Направление тока: Направление тока и направление линий его магнитного поля — урок. Физика, 9 класс.

Содержание

Проектируем электрику вместе: Направление электрического тока

Свободные электроны.. Электрический ток.. Измерение тока.. Амперметр.. Единица силы тока — Ампер.. Направление электрического тока.. Направление движения электронов..

Когда электрическое поле прикладывается к проводнику, свободные электроны (носители отрицательного заряда) начинают дрейфовать в соответствии с направлением электрического поля – возникает электрический ток.

Движение электронов означает движение отрицательных зарядов, следовательно, – электрический ток является мерой количества электрического заряда, переносимого через поперечное сечение проводника за единицу времени.

В международной системе СИ единица измерения заряда – Кулон, а единица времени – секунда. Поэтому единица силы тока – Кулон в секунду (Кл/сек).

Измерение тока

Единица силы тока Кулон в секунду в системе СИ имеет конкретное название Ампер (А)

– в честь знаменитого французского ученого Андре-Мари Ампера (на фото в заголовке статьи).                                               
Как мы знаем, величина отрицательного электрического заряда электрона -1,602 • 10-19 Кулона. Поэтому один Кулон электрического заряда состоит из 1 / 1,602 • 10-19 = 6,24 • 1018 электронов.
Следовательно, если 6,24 • 1018 электронов пересекает поперечное сечение проводника за одну секунду, то величина такого тока равна одному амперу.

Для измерения силы тока существует измерительный прибор — амперметр.

                                                        Рис. 1

Амперметр включается в электрическую цепь (рис. 1) последовательно с тем элементом цепи, силу тока в котором необходимо измерить. При подключении амперметра нужно соблюдать полярность: «плюс» амперметра подключается к «плюсу» источника тока, а «минус» амперметра — к «минусу» источника тока.

Направление электрического тока

Если в электрической цепи, показанной на рис. 1 замкнуть контакты выключателя, то по этой цепи потечет электрический ток. Возникает вопрос: «А в каком направлении?»

Мы знаем, что электрическим током в металлических проводниках называется упорядоченное движение отрицательно заряженных частиц – электронов (в других средах это могут быть ионы или ионы и электроны). Отрицательно заряженные электроны во внешней цепи двигаются от минуса источника к плюсу (одноименные заряды отталкиваются, противоположные — притягиваются), что хорошо иллюстрирует рис. 2.

Рис. 2                                                  
Учебник физики за 8 класс дает нам другой ответ: «За направление электрического тока в цепи принято направление движения положительных зарядов», — то есть от плюса источника энергии к минусу источника.

Выбор направления тока, противоположного истинному, иначе как парадоксальным назвать нельзя, но объяснить причины такого несоответствия можно, если проследить историю развития электротехники.

Дело в том, что электрические заряды стали изучать задолго до того, как были открыты электроны, поэтому природа носителей заряда в металлах была еще неизвестна.
Понятие о положительном и отрицательном заряде ввёл американский ученый и политический деятель Бенджамин Франклин.
 
В своей работе «Опыты и наблюдения над электричеством» (1747 г.) Франклин  предпринял попытку теоретически объяснить электрические явления. Именно он первым высказал важнейшее предположение об атомарной, «зернистой» природе электричества: «

Электрическая материя состоит из частичек, которые должны быть чрезвычайно мелкими».

Франклин полагал, что тело, которое накапливает электричество, заряжается положительно, а тело, теряющее  электричество, заряжается отрицательно. При их соединении избыточный положительный заряд  перетекает туда, где его недостает, то есть к отрицательно заряженному телу (по аналогии с сообщающими сосудами).

Эти представления о движении положительных зарядов широко распространились в научных кругах и вошли в учебники физики. Так и получилось, что действительное направление движения электронов в проводнике противоположно принятому направлению электрического тока.

После открытия электрона

ученые решили оставить все как есть, поскольку пришлось бы очень многое изменять (и не только в учебниках), если указывать истинное направление тока. Также это связано и с тем, что знак заряда практически ни на что не влияет, пока все используют одно и то же соглашение.
Истинное направление движения электронов используется только, когда это необходимо, чтобы объяснить некоторые физические эффекты в полупроводниковых устройствах (диоды, транзисторы, тиристоры и  др.).

Статьи по теме: 1. Что такое электрический ток?
                            2. Взаимодействие электрических зарядов. Закон Кулона
                            3. Постоянный и переменный ток
                            4. Проводники и изоляторы. Полупроводники
                            5.

О скорости распространения электрического тока
                            6. Электрический ток в жидкостях 
                            7. Проводимость в газах
                            8. Электрический ток в вакууме
                            9. О проводимости полупроводников


Внимание! Всех интересующихся практической электротехникой приглашаю на страницы своего нового сайта «Электрика для дома». Он посвящен основам электротехники и электричества с акцентом на домашние электрические установки и происходящие в них процессы.                                                                             

Направление электрического тока

На предыдущих уроках, мы подчёркивали, что электрический ток — это упорядоченное движение заряженных частиц.

Значит, у тока должно быть направление. Несмотря на то, что в растворах ток обусловлен движением как положительных, так и отрицательных ионов, в большинстве случаев, ток обусловлен движением электронов. Однако, за направление тока принято считать направление от положительного полюса к отрицательному.

Надо сказать, что это не совсем логично, поскольку как раз-таки отрицательные частицы двигаются к положительным в большинстве случаев.

Находясь в электрическом поле, в металлах начинают двигаться к положительному полюсу. Однако, само явление электрического тока было открыто раньше, чем делимость атома, поэтому об ионах и электронах, люди в то время не знали. Считалось, что как положительные заряды могут двигаться к отрицательному полюсу, так и отрицательные заряды могут двигаться к положительному полюсу.

В выдвижении гипотез о природе электрического поля принимал участие небезызвестный президент США Бенджамин Франклин, который выдвинул унитарную теорию электричества.

Он предположил, что электричество — это некая невесомая жидкость, способная перетекать из одного тела в другое. Электризацию тел Франклин объяснял тем, что в этой жидкости иногда был избыток электрического флюида, а иногда — недостаток. Так появилось понятие отрицательных и положительных зарядов. Как мы понимаем сейчас, под этими флюидами следует понимать электроны, о которых Франклин не знал.

Позднее, ученые Дюфе и Симмер проводя свои опыты, предположили, что существует два вида электричества, которые при соприкосновении нейтрализуют друг друга.

Опять же, сейчас мы понимаем, что тело просто становилось электрически нейтральным, получив одинаковое количество положительных и отрицательных частиц.

В итоге, французский ученый Андре Ампер, представляя свой труд в Парижской академии наук, решил принять одно из направлений токов за основное: «Так как мне пришлось бы постоянно говорить о двух противоположных направлениях, по которым текут оба электричества, то, во избежание излишних повторений, после слов «направление электрического тока», я буду всякий раз подразумевать направление положительного электричества».

Конечно, в наше время не существует понятия положительного электричества, есть только положительные заряды или полюса источника. Однако, Ампер внёс большой вклад в изучение электрических явлений, и в его честь была названа единица силы электрического тока. Об этом мы поговорим на следующем уроке.

Направление тока было принято и учтено во всех правилах и законах, связанных с электрическим током. Поэтому,  условное направление тока менять не стали, даже после открытия элементарных частиц.

Поэтому, на любых схемах следует помнить, что условно ток исходит от положительного полюса и распространяется по всем ответвлениям цепи в соответствии с рядом закономерностей и правил, о которых мы поговорим немного позже.

Электроника как искусство: электрический ток / Хабр

Не влезай. Убьет! (с)

Среднестатистическая грамотность населения в области электроники и электротехники оставляет желать лучшего. Максимум, спаять схемку, а как она работает — темный лес. К сожалению, все русскоязычные учебники пестрят формулами и интегралами, от них любого человека потянет в сон. В англоязычной литературе дела обстоят несколько лучше. Попадаются довольно интересные издания, но камнем преткновения здесь уже выступает английский язык. Постараюсь изложить основные понятия по электротехнике максимально доступно, в вольном стиле, не от инженера инженеру, а от человека человеку. Сведущий читатель, возможно, тоже найдет для себя несколько интересных моментов.

Электрический ток

Пути электрического тока неисповедимы. (с) мысли из интернета

На самом деле, нет. Все так или иначе можно описать с помощью математической модели, моделирования, да даже прикинув по-быстренькому на бумажке, а некоторые уникумы делают это в голове. Кому как удобнее. На самом деле, эпиграф этой главы родился от незнания, что же такое электрический ток.


Электрический ток характеризуется несколькими параметрами. Напряжением U и током I. Конечно, все мы помним определения по физике, но мало кто понимает их значения. Начну с напряжения. Разность потенциалов или работа по перемещению заряда, как сухо и неинтересно пишут в учебниках. На самом деле, напряжение всегда измеряется между двумя точками. Оно характеризует способность создавать электрический ток между этими двумя точками. Назовем эти точки источником напряжения. Чем больше напряжение, тем больше ток. Меньше напряжения – меньше ток. Но об этом чуть позже.

Что же такое ток? Представьте аