
Если у Вас есть вопросы или Вы хотите стать участником любого из раздела обратитесь к нашим менеджерам: 
«РА Корабел.ру», ООО
тел.+7(812) 458-4452 
сот. +7 (921) 912-0373
[email protected]
skype www.korabel.ru
_____________________
Портал: www.korabel.ru
Журнал: www.korabel.su
Торговая площадка:
www.sudoremont.ru 
Морские сувениры 
https://www.korabel.ru/shop.html 
___________________
https://www.facebook.com/korabel.ru/
https://vk.com/korabelru
https://www.instagram.com/korabel_ru/

Какие бывают двигатели? Типы электродвигателей. Асинхронные двигатели



В основу работы любых электродвигателей положен принцип электромагнитной индукции. Электродвигатель состоит из неподвижной части — статора (для асинхронных и синхронных движков переменного тока) либо индуктора (для движков постоянного тока) и подвижной части — ротора (для асинхронных и синхронных движков переменного тока) либо якоря (для движков постоянного тока). В роли индуктора на маломощных двигателях постоянного тока нередко используются постоянные магниты.

Все двигатели, грубо говоря можно поделить на два вида:
двигатели постоянного тока
двигатели переменного тока (асинхронные и синхронные)

Двигатели постоянного тока

По неким мнениям данный двигатель возможно еще назвать синхронной машиной постоянного тока с самосинхронизацией. Простой движок, являющийся машиной постоянного тока, состоит из постоянного магнита на индукторе (статоре), 1-го электромагнита с очевидно выраженными полюсами на якоре (двухзубцового якоря с явно выраженными полюсами и с одной обмоткой), щёточноколлекторного узла с 2-мя пластинами (ламелями) и 2-мя щётками.
Простой двигатель имеет 2 положения ротора (2 «мёртвые точки»), из которых неосуществим самозапуск, и неравномерный крутящий момент. В первом приближении магнитное поле полюсов статора равномерное (однородное).

Данные двигатели с наличием щёточно-коллекторного узла бывают:

Колекторные — электрическое устройство, в котором датчиком положения ротора и переключателем тока в обмотках является одно и то же устройство — щёточно-коллекторный узел.

Бесколекторные — замкнутая электромеханическая система, состоящая из синхронного устройства с синусоидальным распределением магнитного поля в зазоре, датчика положения ротора, преобразователя координат и усилителя мощности. Более дорогой вариант в сравнение с колекторными двигателями.

Двигатели переменного тока

По типу работы данные двигатели делятся на синхронные и асинхронные двигатели. Принципное отличие заключается в том, что в синхронных машинах 1-ая гармоника магнитодвижущей силы статора перемещается со скоростью вращения ротора (по этому сам ротор крутится со скоростью вращения магнитного поля в статоре), а у асинхронных — есть и остается разница меж скоростью вращения ротора и скоростью вращения магнитного поля в статоре (поле крутится быстрее ротора).

Синхронный — двигатель переменного тока, ротор которого крутится синхронно с магнитным полем питающего напряжения. Эти движки традиционно применяются при огромных мощностях (от сотен киловатт и выше).
Есть синхронные двигатели с дискретным угловым движением ротора — шаговые двигатели. У них данное положение ротора фиксируется подачей питания на соответствующие обмотки. Переход в другое положение исполняется путём снятия напряжения питания с одних обмоток и передачи его на другие обмотки двигателя.
Ещё один вид синхронных движков — вентильный реактивный эл-двигатель, питание обмоток которого складывается с помощью полупроводниковых элементов.

Асинхронный — двигатель переменного тока, в котором частота вращения ротора различается от частоты крутящего магнитного поля, творимого питающим напряжением, второе название асинхронных машин — индукционные обосновано тем, что ток в обмотке ротора индуцируется вертящимся полем статора. Асинхронные машины сейчас оформляют огромную часть электрических машин. В главном они используются в виде электродвигателей и считаются ключевыми преобразователями электрической энергии в механическую, причём в основном используются асинхронные движки с короткозамкнутым ротором

По количеству фаз двигатели бывают:

  • однофазные
  • двухфазные
  • трехфазные

Самые популярные и шыроковостребованые двигатели которые применяются в производстве и бытовом хозяйстве:

Однофазный асинхронный двигатель с короткозамкнутым ротором


Однофазовый асинхронный движок имеет на статоре только 1 рабочую обмотку, на которую в ходе работы мотора подается переменный ток. Хотя для запуска мотора на его статоре есть и вспомогательная обмотка, которая краткосрочно подключается к сети через конденсатор либо индуктивность, или замыкается накоротко пусковыми контактами рубильника. Это нужно для создания исходного сдвига фаз, чтоб ротор начал крутиться, по другому пульсирующее магнитное поле статора не здвинуло б ротор с места.

Ротор такового мотора, как и любого иного асинхронного мотора с короткозамкнутым ротором, являет из себя цилиндрический сердечник с залитыми алюминием пазами, с сразу отлитыми вентиляционными лопастями.
Таковой ротор именуется короткозамкнутым ротором. Однофазовые движки используются в маломощных устройствах, в том числе комнатные вентиляторы либо маленькие насосы.

Двухфазный асинхронный двигатель с короткозамкнутым ротором


Двухфазные асинхронные движки более эффективны при работе от однофазовой сети переменного тока. Они содержат на статоре две рабочие обмотки, находящиеся перпендикулярно, при этом одна из обмоток подключается к сети переменного тока напрямую, а вторая – через фазосдвигающий конденсатор, так выходит крутящееся магнитное поле, а вот без конденсатора ротор бы не двинулся с места.

Данные двигатели помимо прочего имеют короткозамкнутый ротор, а их использование еще обширнее, нежели у однофазовых. Тут уже и стиральные машинки, и разные станки. Двухфазные движки для питания от однофазовых сетей называют конденсаторными двигателями, потому что фазосдвигающий конденсатор считается часто обязательной их частью.

Трехфазный асинхронный двигатель с короткозамкнутым ротором


Трехфазный асинхронный двигатель имеет на статоре три рабочие обмотки, сдвинутые сравнительно друг друга так, что при подключении в трехфазную сеть, их магнитные поля получаются смещенными в пространстве сравнительно друг дружку на 120 градусов. При включении трехфазного мотора к трехфазной сети переменного тока, появляется крутящееся магнитное поле, приводящее в перемещение короткозамкнутый ротор.

Обмотки статора трехфазного мотора возможно соединить по схеме «звезда» либо «треугольник», при этом для питания мотора по схеме «звезда» потребуется напряжение выше, чем для схемы «треугольник», и на движке, потому, указываются 2 напряжения, к примеру: 127/220 либо 220/380. Трехфазные движки незаменимы для приведения в действие разных станков, лебедок, циркулярных пил, подъемных кранов, и т.п.

Трехфазный асинхронный двигатель с фазным ротором


Трехфазный асинхронный движок с фазным ротором имеет статор подобный описанным выше типам движков,  шихтованный магнитопровод с 3-мя уложенными в его пазы обмотками, но в фазный ротор не залиты дюралевые стержни, а уложена уже настоящая трехфазная обмотка, в соединении «звезда». Концы звезды обмотки фазного ротора выведены на три контактных кольца, насаженных на вал ротора, и электрически отделенных от него.

Посредством щеток, на кольца помимо прочего подается трехфазное переменное напряжение, и включение может быть осуществлено как впрямую, так и через реостаты. Непременно, движки с фазным ротором стоят подороже, хотя их пусковой момент под нагрузкой значительно повыше, нежели у типов движков с короткозамкнутым ротором. Именно в следствие завышенной силы и огромного пускового момента, данный вид движков отыскал использование в приводах лифтов и подъемных кранов, другими словами там, где прибор запускается под нагрузкой а не в холостую, как у двигателей с короткозамкнутым ротором.

Двигатель. Не вечный…

June 09, 2014 3:53pm

Но с помощью инновационных разработок он может стать гораздо эффективнее, надежнее и дешевле


Фото: Hans Engbers / Shutterstock.com

  

Несомненно, двигатель — главная деталь любого транспортного средства. Двигатели бывают разные, и, конечно, они постоянно совершенствуются — машины потребляют все меньше топлива, электромобили едут все дальше, поезда становятся все более быстрыми…

Работа над улучшением двигателей идет во всех крупных машиностроительных компаниях мира постепенно и неспешно, и, казалось бы, уж где-где — а в этой сфере никаких неожиданностей не предвидится. Однако более 30 инновационных компаний кластера энергоэффективных технологий Фонда «Сколково» занимаются как раз разработками новых технологий для транспорта. Уж они-то точно знают — прорывные проекты придут на рынок совсем скоро!

Традиционный, но не забытый

Создание элементов для нового транспорта — одно из популярных и передовых направлений работы кластера энергоэффективных технологий, что совпадает с общемировыми тенденциями: тематика нового взгляда на транспортные средства сегодня актуальна как никогда. Пожалуй, сложнее всего модернизировать самые распространенные двигатели внутреннего сгорания (ДВС). «Традиционный транспорт на углеводородном топливе — с бензиновыми и дизельными двигателями — самый распространенный во всем мире, но именно здесь речи о кардинальных технологических прорывах пока не идет, — констатирует Антон Скибин, руководитель энергетического сектора кластера энергоэффективных технологий Фонда «Сколково». — Но и ДВС нуждаются в улучшениях, которые позволили бы повышать (хоть и ненамного) эффективность их использования».

Сегодня всего около 40% от сжигаемого топлива идет в полезную работу, остальная энергия просто теряется. Соответственно для улучшения работы ДВС можно попытаться собрать эти потери, например, попробовать преобразовать тепло выхлопных газов в электроэнергию, которая используется для питания систем автомобиля. И резиденты, которые над этим работают, в «Сколково» есть. Разрабатываются четыре проекта на тему термоэлектрики, их основная задача — уменьшить стоимость и повысить эффективность преобразования бросового тепла в энергию. «Это та новинка, которая сейчас на слуху в области модернизации традиционных двигателей внутреннего сгорания», — отмечает Антон Скибин.

Есть и технологические проекты, крепкие инженерные команды, которые работают над повышением эффективности традиционных компонент транспорта: трансмиссии, системы впрыска топлива, турбонаддува, управления двигателем.

Преобразуя энергию

Однако самое актуальное направление в работе над новыми транспортными технологиями — направление гибридных приводов. На этом поприще инноваторы ожидают самых больших перемен, предсказывая, что ближайшее будущее именно за такими системами смешанного типа.

Сегодня энергетическая емкость (запас энергии) бензина или дизеля — около 10 тыс. Вт ч на 1 л. Для сравнения: у современного дорогого аккумулятора этот показатель составляет 200 Вт ч на 1 кг. Это значит, что батарея должна весить гораздо больше, чем объем топлива в баке, и, чтобы проехать 500 км, батарейку весом в несколько сотен килограмм придется тащить за машиной на прицепе, а бензина надо 30–50 л — всего один бак. «Но эти 10 тысяч ватт-часов на 1 килограмм традиционными ДВС используются с КПД всего 40%, а скромные 200 ватт-часов на 1 килограмм могут использоваться с энергетической эффективностью более 90%, — объясняет Антон Скибин. — Получается, что использование электричества для передвижения гораздо более выгодно, но есть ограничения: сколько энергии мы можем увезти с собой? На ДВС — много, а на электродвигателе — очень мало».

Вот тут-то и появляется гибридный двигатель, который позволяет возить с собой не огромную батарейку, а генератор энергии: при работе ДВС вырабатывается электроэнергия, которая впоследствии используется в электрическом приводе. «При этом ДВС используется гораздо меньшего размера, потребляет меньше топлива и меньше загрязняет окружающую среду», — отмечает Антон Скибин.

Самая популярная идея для преобразования одной энергии в другую — это использование суперконденсаторов. «Это техническая новинка, накопитель, который может запасать энергию очень быстро и выдавать ее так же быстро и концентрированно, — рассказал Анатолий Долголаптев, генеральный директор компании ТЭЭМП, резидента «Сколково». — Мы специализируемся на разработке суперконденсаторов на кислотных электролитах, массовое производство которых возможно уже во второй половине 2014 года». В компании уверены, что их выход на рынок станет основой для создания и распространения экономически эффективных гибридных автомобилей.

Гибридам — «зеленый свет»

Еще одно направление, в котором успешно развивается компания ТЭЭМП, это создание электромеханических преобразователей, имеющих беспрецедентно высокие энергетические и эксплуатационные показатели. В большинстве случаев о таких преобразователях говорят как о мотор-колесах.

В ТЭЭМП разработано несколько типов мотор-колес для самых разных электромобилей, в том числе для такси и общественного транспорта. «Мотор-колеса имеют жидкостное охлаждение, весят от 50 до 100 килограммов и при требуемых оборотах (очень низких — до 600 оборотов в минуту) и сравнительно небольшом объеме (R20–22 дюйма) способны создать крутящий момент до 2500 Нм в 20-дюймовом и до 4500 Нм в 22-дюймовом колесе, — рассказывает Анатолий Долголаптев. — При торможении и спуске мотор-колеса работают как генераторы электроэнергии».

Если одновременно применить два энергосберегающих принципа — возврат энергии через рекуперацию (когда часть энергии при торможении автомобиля возвращается в электродвигатель и может использоваться при разгоне) в суперконденсаторы (это дает в городе примерно 15–20% экономии) и отказ от трансмиссии (это еще минус 10–15% энергии), то получается, что при прочих равных условиях для движения автомобилей, снабженных разработками ТЭЭМП, требуется на 25–35% меньше энергии.

Таким образом, гибридные автомобили впервые получают возможность конкурировать по своей цене с автомобилями, оснащенными ДВС. Имеется и ряд других преимуществ: например, за счет выноса двигателей в колеса и отсутствия трансмиссии значительно увеличиваются полезный объем автомобиля и его управляемость. «Переход на массовое использование транспорта с гибридными приводами или электродвигателями возможен только при поддержке государства, — уверен Антон Скибин. — Без государственного стимулирования и поддержки этой идеи российские инвесторы не готовы рисковать, и хорошо, что государство нам эту поддержку готово оказывать. Именно поэтому большинство резидентов «Сколково» работают именно в сфере гибридного транспорта. Это отражает мировой тренд, этого требует рынок».

Гибридными могут быть не только автомобили, но и электровозы. Сколковская компания «Центр инновационного развития СТМ» уже создала гибридный локомотив, который работает как на дизельном топливе, так и с использованием накопленной электроэнергии. «В России начитывается порядка 17 тысяч маневровых тепловозов, в основном дизельных, — рассказывает Антон Скибин. — Около 10 тысяч работают в РЖД, 7 тысяч — на станциях и в цехах промышленных предприятий».

По словам экспертов, большую часть рабочего времени эти машины стоят и «тарахтят» на холостом ходу, ожидая погрузки-выгрузки или сцепки вагонов, или еще чего-нибудь. Локомотив стоит, но топливо все равно расходуется. Так вот, разработка резидентов «Сколково» позволяет в 3 раза уменьшить мощность дизельного двигателя и дополнить локомотив аккумуляторами, которые запасают энергию и рекуперируют ее. «Опытный образец гибридного локомотива показал, что экономия топлива составляет более 30% — более 60 тонн в год! — отметил Антон Скибин. — И это только с одного локомотива, а их 17 тысяч!»

Сейчас компания завершает процесс сертификации опытного образца, чтобы его могли закупать РЖД. Подписано предварительное соглашение, в соответствии с которым первые продажи должны начаться уже в этом году.

Энергия метро

Следующее поколение — это чисто электрический транспорт, на борту которого вообще не используется бензин. «Это более отдаленная перспектива, идеи более сложные, достижения будут не сегодня и не завтра, а через 3–5 лет, — рассказывает Антон Скибин. — Основная проблема: сколько энергии мы можем увезти с собой? Эту проблему пока не решил никто, ни в России, ни в мире, хотя успешные попытки решения уже есть».

Сделать маленькую емкую, дешевую и безопасную батарею — процесс долгий, требующий больших ресурсов и высококлассных специалистов. Крупнейшие мировые корпорации трудятся над решением этой проблемы. Но есть и небольшие стартапы (как у нас, так и за рубежом), которые с успехом работают над решением этой задачи. «Российские стартапы и научные коллективы не уступают зарубежным, потому что у нас в стране сохранились серьезные компетенции в области химии, физики, фундаментальных наук, и это наши преимущества», — уверен Антон Скибин.

Конечная цель любого резидента инновационного центра «Сколково» — это создание серийного производства. Сам Фонд «Сколково» поддерживает стартапы на этапах разработки, производства и испытаний опытных образцов, поиска инвесторов, затем к делу подключаются инвестиционные фонды и стратегические инвесторы. Например, во всем, что касается новинок на транспорте, российские региональные инвестиционные фонды заинтересованы, и, чтобы развивать экономику региона, они готовы инвестировать в создание производства на своей территории. «И тогда мы передаем проект наших участников стратегическим инвесторам для налаживания производства, а разработчики могут браться за создание новых продуктов», — поясняет Антон Скибин.

Так случилось и с ЗАО «Элтон», компанией, которая разработала системы накопления энергии для электрического транспорта. «Это многотонные накопители, которые стоят стационарно и представляют собой что-то среднее между традиционными конденсаторами и аккумуляторными батареями, — рассказывает генеральный директор компании Михаил Родионов. — Электрический транспорт мы с вами видим каждый день: троллейбусы, поезда, метро… И вот, представьте, такой накопитель стоит в туннеле метрополитена и возвращает в полезную работу до 30% энергии торможения поезда!»

С 2013 года системы накопления энергии торможения на основе суперконденсаторов «Элтон» эксплуатируются на двух тяговых подстанциях московского метро, завершается оценка их эффективности. Разработаны технико-экономические обоснования применения накопителей для электрического и гибридного транспорта, и скоро продукт будет запущен в серийное производство.

Ну а компания «Элтон» не намерена останавливаться на достигнутом! «В данный момент наиболее перспективным направлением, позволяющим увеличить КПД транспортного средства, является электрификация привода, — считает Михаил Родионов. — И самым действенным решением этой задачи будет разработка такого суперконденсатора, который станет лучшим, наиболее эффективным накопителем энергии».

  

Источник: izvestia.ru

8 самых известных типов двигателей в мире и их отличия

После прочтения нашего обзора вы будете понимать, как работают восемь типов двигателей в мире. 

 

Двигатель – это агрегат, который может преобразовать одну энергию в механическую. В эту категорию входит множество видов двигателей, начиная от паровых (двигатели внешнего сгорания) и электрических и заканчивая двигателями внутреннего сгорания (бензиновые, дизельные моторы и т. д.). Мы покажем вам восемь самых известных в мире двигателей, а также просто и интуитивно понятно расскажем вам, как они работают, описав принципы их работы. 

 

1. Оппозитный двигатель

 

В горизонтально противоположном двигателе (оппозитном) поршни двигаются по обеим сторонам коленчатого вала влево и вправо в горизонтальном направлении. В этом случае высота двигателя уменьшена. За счет использования оппозитного двигателя уменьшается центр тяжести транспортного средства – автомобиль движется более плавно. Крутящий момент, создаваемый поршнями с обеих сторон, компенсирует друг друга, значительно уменьшая вибрацию транспортного средства во время движения.

 

Также подобная конструкция позволяет сделать двигатели высокооборотистыми. Но, несмотря на высокие обороты, оппозитные моторы имеют меньше шума, чем обычные ДВС. 

Двигатели с горизонтальным ходом поршней использует компания Porsche почти во всех моделях. Но, например, в Porsche Cayenne и Panamera оппозитные двигатели не применяются. 

 

2. Рядный двигатель

 

В рядном двигателе все его цилиндры расположены рядом друг с другом в одной плоскости. Конструкция цилиндров и коленвала довольно-таки проста. Головка блока цилиндров имеет небольшую стоимость при изготовлении. Также рядные двигатели отличаются высокой стабильностью, характеристиками крутящего момента на низких оборотах, низким расходом топлива и компактным размером. Рядные двигатели обычно обозначаются латинской буквой «L-n», где n – количество цилиндров рядного двигателя. Современные автомобили в основном имеют двигатели с обозначением L3, L4, L5, L6.

 

3. Двигатель V-типа (V-образный силовой агрегат)

 

V-образный двигатель разделяет все цилиндры на две группы друг напротив друга под определенным углом. В итоге мотор образует плоскость под углом. Если посмотреть на этот тип двигателя со стороны, то он будет иметь V-образную форму. V-образные двигатели имеют небольшую высоту и длину. Этот тип моторов удобнее размещать в автомобиле по сравнению с обычными рядными моторами, которые по своим размерам гораздо больше. 

 

В настоящее время во многих автомобилях среднего и люкс-класса используются V-образные двигатели. Чаще всего это 6-цилиндровые силовые агрегаты. Например, такие двигатели стоят на Volkswagen Passat, Audi A6 и Mercedes E-класса AMG. 

 

4. Квазитурбинный двигатель

 

Квазидвигатель представляет собой модифицированный двигатель, основанный на роторном силовом агрегате. Если в обычном роторном двигателе задействованы три лопасти, то квазидвигатель использует цепной ротор, состоящий из четырех частей. Это беспоршневой роторный мотор с ромбовидным ротором. Преимущество двигателя: это новый тип двигателя небольшого размера, с высокой мощностью, высоким крутящим моментом, который может работать на множестве источников энергии. 

 

 

В настоящий момент квазидвигатель не используется ни на одном автомобиле, поэтому невозможно проверить, подходит ли он для замены обычных поршневых двигателей внутреннего сгорания или в качестве лучшей альтернативы обычным роторным моторам. Квазидвигатель все еще находится в стадии создания прототипа. 

 

5. Роторный двигатель

 

Внутреннее пространство корпуса роторного двигателя всегда разделено на три рабочие камеры. Во время движения ротора объем трех рабочих камер постоянно изменяется. Двигатель также имеет четыре такта: впуск, сжатие, сгорание и выпуск последовательно завершаются в циклоидальном цилиндре.

 

Роторный двигатель сильно отличается от обычных поршневых двигателей внутреннего сгорания. Себестоимость производства роторных моторов существенно больше, также как и их последующее обслуживание и ремонт. Кроме того поршневой двигатель по сравнению с роторным эффективней с точки зрения мощности, веса, выбросов и энергопотребления.

 

В сочетании с этим, а также в связи со странности технологий роторного двигателя, крупные автомобильные компании пришли к выводу, что использование роторных силовых агрегатов в автопромышленности бессмысленно. Так как роторные моторы не показали своих преимуществ перед обычными, у автомобильных компаний не появилось энтузиазма по их дальнейшей разработке. Только компания Mazda до сих пор тратит огромные деньги на разработку новых поколений роторных моторов. 

 

6. Двигатель Green Steam

 

Green Steam – эффективный, экономичный и простой двигатель, разработанный изобретателем Робертом Грином из Лагуна Вудс, Калифорния, США. Этот мотор преобразует избыточное тепло в водяной пар, который и приводит в движение силовой агрегат. Легкий и компактный двигатель Green Steam преобразует возвратно-поступательное движение во вращательное. Его основной характеристикой является гибкий вал, который передает возвратно-поступательное движение от поршней к кривошипу «Z», таким образом, совершая вращательное движение, не используя запястья, шатуны или коленчатые валы.

 

Этот мотор может использоваться для воздушных насосов, генераторов, водяных насосов, воздуходувок горячего воздуха, аппаратов дистилляции воды, тепловых насосов, кондиционеров, модельных самолетов и т. д. 

 

 

 

Одним из наиболее уникальных преимуществ двигателя является его способность генерировать энергию из тепла двигателей. По существу, отработанное тепло выхлопных газов от двигателя транспортного средства может быть преобразовано в энергию, используемую для некоторых систем охлаждения и насосов транспортного средства. Этот двигатель повысит уровень эффективности любого транспортного средства или системы машины, на которой он установлен.

 

7. Двигатель Стирлинга

 

Двигатель Стирлинга относится к типам силовых агрегатов внешнего сгорания. Основан на периодическом нагреве и охлаждении рабочего тела с извлечением энергии из возникающего при этом изменении давления. Принцип работы двигателя Стирлинга заключается в постоянном сжатии рабочего цилиндра, в результате чего происходит нагревание его внутренней части, а затем охлаждение. Из-за перепада давления из цилиндра извлекается энергия, образуемая при изменении давления. Обычно в качестве рабочего тела используется водород или гелий. Но чаще в таких моторах используется воздух. 

 

Двигатели Стирлинга отлично подходят для преобразования тепла в электроэнергию. Например, многие специалисты считают, что эти моторы подходят для солнечных электрических установок. 

То есть это идеальные силовые агрегаты для преобразования солнечной энергии в электричество. 

 

8. Радиальный двигатель (звездообразный)

 

Звездообразный двигатель представляет собой поршневой двигатель внутреннего сгорания, в котором цилиндры расположены вокруг коленчатого вала. Один поршень соединен с коленвалом через главный шатун. Остальные поршни прикреплены через шатуны к кольцам главного ведущего шатуна. 

 

Двигатель преимущественно создан для использования в самолетах. До появления реактивных двигателей в большинстве поршневых авиационных двигателей использовались подобные звездообразные конструкции силовых агрегатов. Эти моторы, как правило, устанавливались на самолеты небольшой дальности. Остальные самолетные моторы имели V-образную форму. 

 

Некоторые современные легкие самолеты до сих пор оснащаются радиальными моторами.

Ряд компаний продолжает строить радиальные системы сегодня. Например, вот современный авиационный радиальный 9-цилиндровый двигатель Веденеев мощностью 360–450 л. с., который в настоящий момент используется на самолетах Яковлева и Сухого.

Какие бывают типы автомобильных двигателей?

Не только приятно понять, как что-то работает, но и значительно упростить диагностику и устранение проблем, когда они возникают. Это особенно верно в отношении автомобилей, поэтому чем больше вы знаете о том, что происходит под капотом, тем лучше.

В этом руководстве мы предлагаем краткий курс повышения квалификации по принципам работы двигателей, прежде чем подробно изучить их различные конфигурации и компоновки.

Как работают автомобильные двигатели?

Простота поворота ключа для запуска автомобиля означает, что двигатели часто воспринимаются как должное.Немногие водители задумываются обо всем технологическом волшебстве, происходящем под капотом, когда они едут из пункта А в пункт Б, но двигатель на самом деле является чрезвычайно впечатляющим инженерным достижением.

Двигатели используют внутреннее сгорание; небольшие контролируемые взрывы, генерирующие энергию. Это эффект воспламенения топливно-воздушной смеси в различных цилиндрах автомобиля, процесс, который происходит тысячи раз в минуту, помогая автомобилю двигаться.

Процесс питания двигателя называется циклом сгорания.В большинстве случаев цикл состоит из четырех шагов или «тактов» (отсюда и название четырехтактного двигателя). К ним относятся впуск, сжатие, сгорание и выпуск. Ниже мы рассмотрим, как эти отдельные такты влияют на цикл сгорания в двигателе автомобиля.

  • Впуск: По мере того, как поршни перемещаются вверх и вниз вместе с коленчатым валом, они достигают клапанов, установленных на распределительном валу. Когда поршень движется вниз, ремень ГРМ вращает распределительный вал, заставляя клапаны открываться и выпускать топливно-воздушную смесь.Это называется приемом.

  • Сжатие: Такт сжатия происходит, когда поршень движется вверх, выталкивая топливно-воздушную смесь в ограниченное пространство.

  • Возгорание: Непосредственно перед тем, как поршень снова опускается вниз, свеча зажигания вырабатывает искру, воспламеняя топливно-воздушную смесь и вызывая небольшой взрыв. Это заставляет поршень быстро опускаться, производя энергию для питания двигателя.

  • Выхлоп: Когда поршень достигает своей нижней точки, выпускной клапан открывается.Когда поршень движется обратно вверх, он выталкивает газы, образовавшиеся в результате взрыва, через выпускной клапан. Вверху выпускной клапан закрывается, и процесс повторяется.

Это цикл сгорания в одном цилиндре четырехтактного двигателя внутреннего сгорания. Конечно, у автомобилей есть несколько цилиндров разной мощности, а также разные конфигурации и компоновки в зависимости от типа автомобиля и его выходной мощности.

Общие схемы расположения двигателей автомобилей

Производители автомобилей используют разные схемы расположения цилиндров для определенных двигателей, в основном с целью увеличения мощности или обеспечения того, чтобы двигатель поместился в ограниченном пространстве под капотом.Здесь мы рассмотрим наиболее распространенные схемы расположения цилиндров автомобильных двигателей.

Прямой

В прямом двигателе цилиндры расположены параллельно автомобилю спереди назад. Такое расположение позволяет использовать больше цилиндров, а прямые двигатели обычно встречаются в мощных седанах, таких как BMW и Mercedes.

Рядный

Рядный вариант — это когда цилиндры расположены бок о бок в вертикальном положении поперек моторного отсека, перпендикулярно автомобилю.Это позволяет создать небольшой компактный двигатель с другими компонентами (радиатор, аккумулятор, система охлаждения), установленными снаружи. Рядные двигатели являются наиболее распространенной формой двигателя и используются в большинстве хэтчбеков и небольших семейных автомобилей.

V

Под V-образным двигателем понимается форма расположения цилиндров, если смотреть спереди. Цилиндры в V-образном двигателе установлены на своей стороне под углом 60 ° двумя рядами, обращенными наружу, и соединены коленчатым валом у основания V-образной формы.Поскольку на двигатель V-образного типа можно втиснуть большое количество цилиндров, они обычно используются в суперкарах и других автомобилях премиум-класса.

Плоская

Плоская компоновка двигателя — это когда цилиндры установлены горизонтально двумя рядами наружу. Плоские двигатели, хотя и не очень распространены, высоко ценятся за то, что предлагают низкий центр тяжести в моторном отсеке, что облегчает управление. Одним из крупнейших производителей двигателей с плоским цилиндром является Porsche, который использует шестицилиндровый двигатель в своем легендарном спортивном автомобиле 911.

Конфигурации цилиндров двигателя

Когда-то, чем больше цилиндров было в автомобиле, тем выше его характеристики, но теперь это уже не так. Развитие мощных систем впрыска топлива и турбонагнетателей означает, что автомобили с меньшим количеством цилиндров могут конкурировать с более крупными двигателями. Здесь мы рассмотрим типичные конфигурации цилиндров двигателя и автомобили, на которых они могут быть найдены.

Двухцилиндровый

Двухцилиндровые двигатели встречаются очень редко, поскольку они обладают низкой выходной мощностью и мощностью.Однако некоторые производители в настоящее время используют турбокомпрессоры для создания небольших экологичных двухцилиндровых двигателей. Fiat TwinAir является прекрасным примером этого, и его можно встретить на таких автомобилях, как Fiat 500 TwinAir и Fiat Panda Aria.

Трехцилиндровый

Трехцилиндровые двигатели используются на небольших автомобилях, хотя введение турбонагнетателей означало, что они начали появляться на больших семейных хэтчбеках, таких как Ford Focus. Трехцилиндровые двигатели издают характерный булькающий шум и известны своей дрожащей вибрацией, которая является результатом нечетного количества цилиндров, влияющих на балансировку двигателя.

Четырехцилиндровый

Самая распространенная конфигурация, четырехцилиндровые двигатели используются в подавляющем большинстве автомобилей малого и среднего класса и почти всегда устанавливаются в рядную компоновку. Четыре цилиндра обеспечивают хорошую мощность двигателя и могут быть сделаны очень мощными с помощью турбонагнетателя.

Пятицилиндровый

Пятицилиндровые двигатели встречаются очень редко и испытывают такую ​​же вибрацию, как и трехцилиндровые двигатели. Volvo — один из производителей, который регулярно использует пятицилиндровые двигатели, поскольку эффект вибрации компенсируется комфортом и изысканностью автомобиля.

Шестицилиндровый

Шестицилиндровые двигатели используются в высокопроизводительных и спортивных автомобилях и обычно имеют V-образную или прямую компоновку двигателя. Раньше шестицилиндровые двигатели не считались такими уж мощными, но теперь, благодаря турбонагнетателю, они устанавливаются на некоторые из самых мощных автомобилей в мире.

Восемь + цилиндров

Автомобили, оснащенные восемью или более цилиндрами, обычно попадают в кронштейн суперкара, учитывая их большой объем и выходную мощность.Обычно они располагаются в форме буквы V, поэтому их называют V8, V10 или V12. До недавнего времени V12 был самым большим из доступных двигателей, но все изменилось с появлением сверхбыстрого Bugatti Veyron с шестнадцатью цилиндрами.

Вне зависимости от того, имеет ли ваш автомобиль два или двенадцать цилиндров, добавки для топливной системы Redex могут улучшить производительность и снизить расход топлива. Наши присадки к бензину и дизельному топливу разработаны для очистки топливной системы, снижения выбросов и значительного улучшения характеристик вашего двигателя.Для получения дополнительной информации посетите домашнюю страницу .

Доля:

Типы двигателей

Двигатели — это машины, которые преобразуют источник энергии в физическую работу. Если вам нужно что-то передвигать, двигатель — это то, что вам нужно. Но не все двигатели сделаны одинаково, и разные типы двигателей определенно не работают одинаково.

Изображение предоставлено Little Visuals / Pixabay.

Вероятно, наиболее интуитивно понятный способ различить их — это тип энергии, который каждый двигатель использует для выработки мощности.

  • Тепловые двигатели
    • Двигатели внутреннего сгорания (двигатели внутреннего сгорания)
    • Двигатели внешнего сгорания (ЕС двигатели)
    • Реакционные двигатели
  • Электродвигатели
  • Физические механизмы

Тепловые двигатели

В самом широком смысле этим двигателям требуется источник тепла для перехода в движение.В зависимости от того, как они выделяют указанное тепло, это могут быть двигатели внутреннего сгорания (которые сжигают материал) или негорючие двигатели. Они действуют либо за счет прямого сгорания топлива, либо за счет преобразования жидкости для создания работы. Таким образом, большинство тепловых двигателей также частично пересекаются с химическими системами привода. Это могут быть двигатели с воздушным дыханием (которые забирают окислитель, например кислород из атмосферы) или двигатели без дыхания (с окислителями, химически связанными в топливе).

Двигатели внутреннего сгорания

Двигатели внутреннего сгорания (двигатели IC) сегодня довольно распространены.Они приводят в действие автомобили, газонокосилки, вертолеты и так далее. Самый большой двигатель внутреннего сгорания может генерировать 109 000 л.с. для корабля, перевозящего 20 000 контейнеров. Двигатели внутреннего сгорания получают энергию из топлива, сжигаемого в специальной области системы, называемой камерой сгорания. В процессе сгорания образуются продукты реакции (выхлоп), общий объем которых намного превышает общий объем реагентов (топлива и окислителя). Это расширение и есть хлеб с маслом для двигателей внутреннего сгорания — это то, что на самом деле обеспечивает движение.Тепло является лишь побочным продуктом сгорания и представляет собой потраченную впустую часть запаса энергии топлива, поскольку фактически не обеспечивает никакой физической работы.

Рядный 4-цилиндровый двигатель внутреннего сгорания.
Изображение предоставлено НАСА / Исследовательским центром Гленна. Двигатели

IC различаются по количеству «ходов» или циклов, которые каждый поршень делает для полного вращения коленчатого вала. Сегодня наиболее распространены четырехтактные двигатели, в которых реакция сгорания разбита на четыре этапа:

  1. Индукция или впрыск топливовоздушной смеси (карбюрата) в камеру сгорания.
  2. Сжатие смеси.
  3. Зажигание свечой зажигания или компрессия — топливо идет штанга .
  4. Выброс выхлопных газов.
Этот радиальный паровозик похож на самого забавного человечка, которого я когда-либо видел.
Изображение предоставлено Дук / Викимедиа.

На каждом шаге 4-тактный поршень поочередно опускается или поднимается. Зажигание — это единственный этап, на котором в двигателе генерируется работа, поэтому на всех остальных этапах каждый поршень полагается на энергию от внешних источников (другие поршни, электростартер, ручной запуск или инерция коленчатого вала) для перемещения.Вот почему вам нужно тянуть за шнурок газонокосилки, и почему вашему автомобилю нужен исправный аккумулятор, чтобы начать работать.

Другими критериями для дифференциации двигателей внутреннего сгорания являются тип используемого топлива, количество цилиндров, общий рабочий объем (внутренний объем цилиндров), распределение цилиндров (рядные, радиальные, V-образные двигатели и т. Д.), А также мощность и мощность. -весовой выход.

Двигатели внешнего сгорания

Двигатели внешнего сгорания (двигатели ЕС) хранят топливо и продукты выхлопа отдельно — они сжигают топливо в одной камере и нагревают рабочую жидкость внутри двигателя через теплообменник или стенку двигателя.В эту категорию попадает и этот великий отец промышленной революции, паровая машина.

В некоторых отношениях двигатели с электронным управлением работают так же, как и их аналоги на базе IC — им обоим требуется тепло, которое получается при сжигании материала. Однако есть и несколько отличий.

В двигателях

EC используются жидкости, которые подвергаются тепловому расширению-сжатию или сдвигу по фазе, но чей химический состав остается неизменным. Используемая жидкость может быть газообразной (как в двигателе Стирлинга), жидкостью (двигатель с органическим циклом Ренкина) или претерпевать изменение фазы (как в паровом двигателе) — для двигателей внутреннего сгорания почти всегда жидкость представляет собой жидкое топливо. и воздушная смесь, которая воспламеняется (меняет свой химический состав).Наконец, двигатели могут либо выпускать жидкость после использования, как двигатели внутреннего сгорания (двигатели с открытым циклом), либо постоянно использовать одну и ту же жидкость (двигатели с закрытым циклом).

Паровоз Стивенсона работает

Удивительно, но первые паровые машины, получившие промышленное применение, генерировали работу за счет создания вакуума, а не давления. Эти машины, получившие название «атмосферные двигатели», были громоздкими и очень неэффективными. Со временем паровые двигатели приобрели форму и характеристики, которые мы ожидаем от двигателей сегодня, и стали более эффективными — с поршневыми паровыми двигателями, в которых была введена поршневая система (все еще используемая двигателями внутреннего сгорания сегодня) или составные системы двигателей, в которых повторно использовалась жидкость. в цилиндрах при понижении давления для создания дополнительной «мощности».

Сегодня паровые двигатели вышли из широкого использования: они тяжелые, громоздкие, имеют гораздо меньшую топливную эффективность и удельную мощность, чем двигатели внутреннего сгорания, и не могут так быстро менять мощность. Но если вас не беспокоит их вес, размер и вам нужен постоянный запас работы, они просто великолепны. Таким образом, ЕС в настоящее время с большим успехом используется в качестве паротурбинных двигателей для морских операций и электростанций.

Применение

для атомной энергетики отличается тем, что называется негорючими двигателями или внешними тепловыми двигателями , поскольку они работают по тем же принципам, что и двигатели с электронным управлением, но не получают энергию от сгорания.

Двигатели реакции

Реакционные двигатели , в просторечии известные как реактивные двигатели , создают тягу за счет вытеснения реакционной массы. Основным принципом реактивного двигателя является третий закон Ньютона: если вы ударите чем-то с достаточной силой через заднюю часть двигателя, он вытолкнет переднюю часть вперед. И реактивные двигатели действительно хороши в этом.

Безумно хорошо в этом.
Изображение предоставлено thund3rbolt / Imgur.

То, что мы обычно называем «реактивным» двигателем, прикрепленное к пассажирскому самолету Boeing, строго говоря, является воздушно-реактивным двигателем и относится к классу двигателей с турбинным двигателем. Прямоточные воздушно-реактивные двигатели, которые обычно считаются более простыми и надежными, поскольку они содержат меньше (или почти не содержат) движущихся частей, также являются воздушно-реактивными двигателями, но относятся к классу таранных двигателей. Разница между ними заключается в том, что прямоточные воздушно-реактивные двигатели полагаются на чистую скорость для подачи воздуха в двигатель, тогда как турбореактивные двигатели используют турбины для втягивания и сжатия воздуха в камеру сгорания.В остальном они функционируют в основном одинаково.

В турбореактивных двигателях воздух втягивается в камеру двигателя и сжимается вращающейся турбиной. Ramjets рисуют и сжимают его, двигаясь очень быстро. Внутри двигателя он смешивается с мощным топливом и воспламеняется. Когда вы концентрируете воздух (и, следовательно, кислород), смешиваете его с большим количеством топлива и взрываете его (таким образом, генерируя выхлоп и термически расширяя весь газ), вы получаете реакционный продукт, который имеет огромный объем по сравнению с всасываемым воздухом. Единственное место, через которое может пройти вся эта масса газов, — это задняя часть двигателя, что происходит с огромной силой.По пути он приводит в действие турбину, втягивая больше воздуха и поддерживая реакцию. И чтобы добавить оскорбления к травмам, в задней части двигателя есть метательное сопло.

Здравствуйте, я метательная форсунка. Я буду твоим проводником.

Эта часть оборудования заставляет весь газ проходить через пространство еще меньшего размера, чем он первоначально прошел, таким образом, еще больше ускоряя его в «струю» материи. Выхлоп выходит из двигателя с невероятной скоростью, в три раза превышающей скорость звука, толкая самолет вперед.

Реактивные двигатели

, не дышащие воздухом, или ракетные двигатели , работают так же, как реактивные двигатели без переднего долота — потому что им не нужен внешний материал для поддержания сгорания. Мы можем использовать их в космосе, потому что в них есть весь необходимый окислитель, упакованный в топливо. Это один из немногих типов двигателей, в которых постоянно используется твердое топливо.

Тепловые двигатели могут быть до смехотворно большими или очаровательно маленькими. Но что, если все, что у вас есть, — это розетка, и вам нужно запитать свои вещи? Что ж, в таком случае вам нужно:

Электродвигатели

Ах да, чистая банда.Классические электрические двигатели бывают трех типов: магнитные, пьезоэлектрические и электростатические.

И, конечно же, привод Duracell.

Магнитная, как и батарея там, наиболее часто используется из трех. Он основан на взаимодействии магнитного поля и электрического потока для создания работы. Он работает по тому же принципу, что и динамо-машина для выработки электроэнергии, но наоборот. Фактически, вы можете выработать немного электроэнергии, если вручную провернете электромагнитный двигатель.

Для создания магнитного двигателя вам понадобятся несколько магнитов и намотанный провод. Когда к обмотке подается электрический ток, он индуцирует магнитное поле, которое взаимодействует с магнитом, создавая вращение. Важно, чтобы эти два элемента были разделены, поэтому электродвигатели состоят из двух основных компонентов: статора, который является внешней частью двигателя и остается неподвижной, и ротора, который вращается внутри него. Они разделены воздушной прослойкой. Обычно магниты встроены в статор, а проводник намотан на ротор, но они взаимозаменяемы.Магнитные двигатели также оснащены коммутатором для переключения электрического потока и модуляции индуцированного магнитного поля, когда ротор вращается для поддержания вращения.

Пьезоэлектрические приводы — это типы двигателей, в которых используется свойство некоторых материалов генерировать ультразвуковые колебания под воздействием электрического тока для создания работы. Электростатические двигатели используют одинаковые заряды, чтобы отталкивать друг друга и вызывать вращение ротора. Поскольку в первом используются дорогие материалы, а во втором для работы требуется сравнительно высокое напряжение, они не так распространены, как магнитные приводы.

Классические электрические двигатели обладают одними из самых высоких показателей энергоэффективности среди двигателей, преобразуя до 90% энергии в работу.

Ионные приводы

Ионные приводы представляют собой смесь реактивного и электростатического двигателей. Этот класс приводов ускоряет ионы (плазму), используя электрический заряд для создания движения. Они не работают, если вокруг корабля уже есть ионы, поэтому они бесполезны за пределами космического вакуума.

Подруливающее устройство Холла.
Изображение предоставлено NASA / JPL-Caltech.

Они также имеют очень ограниченную выходную мощность. Однако, поскольку в качестве топлива они используют только электричество и отдельные частицы газа, они были тщательно изучены для использования в космических кораблях. Deep Space 1 и Dawn успешно использовали ионные двигатели. Тем не менее, эта технология кажется наиболее подходящей для малых кораблей и спутников, поскольку след электронов, оставляемый этими двигателями, отрицательно влияет на их общую производительность.

Приводы EM / Cannae

EM / Cannae Приводы используют электромагнитное излучение, содержащееся в микроволновом резонаторе, для создания доверия.Это, наверное, самый необычный из всех типов двигателей. Его даже называют «невозможным» побуждением, поскольку это нереакционный побудительный мотив, то есть он не производит никакого разряда для создания тяги, по-видимому, в обход Третьего закона.

«Вместо топлива он использует микроволны, отражающиеся от тщательно настроенного набора отражателей, для достижения небольшой силы и, следовательно, тяги без топлива», — сообщил Андрей о поездке.

Было много споров о том, работает ли этот тип двигателя на самом деле или нет, но испытания НАСА подтвердили, что он функционально исправен.В будущем его даже обновят. Поскольку он использует только электрическую энергию для создания тяги, хотя и в небольших количествах, он кажется наиболее подходящим двигателем для исследования космоса.

Но это в будущем. Давайте посмотрим, с чего все началось. Давайте посмотрим на:

Физические механизмы

Работа этих двигателей зависит от накопленной механической энергии. Заводные двигатели , пневматические и гидравлические двигатели все являются физическими приводами.

Модель Ле Плонжера с огромными баллонами с воздухом.
Изображение предоставлено Национальным морским музеем.

Они не очень эффективны. Они также обычно не могут использовать большие запасы энергии. Например, заводные двигатели хранят упругую энергию в пружинах, и их нужно заводить каждый день. Пневматические и гидравлические двигатели должны иметь на себе огромные трубки со сжатой жидкостью, которые, как правило, не работают очень долго. Например, Plongeur , первая в мире подводная лодка с механическим приводом, построенная во Франции между 1860 и 1863 годами, несла поршневой воздушный двигатель, снабженный 23 танками на 12.5 баров. Они занимали огромное пространство (153 кубических метра / 5 403 кубических фута), и их хватало только для того, чтобы корабль пролетел 5 морских миль (9 км / 5,6 миль) при скорости 4 узла.

Тем не менее, физические диски, вероятно, использовались впервые. Катапульты, требушеты или тараны полагаются на этот тип двигателей. То же самое можно сказать и о кранах, приводимых в движение человеком или зверем — все они использовались задолго до любого другого типа двигателей.

Это далеко не полный список всех двигателей, созданных человеком.Не говоря уже о том, что биология тоже создала побуждения — и они являются одними из самых эффективных, которые мы когда-либо видели. Но если вы прочтете все это, я почти уверен, что у вас к этому моменту заканчивается топливо. Так что отдохните, расслабьтесь, и в следующий раз, когда вы встретите двигатель, смазывайте руки и нос, исследуя его — мы рассказали вам основы.

Типы автомобильных двигателей: от макетов до конфигураций

Повернуть ключ или нажать кнопку очень просто! Понимание того, что происходит под капотом, становится немного более техническим — от типов автомобильных двигателей до конфигураций цилиндров.

Трубки, провода и трубы странной формы делают свое дело, заставляя вашу машину двигаться дальше быстрее. Давайте посмотрим на:

  • Как работают автомобильные двигатели
  • Типы автомобильных двигателей
  • Конфигурации цилиндров

Как работают двигатели: четырехтактный двигатель

В настоящее время вы, скорее всего, найдете четырехтактный двигатель в своем автомобиле, внедорожнике или грузовике. Это означает, что тип автомобильного двигателя имеет 4 основных ступени внутреннего сгорания. Внутреннее сгорание состоит из воспламенения смеси топлива и воздуха для создания небольшого управляемого взрыва в цилиндрах.Давайте сделаем шаг назад, чтобы понять, что это означает.

Автомобильные двигатели построены на основе цилиндров , которые представляют собой герметичные металлические трубы со свечой зажигания и двумя клапанами с одной стороны и коленчатым валом с другой. Внутри цилиндров расположены поршни. Поршни — это насосы с плотной посадкой, такие как поршни. Они прикреплены к коленчатому валу и скользят вверх и вниз, отбирая энергию взрыва. Впускной и выпускной клапаны впускают воздух и газ и выпускают выхлоп соответственно.

Когда свеча зажигания зажигает газ, поршни двигаются и вращают коленчатый вал. Наконец, вращательное движение от коленчатого вала передается на коробку передач и перемещает автомобиль вперед.

Википедия: Четырехтактный цикл, используемый в бензиновых / бензиновых двигателях: впуск (1), компрессия (2), мощность (3) и выпуск (4).

Движение поршней осуществляется в 4 этапа:

впуск , сжатие , горение и выпуск .

Сначала поршень опускается в цилиндр, в то время как впускной клапан впрыскивает смесь топлива и воздуха в цилиндр.

Во-вторых, клапан закрывается, и поршень движется обратно вверх. Это сжимает смесь, чтобы она была готова к воспламенению. После сжатия свеча зажигания воспламеняется.

Мини-взрыв создает горячий газ, который заставляет поршень опускаться, что приводит к вращению коленчатого вала.

Наконец, сила на коленчатом валу способствует продолжению вращения, заставляя поршень снова подниматься. Затем открывается выпускной клапан, выпуская выхлоп из цилиндра.

Быстрое последовательное повторение этого процесса в каждом цилиндре создает огромную силу, которая толкает ваш автомобиль вперед.

Типы автомобильных двигателей: 3 наиболее распространенных компоновки

Рядный двигатель

Рядный или прямой: Это наиболее распространенный двигатель в легковых автомобилях, внедорожниках и грузовиках. Цилиндры расположены вертикально, бок о бок, что делает двигатель компактным и эффективным.

V: V-образные двигатели выглядят как «v» с цилиндрами, расположенными под углом 60 градусов. Они подходят для большого количества цилиндров и могут быть найдены в суперкарах премиум-класса или в высокопроизводительных суперкарах.

Плоский : также известный как «оппозитный» двигатель, цилиндры которого расположены горизонтально. Гравитация работает с этим стилем. Плоские двигатели не распространены и в основном встречаются на Porsche.

Конфигурации цилиндров

До систем впрыска топлива и турбонагнетателей количество цилиндров определяло мощность двигателя.

Топливо впрыск — это прямой впрыск топлива в камеру сгорания по сравнению с использованием карбюратора, который основан на всасывании поршней для втягивания воздушно-топливной смеси в камеру сгорания.Впрыск топлива используется в дизельных двигателях, что обеспечивает большую мощность, более плавный отклик дроссельной заслонки и лучшую топливную экономичность. Турбокомпрессор добавляет дополнительную компрессию в камеру сгорания, улучшая КПД и выходную мощность.

Эти два дополнения двигателя позволили увеличить мощность без необходимости в дополнительных цилиндрах.

Наиболее распространенная конфигурация — это четырехцилиндровый двигатель (в основном рядный). У автомобилей малого и среднего класса есть это под капотом.Он обеспечивает хорошую производительность, оставаясь при этом компактным. Вы можете найти много автомобилей с турбонагнетателем, добавленным для дополнительного наддува.

Реже у нас двухцилиндровых автомобилей . Вы видите двухцилиндровый двигатель на небольших экологически чистых двигателях.

Трехцилиндровые двигатели обычно имеют прямую компоновку из-за неравномерного количества цилиндров и могут быть найдены на небольших автомобилях или небольших хэтчбеках, таких как Mitsubishi Mirage. У них также очень хорошая экономия топлива, при этом они остаются компактными и доступными.

С другой стороны, увеличение количества цилиндров до 6 предназначено для более мощных и спортивных автомобилей. Компоновка обычно представляет собой V-образный или прямой двигатель.

Наконец, у нас есть двигатели с 8 и более цилиндрами. С 8 и более вы, вероятно, смотрите на суперкар с V-образной компоновкой.

Готов к просмотру!

Понимание типов доступных автомобильных двигателей и того, что находится в вашем новом автомобиле, не должно быть загадкой. Вы будете знать, что дает вам дополнительный импульс, а что более экономично.У Мэтта Блатта есть множество вариантов: от нашего нового ассортимента Kia с рядным 4-цилиндровым двигателем Kia Optima до 6-цилиндрового двигателя Kia Sorento! И это не считая наших быстро продаваемых подержанных автомобилей.

Наша команда с радостью ответит на любые вопросы о двигателях, их возможностях и многом другом! Свяжитесь с нами сегодня.

V Двигатель

Опубликовано в Советы и хитрости | Нет комментариев »

Объяснение объема двигателя

| Carbuyer

Если вы когда-либо проверяли двигатели, доступные в новых автомобилях, вы могли заметить, что многие из них меньше, чем вы могли ожидать.При все более строгих нормах выбросов производители вкладывают огромное количество времени и денег в максимальную мощность и эффективность, и часть этого процесса включала внедрение двигателей меньшего размера.

Благодаря усовершенствованиям в технологии турбонаддува и гибридной технологии производители теперь могут добиться отличного сочетания производительности, эффективности и снижения выбросов выхлопных газов с помощью этих двигателей меньшего размера. Автомобиль, который, возможно, был оснащен 2,0-литровым двигателем в прошлом, теперь может поставляться с двигателем вдвое меньшего размера, с очень небольшими, если вообще, заметными изменениями с сиденья водителя.

Что означает объем двигателя?

Размер двигателя также может называться «объемом двигателя» или «рабочим объемом двигателя» и представляет собой измерение общего объема цилиндров в двигателе. Чем больше объем двигателя, тем больше в нем места для воздуха и топлива.

Индикатор управления двигателем: 5 основных причин включения желтого индикатора двигателя

Объем двигателя обычно выражается в литрах. Один литр состоит из 1000 кубических сантиметров, но объем двигателя обычно округляется до ближайшей десятой доли литра (1.4 литра, например). Традиционно размер двигателя определял, сколько мощности он будет производить, и хотя это все еще актуально сегодня, внедрение современных двигателей с турбонаддувом в последние годы означало, что меньшие двигатели намного мощнее, чем раньше.

В большинстве новейших двигателей, таких как Ford EcoBoost и Suzuki BoosterJet, используются турбокомпрессоры для увеличения мощности. Это во многом объясняет, почему современные небольшие двигатели часто могут производить больше мощности, чем более старые и более крупные двигатели.

Мощность, производимая двигателем, обычно выражается в лошадиных силах. Источник этого измерения часто приписывают Джеймсу Ватту, знаменитому пионеру паровой машины. Он нашел способ выразить, сколько мощности может произвести паровой двигатель, измерив ее в сравнении с количеством лошадей, необходимых для обеспечения того же количества тягового усилия.

Чтобы еще больше запутать ситуацию, существуют различные системы измерения мощности, и не все они напрямую сопоставимы.Carbuyer использует наиболее распространенное в Великобритании измерение: тормозную мощность (л.с.).

Что означает два литра, 2,0 литра или любое другое число, например 1,5?

До недавнего времени в обозначениях моделей автомобилей часто упоминался объем двигателя, а также уровень отделки салона. Чем больше число, тем, как правило, дороже приобретается автомобиль.

Если вы встретите число, например 2,0, или фразу, например, 2,0 литра, это относится к объему двигателя. Это совокупный объем всех цилиндров двигателя.Типичные современные двигатели имеют три, четыре, шесть или иногда восемь цилиндров — хотя у некоторых их больше или меньше — поэтому 2,0-литровый четырехцилиндровый двигатель будет иметь объем 500 куб. См в каждом из цилиндров.

Каждый поршень движется вверх внутри своего цилиндра, нагнетая смесь воздуха и топлива в камеру сгорания. Здесь он сжимается и сгорает, взрывная сила которого заставляет каждый поршень опускаться обратно внутрь своего цилиндра. Это тот импульс, который используется как мощность двигателя. Если четырехцилиндровый двигатель описывается как 2.0 литров, это означает, что каждый поршень может сжимать примерно 500 куб. См топлива и воздуха в камеру сгорания за каждый оборот двигателя.

Если этот двигатель работает со скоростью 3 000 об / мин, это означает, что каждый поршень в двигателе может сжигать 500 куб. См топлива и воздух 3 000 раз в минуту. Чем больше воздуха и топлива может сжечь двигатель, тем большую мощность он обычно производит.

Как объем двигателя влияет на производительность?

Поскольку двигатель большего размера обычно способен сжигать больше топлива и производить больше мощности, автомобиль с более крупным и мощным двигателем, вероятно, сможет разгоняться быстрее и буксировать более тяжелые грузы, чем автомобиль с двигателем меньшего размера.

Это практическое правило сегодня менее точно, чем в прошлом. Достижения в технологии двигателей означают, что некоторые из современных двигателей меньшего размера способны производить больше мощности, чем некоторые более крупные и устаревшие двигатели. Одним из ключей к этому является турбонаддув, который нагнетает больше воздуха и топлива в каждый цилиндр.

Как размер двигателя влияет на экономию топлива?

Если двигатель большего размера может сжигать больше топлива при каждом обороте за минуту (об / мин), он обычно потребляет больше топлива, чем двигатель меньшего размера за одну и ту же поездку.

Это очень важный момент при выборе нового автомобиля. Поскольку более мощные автомобили с большим двигателем обычно стоят больше и используют больше топлива, чем автомобили с меньшим двигателем, стоит подумать о том, сколько мощности вам действительно нужно.

Если ваша повседневная вождение обычно не связана с резким ускорением, перевозкой тяжелых грузов или движением на высоких скоростях, вы можете обнаружить, что меньший и менее мощный двигатель сэкономит вам деньги на топливе. Пользователи служебных автомобилей также сэкономят на налоге на натуральную льготу (BiK), поскольку он напрямую связан с выбросами CO2.Вы можете узнать больше о выбросах CO2 и экономии топлива в нашем руководстве.

Топ-10 лучших служебных автомобилей 2021 г.

Небольшие двигатели, как правило, особенно подходят для автомобилей, которые используются преимущественно в городских условиях. Они обеспечивают достаточную производительность для коротких поездок — таких как поездки в супермаркет, школу или офис — где высокие скорости и быстрое ускорение действительно не нужны. Поскольку двигатель не требуется регулярно для выработки большой мощности, имеет смысл сохранить его небольшого размера и воспользоваться преимуществами экономии.

Более мощные двигатели, которые не должны работать так тяжело, чтобы обеспечить высокую мощность, раньше использовались по умолчанию среди тех, кто совершает частые поездки по скоростным автомагистралям. Однако современные технологии могут заставить небольшой двигатель вести себя как двигатель гораздо большего размера, и даже двигатель скромных размеров может быть совершенно непринужденным в долгом путешествии по автомагистрали.

Помните, что ваш стиль вождения также будет определять, сколько топлива вы будете использовать. Удержание низких оборотов за счет переключения на максимально возможную передачу поможет сэкономить топливо, равно как и мягкое ускорение и торможение.Правильно накачанные шины могут сэкономить сотни фунтов ежегодно. Щелкните здесь, чтобы ознакомиться с нашими советами по экономии топлива за счет экономного вождения.

Объем и мощность двигателя вашего автомобиля также будут влиять на размер страхового взноса. Автомобили с низкими страховыми группами (т. Е. Дешевые в страховании), как правило, имеют меньшие по размеру и менее мощные двигатели.

В чем разница между бензином и дизелем?

Бензин и дизельное топливо получают из масла, но способ их производства и использования в автомобильных двигателях различаются, поэтому никогда не следует заливать неправильное топливо в свой автомобиль.Дизель более энергоемкий, чем бензин на литр, и различия в том, как работают дизельные двигатели, делают их более эффективными, чем их бензиновые аналоги.

Дизельный двигатель того же размера, что и бензиновый, всегда будет более экономичным. Это может сделать выбор между ними простым, но, к сожалению, это не так по нескольким причинам. Во-первых, дизельные автомобили более дорогие, поэтому часто вам нужно быть водителем с большим пробегом, чтобы увидеть преимущество экономии по сравнению с более высокой ценой.Другая причина, связанная с этим, заключается в том, что дизельным автомобилям необходимо регулярно ездить по автомагистралям, чтобы они оставались в хорошем состоянии, поэтому, если вам нужен автомобиль только для езды по городу, дизель может не подойти. Третья причина заключается в том, что дизельные двигатели производят больше местных загрязнителей, таких как закись азота, которые в большей степени влияют на качество воздуха. Это также может повлечь дополнительные расходы в районах, находящихся под контролем загрязнения, таких как ULEZ в Лондоне.

Неправильная заправка: что делать, если вы залили бензин в свой дизельный автомобиль

Бензиновые и дизельные двигатели имеют разные характеристики.Дизель — хорошее топливо для дальних поездок на малых оборотах, например, для круизов по автомагистралям. Он также производит большую мощность при низких оборотах двигателя, что делает его идеальным для буксировки караванов.

Бензин, с другой стороны, часто лучше подходит для небольших автомобилей и, как правило, более популярен для хэтчбеков и супермини. С точки зрения экономии топлива выбор между дизельным и бензиновым двигателем может быть непростым — см. Наше руководство «бензин или дизель» здесь.

Зачем мне нужен большой двигатель?

Хотя небольшие двигатели с турбонаддувом могут производить больше мощности, чем многие более крупные двигатели, произведенные в прошлом, по-прежнему остается общим правилом, что большой двигатель способен производить больше мощности.Покупатели, которым будет выгоден большой двигатель, включают владельцев домов на колесах и людей, намеревающихся путешествовать на большие расстояния по автомагистралям, особенно если автомобиль будет полным. Автомобили с большими двигателями также могут быть интересны тем, кто любит вождение, поскольку они, как правило, обладают дополнительной мощностью и шумом — важными составляющими для поклонников быстрых автомобилей.

Кроме того, большие и тяжелые автомобили, как правило, требуют более мощных двигателей. Шикарные внедорожники, такие как Range Rover (который весит пару тонн), требуют больше энергии, чтобы двигаться и поддерживать скорость.

Трудно дать однозначное правило относительно того, какой объем двигателя будет достаточным для ваших конкретных потребностей, потому что существуют двигатели аналогичных размеров, которые работают по-разному. Однако большинство производимых сегодня двигателей объемом более 1,0 литра или с турбонаддувом должны быть более чем способны справляться с движением по автомагистралям.

Руководство по выбору двигателей внутреннего сгорания

: типы, характеристики, применение

Двигатели внутреннего сгорания — это машины, использующие тепло и давление реакции сгорания для выработки механической энергии.Большинство двигателей внутреннего сгорания работают, вызывая контролируемое сжигание топлива и воздуха в камере сгорания. Ожог генерирует тепло и давление, которые прямо или косвенно приводят в движение вал, который действительно работает. Механическая энергия, производимая двигателем внутреннего сгорания, может быть вращательной, колебательной или другой формы в зависимости от конструкции компонентов. Двигатели внутреннего сгорания используются в бесчисленных типах продукции, от автомобилей до крупных промышленных машин.

Типы двигателей внутреннего сгорания

Двигатели внутреннего сгорания классифицируются изначально в зависимости от того, как они сжигают топливо (внутреннее или внешнее).В каждой категории есть несколько различных типов дизайна.

Двигатели внутреннего сгорания

Двигатели внутреннего сгорания — это двигатели внутреннего сгорания, которые сжигают топливо внутри камеры сгорания.

Двухтактные двигатели

Двухтактные двигатели завершают энергетический цикл двумя ходами поршня внутри цилиндра или одним оборотом коленчатого вала. В этих двигателях впускной и выпускной потоки происходят одновременно.

Изображение предоставлено: Procarcare — ALLDATA LLC.

Часто двухтактные двигатели обозначаются как более простые по конструкции и имеют более высокое отношение мощности к массе, чем четырехтактные двигатели. Они также считаются менее экономичными и более загрязняющими. Однако есть много исключений из этих обобщений, и производительность сильно варьируется в зависимости от конструкции двигателя. Двухтактные двигатели используются для выработки энергии в различных областях, включая небольшие садовые изделия (например,г. бензопилы, триммеры), работы на электростанциях и большие корабли.

Четырехтактные двигатели

Четырехтактные двигатели завершают энергетический цикл четырьмя тактами поршня внутри цилиндра или двумя оборотами коленчатого вала. В этих двигателях отдельные фазы разделены, а впуск и выпуск происходят отдельно во время цикла мощности.

Кредит изображения: Dieselduck.ca, Мартин Ледук

Учебник

CDX предоставляет отличное видео, которое дополнительно объясняет работу четырехтактного двигателя.

Четырехтактные двигатели часто более экономичны и чище, чем эквивалентные двухтактные, но могут быть тяжелее и сложнее в конструкции. Они являются наиболее распространенным типом двигателей внутреннего сгорания, используемых в самых разных областях, от автомобилей до промышленного оборудования.

Совет по выбору : Теоретически двухтактный двигатель может генерировать в два раза больше мощности, чем четырехтактный двигатель для того же двигателя и того же числа оборотов.На самом деле это почти верно только для очень больших систем, где соотношение мощностей составляет около 1,8: 1. Средний двухтактный двигатель страдает потерями мощности из-за менее полного впуска и выпуска и более короткого эффективного сжатия и рабочего хода, что делает выходную мощность почти эквивалентной.

Роторные двигатели (Ванкеля)

Роторные двигатели

(Ванкеля) работают с ротором и валом вместо поршня. Вращение вала приводит в движение трехсторонний ротор, который приводит в движение топливо в системе.В этих двигателях разные фазы (впуск, сжатие, мощность и выпуск) происходят в разных местах двигателя. Приводной вал вращается один раз при каждом запуске двигателя в конструкции Ванкеля.

Кредит изображения: Википедия — Y_tambe

Двигатели

Ванкеля часто легче и проще по конструкции, чем аналогичные поршневые двигатели. Кроме того, они обычно более надежны (из-за уменьшения количества движущихся частей) и имеют более высокое отношение мощности к весу.Однако они страдают от менее эффективного уплотнения, что снижает их эффективность и срок службы. Эти двигатели используются в основном в гоночных автомобилях и спортивных автомобилях, где надежность и легкость считаются более важными, чем эффективность и срок службы двигателя.

Турбинные двигатели

Турбинные двигатели — это двигатели внутреннего сгорания, в которых продукты сгорания направляются в турбину внутри двигателя. Газовый поток вращает лопатки турбины, которая вырабатывает энергию или выполняет другую механическую работу.Они меньше, чем большинство аналогичных поршневых двигателей, и имеют очень высокое отношение мощности к массе. У них также меньше движущихся частей, меньше вибрации и отводится значительное количество отработанного тепла в выхлопных газах, что может быть использовано для других целей отопления. Однако у них также есть затраты, более длительное время запуска и более низкая эффективность на холостом ходу. Чаще всего они используются для питания военно-морских судов.

Реактивные двигатели — это подмножество газотурбинных двигателей, оптимизированных для создания тяги.Для выполнения работы горячие газы, генерируемые источником сгорания, продвигаются через сопло с высокой скоростью. Они используются в качестве силовых установок для самолетов.

Двигатели внешнего сгорания

Двигатели внешнего сгорания — это двигатели внутреннего сгорания, которые сжигают свое топливо извне и используют это тепло для перемещения внутренней жидкости, которая выполняет эту работу.

Двигатели Стирлинга

Двигатели Стирлинга — это однофазные двигатели внешнего сгорания, в которых в качестве рабочего тела используется воздух, гелий или водород.Каждый двигатель Стирлинга имеет герметичный цилиндр, одна часть которого горячая, а другая холодная. Рабочий газ внутри двигателя перемещается механизмом с горячей стороны на холодную. Когда газ находится на горячей стороне, он расширяется и толкает поршень вверх. Когда он возвращается в холодную сторону, он сжимается. Правильно спроектированные двигатели Стирлинга имеют два импульса мощности на оборот, что может обеспечить их очень плавную работу. Двигатели Стирлинга могут достигать гораздо более высокого КПД, чем обычные двигатели внутреннего сгорания, и производить меньше шума и вибрации во время работы.Однако они не могут запускаться мгновенно, как двигатели IC, что делает их менее полезными для таких приложений, как автомобили и самолеты. Чаще всего они используются для систем отопления, охлаждения и подводной энергетики.

Двигатель Стирлинга — Изображение предоставлено: MIT

Паровые двигатели

Паровые двигатели — это двухфазные внешние двигатели, в которых в качестве рабочего тела используется вода (в жидкой и парообразной форме).Паровые двигатели также могут использовать источники тепла, не связанные с сжиганием, такие как солнечная энергия, ядерная энергия или геотермальная энергия для нагрева пара. Современные паровые двигатели используются в основном в виде турбин для выработки электроэнергии.

Виды топлива

Двигатели внутреннего сгорания также различаются в зависимости от типа топлива, которое они сжигают.

  • Бензин — жидкое топливо, полученное из нефти (сырой нефти). Сорта бензина различаются в зависимости от октанового числа (премиум или «этилированный» или «этилированный»).обычный или «неэтилированный»). Бензин с более высоким октановым числом может выдерживать большее сжатие перед сгоранием и необходим в некоторых двигателях, рассчитанных на более высокую степень сжатия, чтобы предотвратить детонацию (неконтролируемое сгорание в цилиндре). Бензиновые двигатели также называют двигателями с искровым зажиганием, что означает, что топливо сжигается за счет образования искры от свечи зажигания в цилиндре.
  • Дизель — жидкое топливо, состоящее из длинных углеводородов, полученных из сырой нефти. Дизель имеет высокую плотность энергии и, следовательно, имеет лучшую экономию топлива (более чем на 33% более эффективен), чем бензин, но горит более грязно.Дизельное топливо со сверхнизким содержанием серы (ULSD) является стандартом для дизельного топлива с низким содержанием серы; большинство используемых сегодня марок дизельного топлива относятся к ULSD. Дизельные двигатели — это двигатели с воспламенением от сжатия, то есть топливо сжигается с использованием сжатого воздуха (высокого давления) для повышения температуры выше точки самовоспламенения (самовоспламенения) топлива. Поскольку в них не используется источник зажигания (искра), дизельные двигатели часто требуют прогрева в очень холодных условиях перед использованием. Дизельные двигатели также обеспечивают больший крутящий момент, чем бензиновые.

  • Сжиженный пропан (LPG) представляет собой смесь пропана и бутана, которая при стандартных условиях является газом, но может храниться и превращаться в жидкость при более высоком давлении. Его можно использовать в двигателях внутреннего сгорания в качестве альтернативы бензину (бензину) или дизельному топливу, который горит более чисто, но имеет более низкую плотность энергии (что означает более высокое использование эквивалентного топлива). Некоторые двигатели не подходят для сжиженного нефтяного газа, поскольку он обеспечивает меньшую смазку, чем другие стандартные виды топлива, что вызывает чрезмерный износ клапанов в цилиндрах.

  • Сжатый природный газ (КПГ) представляет собой смесь метана и других углеводородов, хранящуюся в виде газа высокого давления. Природный газ — это относительно чистое горючее с меньшей удельной энергоемкостью, чем бензин и дизельное топливо. Двигатели, работающие на природном газе, аналогичны стандартным бензиновым или дизельным двигателям; но они содержат соединители, которые подают природный газ из баллонов для хранения, и включают регуляторы для снижения давления. Как и СНГ, КПГ не обеспечивает такое же количество смазки, как стандартное жидкое топливо, и двигатели должны проектироваться и обслуживаться соответствующим образом, чтобы предотвратить износ клапанов.

  • Этанол — это спирт, полученный в результате ферментации и перегонки крахмальных культур, таких как кукуруза, или из целлюлозной биомассы, такой как просо. Часто этанол смешивают с бензином в количестве до девяти или десяти процентов (E10), хотя некоторые двигатели могут быть спроектированы для сжигания смесей с чистотой до 85% этанола (E85). Этанол имеет немного более низкое энергосодержание, чем бензин, что приводит к более высокому расходу условного топлива. Однако этанол выделяет меньше загрязняющих веществ, чем бензин, а также имеет большую устойчивость к детонации двигателя, чем бензин.

  • Реактивное топливо представляет собой смесь различных углеводородов. Он используется специально для газотурбинных двигателей и реактивных двигателей, используемых в авиации. Смеси различаются в зависимости от свойств, требуемых для продукта. В турбинных и дизельных двигателях, используемых в самолетах, используется реактивное топливо на основе керосина, а в самолетах с поршневыми двигателями или двигателями Ванкеля используется так называемый авгаз (авиационный бензин).

Другие виды топлива, которые могут использоваться для питания определенных типов двигателей, включают растительное масло, водород, бутан и древесину (посредством газификации).

Технические характеристики

Наиболее важными характеристиками, которые следует учитывать при выборе двигателей внутреннего сгорания, являются крутящий момент, мощность в лошадиных силах и число оборотов в минуту (частота вращения вала), которые являются взаимозависимыми. Для двигателей внутреннего сгорания также важно учитывать рабочий объем и количество цилиндров.

  • Крутящий момент (τ) — это мера силы вращения, создаваемой на валу двигателя во время рабочего хода, выраженная в единицах измерения расстояния-силы (фут-фунт, дюйм-фунт, м-Н и т. Д.)). Он определяет величину физической нагрузки, которую может создать двигатель. Спецификация крутящего момента обычно является показателем максимального номинального крутящего момента двигателя в соответствии со стандартами SAE. Крутящий момент измеряет способность двигателя выдерживать нагрузки и ускоряться и, возможно, является лучшим показателем его характеристик. Двигатели создают полезный крутящий момент только в ограниченном диапазоне частот вращения (обсуждается ниже). Оптимальное использование крутящего момента двигателя часто в значительной степени зависит от передачи трансмиссии соответствующей системы.

Совет по выбору: Важно проверить стандарты, которые производитель использует для измерения крутящего момента. Рекламируемые рейтинги, не основанные на определенных стандартах, могут быть обманчивыми и неточными.

  • об / мин или частота вращения вала — это скорость вращения вала, диска или ротора в двигателе, измеряемая в об / мин (оборотов в минуту). Поскольку скорость и крутящий момент взаимозависимы, номинальные обороты двигателей часто определяют скорость, при которой достигается максимальный крутящий момент.Автомобильные двигатели обычно работают со скоростью около 2500 об / мин. Остановка происходит, когда двигатели работают ниже минимальной скорости, и при работе выше рекомендованного максимума может произойти повреждение или отказ. Двигатели, работающие на более низких скоростях, могут работать дольше, чем эквивалентные двигатели на более высоких скоростях, поскольку они выполняют меньше циклов и со временем изнашиваются меньше. В автомобилях обороты измеряются тахометром.

  • Мощность (л.с.) — производная спецификация, указывающая на производительность двигателя.В частности, он определяет скорость передачи энергии в двигателе. Как и крутящий момент, номинальная мощность в лошадиных силах дается в диапазоне различных оборотов двигателя. Мощность в лошадиных силах зависит от частоты вращения и крутящего момента двигателя по уравнению:

л.с. = (τ × об / мин) ÷ 5252

где:

л.с. — это

лошадиных сил

τ — крутящий момент в фут-фунтах

об / мин — частота вращения в об / мин

5252 — коэффициент преобразования единиц измерения.

Вот упрощенный пример того, как будут выглядеть кривые крутящего момента и мощности для небольшого двигателя внутреннего сгорания:

Кривые мощности и крутящего момента двигателя. Кредит изображения: Woodbank Communications Ltd

Мощность и крутящий момент увеличиваются с увеличением частоты вращения двигателя и достигают пика, когда начинают действовать физические ограничения. Эти ограничения включают размер / форму впускного и выпускного трактов, эффективность смешивания топлива, скорость распространения пламени, трение и механическую прочность компонентов.

  • Рабочий объем — это объем, перемещаемый всеми поршнями в двигателе внутреннего сгорания за один такт.Обычно он измеряется в кубических сантиметрах (cc), кубических дюймах (CID). Рабочий объем — это основная часть конструкции двигателя, которая определяет, сколько топлива может быть впрыснуто или смешано в цилиндре во время каждого энергетического цикла. Это существенно влияет на максимальную мощность, которую может выдавать двигатель.

  • Число цилиндров описывает количество цилиндров сгорания в двигателе внутреннего сгорания. Количество цилиндров в двигателе напрямую влияет на количество производимой мощности, поскольку большее количество цилиндров означает больше сгорания топлива и больше рабочих ходов.В результате двигатели с большим количеством цилиндров будут потреблять больше топлива, чем двигатели с меньшим количеством цилиндров.

Другие характеристики двигателя

Помимо основных технических характеристик, покупателям предлагается рассмотреть ряд других технических характеристик и параметров двигателя.

  • Расход топлива — Расход топлива определяет количество израсходованного топлива. Как и крутящий момент и мощность в лошадиных силах, расход топлива изменяется в зависимости от частоты вращения двигателя.Производители часто указывают его как диапазон значений на кривой производительности.

  • Эффективность двигателя — Энергоэффективность описывает количество энергии топлива, используемого двигателем для выполнения полезной работы. Для бензиновых двигателей максимальный КПД обычно находится в диапазоне 25-30%, поскольку 70-75% теряется в виде неиспользованной тепловой энергии. Более эффективные двигатели будут иметь лучшую экономию топлива (т.е. меньший общий расход топлива).

  • Выбросы — Газообразные выбросы загрязняющих веществ и твердых частиц выбрасываются в потоки выхлопных газов двигателей внутреннего сгорания после сгорания топлива.Состав выхлопных газов важно учитывать при соблюдении стандартов и требований по загрязнению и выбросам. Факторы, влияющие на выбросы выхлопных газов, включают состав топлива и условия сгорания (например, соотношение воздух-топливо, полностью ли сгорает топливо).

  • Вес — Вес двигателя важен с точки зрения мобильности и размещения. Более легкие двигатели идеально подходят для приложений, где приводная система должна быть портативной или включать транспортировку, поскольку более тяжелые системы требуют большего крутящего момента для перемещения.Для стационарных приложений вес часто не является проблемой.

  • Размеры — Размеры двигателя должны соответствовать требованиям соответствующей системы или среды. Размеры включают ширину, длину и высоту двигателя.

  • Степень сжатия — Отношение максимального объема камеры сгорания двигателя к минимальному объему. Он определяет степень сжатия в камере.Высокая степень сжатия приводит к лучшему смешиванию топлива с воздухом и зажиганию, что приводит к увеличению мощности и повышению общей эффективности двигателя. Однако более высокая степень сжатия делает двигатели более восприимчивыми к детонации при использовании топлива с более низким октановым числом, что может снизить эффективность или вызвать повреждение.

Параметры двигателя

Существует ряд параметров, определяющих различные требования к двигателю, которые необходимо учитывать при выборе.

  • Требования к воздуху — Качество или подпитка воздуха, используемого в двигателе для смешивания с топливом во время сгорания.Хотя большинство двигателей работают с использованием стандартного окружающего воздуха, в некоторых средах может потребоваться использование фильтров для удаления твердых частиц или нежелательных газов из воздуха.

  • Требования к охлаждению — Двигателям требуется охлаждение для отвода тепла, образующегося во время работы. Двигатели внутреннего сгорания охлаждаются воздухом или жидкостью. Двигатели с воздушным охлаждением могут работать в более широком диапазоне температур, чем некоторые двигатели с жидкостным охлаждением, потому что воздух не подвержен замерзанию или кипению.Однако системы с жидкостным охлаждением часто более гибки в отношении потребностей в охлаждении различных частей двигателя, уменьшая горячие точки и большие перепады температур. Сегодня большинство двигателей внутреннего сгорания имеют жидкостное охлаждение.

  • Требования к маслу — Двигатели требуют смазки для защиты движущихся частей от чрезмерного износа во время работы. Масло используется для обеспечения этой смазки, помещается либо в независимую систему, либо непосредственно смешивается с сжигаемым топливом. Разным двигателям для правильной работы и обслуживания требуются разные сорта масла и смазки.Кроме того, поскольку смазочные материалы со временем загрязняются и разлагаются, их необходимо регулярно заменять после определенного количества циклов или часов работы.

Характеристики

Двигатели внутреннего сгорания

спроектированы с учетом ряда различных характеристик, которые могут быть важны для рассмотрения в процессе выбора.

  • Карбюраторные двигатели — это двигатели с карбюраторами, предназначенные для смешивания воздушно-топливной смеси в камере сгорания.Карбюраторы используют всасывание, создаваемое всасываемым воздухом, проходящим через трубку Вентури, для втягивания топлива в воздушный поток. По сравнению с топливными форсунками карбюраторы намного проще регулировать, ремонтировать и восстанавливать. Кроме того, они дешевле, чем системы впрыска топлива, и более надежны.

  • Двигатели с впрыском топлива — это двигатели с топливными форсунками, предназначенные для подачи топлива в камеру сгорания. Топливные форсунки распыляют топливо на капли в камере, продавливая его через сопло под высоким давлением.Они полагаются на компьютеры, которые постоянно меняют соотношение воздуха и топлива для оптимизации. По сравнению с карбюраторами топливные форсунки более точные и эффективные, а также менее загрязняющие окружающую среду.

  • Двигатели с турбонаддувом — это двигатели, которые включают турбокомпрессоры, предназначенные для повышения эффективности двигателя внутреннего сгорания. Турбокомпрессоры чаще всего встречаются вместе с бензиновыми и дизельными двигателями внутреннего сгорания.

  • Гибкие топливные или многотопливные двигатели разработаны для совместимости с несколькими различными типами или смесями топлива.Например, двигатель с искровым зажиганием для автомобиля может работать на различных смесях бензина с содержанием этанола до 85% или может иметь добавленные компоненты для сжигания сжатого природного газа.

Стандарты

API RP 7C-11F — Рекомендуемая практика по установке, техническому обслуживанию и эксплуатации двигателей внутреннего сгорания.

SAA AS 4591.1 — Двигатели внутреннего сгорания — словарь компонентов и систем — конструкция и внешние оболочки.

Найдите в магазине стандартов IHS дополнительные документы, связанные с двигателями внутреннего сгорания.

Список литературы

Deepscience.com — Двигатели

Электропедия — силовые установки поршневых (поршневых) двигателей

Power Systems Research — Руководство по техническим характеристикам двигателей

Кредиты изображений:

Катерпиллар Глобал Петролеум | German-Bliss Equipment, Inc.| Системы питания John Deere


5 Дизельные двигатели с воспламенением от сжатия | Оценка технологий экономии топлива для легковых автомобилей

лазание и буксировка. Этот атрибут дизельных двигателей CI является преимуществом по сравнению с другими вариантами технологий, которые выгодны только для части рабочего диапазона транспортного средства (например, гибридные силовые агрегаты снижают расход топлива в основном при движении по городу / городу).

Вывод 5.4: Ожидается, что выявленные усовершенствования передовых технологий для дизельных двигателей CI выйдут на рынок в период 2011–2014 годов, когда на рынок также выйдут передовые технологические дополнения к бензиновым двигателям SI. Таким образом, между этими двумя системами силовой передачи будет продолжаться конкуренция по расходу топлива и стоимости. В период 2014-2020 гг. Дальнейшее потенциальное снижение расхода топлива для дизельных двигателей CI может быть компенсировано увеличением расхода топлива из-за изменений двигателя и системы выбросов, необходимых для соответствия более строгим стандартам выбросов (например,г., LEV III).

Вывод 5.5: На проникновение дизельных двигателей CI на рынок будет сильно влиять как дополнительная стоимость дизельных силовых агрегатов CI по сравнению со стоимостью бензиновых силовых агрегатов SI, так и разница в цене на дизельное топливо по сравнению с бензином. Предполагаемая разница в дополнительных затратах для дизельных двигателей I4 CI базового и улучшенного уровня для замены бензиновых двигателей SI для седанов среднего размера 2007 модельного года колеблется от 2400 долларов (базовый уровень) до 2900 долларов (продвинутый уровень).Для двигателей I4 базового уровня в сочетании с DCT стоимость замены силовой передачи оценивается в 2550–2800 долларов, а для силовых передач I4 повышенного уровня оценивается в 3050–3300 долларов (оба округлены до ближайших 50 долларов). Для среднеразмерных внедорожников 2007 модельного года ориентировочная стоимость замены бензиновых двигателей SI на дизельные двигатели V6 CI базового и улучшенного уровня колеблется от 3150 долларов (базовый уровень) до 4050 долларов (расширенный уровень) (оба округляются до ближайших 50 долларов). . Для двигателей V6 CI в сочетании с DCT предполагаемое увеличение стоимости замены силовой передачи V6 CI по сравнению с силовыми передачами SI 2007 модельного года составляет от 3300 до 3550 долларов (базовый уровень), а дополнительные затраты на силовую передачу расширенного уровня составляют от 4200 до 4500 долларов (оба округлены). до ближайших 50 долларов).Эти затраты не включают фактор эквивалента розничной цены.

ССЫЛКИ

Брессион, Г., Д. Солери, С. Сави, С. Деу, Д. Азулай, H.B-H. Хамуда, Л. Дораду, Н. Геррасси и Н. Лоуренс. 2008. Исследование методов снижения выбросов HC и CO в дизельных HCCI. Документ SAE 2008-01-0034. SAE International, Warrendale, Pa.

Дизель Форум. 2008. Доступно по адресу http://www.dieselforum.org/DTF/news-center/pdfs/Diesel%20Fuel%20Update%20-%20Oct%202008.pdf.

DieselNet. 2008. 22 февраля. Доступно на http://www.dieselnet.com/news/2008/02acea.php.

DOT / NHTSA (Департамент транспорта / Национальное управление безопасности дорожного движения). 2009. Нормы средней экономии топлива для легковых и легких грузовиков — модельный год 2011. Номер дела NHTSA-2009-0062, RIN 2127-AK29, 23 марта. Вашингтон, округ Колумбия,

Доу. 2009. Доступно по адресу http://www.dow.com/PublishedLiterature/dh_02df/0901b803802df0d2.pdf?filepath=automotive/pdfs/noreg/299-51508.pdf & fromPage = GetDoc.

Duleep, K.G. 2008/2009. Анализ затрат на дизельное и гибридное топливо: EEA в сравнении с Martec, презентация для комитета NRC, 25 февраля 2008 г., обновлено 3 июня 2009 г.

EIA (Управление энергетической информации). 2009a. Легковые дизельные автомобили: характеристики эффективности и выбросов, а также вопросы рынка. Февраль. Доступно по адресу http://www.eia.doe.gov/oiaf/servicerpt/lightduty/execsummary.html.

EIA. 2009b. Цены на дизельное топливо. Доступно по адресу http: // tonto.eia.doe.gov/oog/info/gdu/gasdiesel.asp. По состоянию на 9 мая 2009 г. и 5 июня 2009 г.

EPA (Агентство по охране окружающей среды США). 2005. Документ 420-F-05-001. Доступно на http://www.epa.gov/otaq/climate/420f05001.htm.

EPA. 2008. Исследование потенциальной эффективности транспортных средств, снижающих выбросы углекислого газа. Отчет 420р80040а. Пересмотрено в июне.

EPA. 2009. Обновленная смета расходов на основе данных Агентства по охране окружающей среды США, 2008 г. Электронная переписка комитета с Агентством по охране окружающей среды 27 и 28 мая.

Hadler, J., F. Rudolph, R. Dorenkamp, ​​H. Stehr, T. Düsterdiek, J. Hilzendeger, D. Mannigel, S. Kranzusch, B. Veldten, M. Kösters, and A. Specht. 2008. Новый двигатель Volkswagen 2,0 л TDI соответствует самым строгим стандартам выбросов, 29-й Венский автомобильный симпозиум.

Ивабучи, Ю., К. Каваи, Т. Сёдзи и Ю. Такеда. 1999. Испытания новой концепции дизельной системы сгорания — горение с воспламенением от сжатия с предварительным смешиванием. Документ SAE 1999-01-0185. SAE International, Warrendale, Pa.

Joergl, Volker, P.Келлер, О. Вебер, К. Мюллер-Хаас и Р. Конечны. 2008. Влияние конструкции пред-турбокатализатора на характеристики дизельного двигателя, выбросы и экономию топлива. Документ SAE 2008-01-0071. SAE International, Warrendale, Pa.

Канда, Т., Т. Хакодзаки, Т. Учимото, Дж. Хатано, Н. Китайма и Х. Соно. 2005 г. Эксплуатация PCCI с ранним впрыском обычного дизельного топлива. Документ SAE 2005-01-0378. SAE International, Warrendale, Pa.

Келлер П.С., В. Йоргл, О. Вебер и Р. Чарновски.2008. Компоненты, способствующие созданию экологически чистых дизельных двигателей будущего. Документ SAE 2008-01-1530. SAE International, Warrendale, Pa.

Martec Group, Inc. 2008. Переменная стоимость технологий экономии топлива. Подготовлено к альянсу автопроизводителей, 1 июня; с изменениями, внесенными 26 сентября и 10 декабря.

Маттес, Вольфганг, Петер Рашль и Николай Шуберт. 2008. Специально разработанные концепции DeNO x для высокопроизводительных дизельных двигателей. Вторая конференция MinNO x , 19-20 июня, Берлин.

Müller, W., et al. 2003. Селективное каталитическое восстановление — европейская технология восстановления NO x . SAE 2003-01-2304. SAE International, Warrendale, Pa. Myoshi, N., et al. 1995 г. Разработка новой концепции трехкомпонентного катализатора для автомобильных двигателей на обедненной смеси. Документ SAE 95809. SAE International, Warrendale, PA

NRC (Национальный исследовательский совет). 2002. Эффективность и влияние корпоративных стандартов средней экономии топлива (CAFE). Национальная академия прессы, Вашингтон, Д.С.

Пекхэм, Джон. 2003. Как JD Power / LMC рассчитывает 16% долю продаж легковых дизельных двигателей в Северной Америке. Новости дизельного топлива, 13 октября.

Пикетт, Л.М. и Д.Л. Зиберс. 2004. Сгорание дизельного дизельного топлива DI без образования сажи, низкая температура пламени, контролируемое перемешиванием. Документ SAE 2004-01-1399. SAE International, Warrendale, Pa.

Райан Т.В. и Т.Дж. Каллахан. 1996. Воспламенение дизельного топлива от сжатия однородного заряда. Документ SAE 961160. SAE International, Warrendale, PA.

Стили, Д., Дж. Джулиано, Дж. Хоард, С. Слудер, Дж. Стори, С. Льюис и М. Ланс. 2008. Выявление и контроль факторов, влияющих на загрязнение охладителя EGR. 14-я Конференция по исследованию эффективности дизельных двигателей и выбросов, Дирборн, штат Мичиган,

Tilgner, Ingo-C., T. Boger, C. Jaskula, Z.G. Pamio, H. Lörch и S. Gomm. 2008. Новый материал для сажевых фильтров для легковых автомобилей: сажевые фильтры Cordierite для нового Audi A4 V6 TDI, 17. Aachener Kolloquium Fahrzeug- und Motorentechnik, p.325.

Ранняя история дизельного двигателя

Ранняя история дизельного двигателя

Hannu Jääskeläinen

Это предварительный просмотр статьи, ограниченный некоторым исходным содержанием. Для полного доступа требуется подписка DieselNet.
Пожалуйста, войдите в систему , чтобы просмотреть полную версию этого документа.

Abstract : В 1890-х годах Рудольф Дизель изобрел эффективный двигатель внутреннего сгорания с воспламенением от сжатия, который носит его имя.Ранние дизельные двигатели были большими и работали на низких оборотах из-за ограничений их систем впрыска топлива с подачей сжатого воздуха. В первые годы своего существования дизельный двигатель конкурировал с другой концепцией двигателя на тяжелом топливе — двигателем с горячей лампой, изобретенным Акройд-Стюарт. Высокоскоростные дизельные двигатели были представлены в 1920-х годах для коммерческих автомобилей и в 1930-х годах для легковых автомобилей.

Изобретение Рудольфа Дизеля

Рудольф Дизель, наиболее известный за изобретение двигателя, носящего его имя, родился в Париже, Франция, в 1858 году.Его изобретение появилось в то время, когда паровая машина была основным источником энергии в крупных отраслях промышленности.

Рисунок 1 . Рудольф Дизель (1858-1913)

В 1885 году Дизель открыл свой первый магазин в Париже, чтобы начать разработку двигателя с воспламенением от сжатия. Процесс продлился 13 лет. В 1890-х он получил ряд патентов на изобретение эффективного двигателя внутреннего сгорания с медленным горением и воспламенением от сжатия [2856] [2857] [2858] [2859] .С 1893 по 1897 год Дизель развивал свои идеи в Maschinenfabrik-Augsburg AG (позже Maschinenfabrik-Augsburg-Nürnberg или MAN). Помимо MAN, швейцарские братья Зульцер рано проявили интерес к работе Дизеля, купив определенные права на изобретение Дизеля в 1893 году.

В компании MAN в Аугсбурге 10 августа 1893 года начались испытания прототипа конструкции с диаметром цилиндра 150 мм и ходом поршня 400 мм. Хотя первые испытания двигателя не увенчались успехом, ряд улучшений и последующих испытаний привели к успешному испытанию 17 февраля 1897 года, когда Дизель продемонстрировал КПД 26.2% с двигателем, рис. 2, под нагрузкой — значительное достижение, учитывая, что популярный в то время паровой двигатель имел КПД около 10%. Первый дизельный двигатель компании Sulzer был запущен в июне 1898 г. [388] [2860] . Дополнительные сведения о ранних испытаниях Дизеля можно найти в литературе [2864] [2265] .

Рисунок 2 . Третий испытательный двигатель Дизеля, успешно прошедший приемочные испытания 1897 года.

1 цилиндр, четырехтактный, водяного охлаждения, воздушный впрыск топлива
Мощность: 14.7 кВт (20 л. Ход поршня: 400 мм

Разработка изобретения Дизеля потребовала больше времени и усилий, чтобы добиться коммерческого успеха. Многие инженеры и разработчики присоединились к работе над повышением жизнеспособности идеи, созданной Рудольфом Дизелем. С другой стороны, этот процесс несколько напугал его, и ему не всегда удавалось найти общий язык с другими конструкторами двигателей, разрабатывающими его изобретение.Попытки Diesel продвинуть на рынок еще не готовый двигатель в конечном итоге привели к нервному срыву. В 1913 году, глубоко обеспокоенный критикой его роли в разработке двигателя, он загадочным образом исчез с корабля во время путешествия в Англию, предположительно покончив с собой [389] . Когда срок действия патентов Дизеля начал истекать, ряд других компаний взяли его изобретение и развили его дальше.

###

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *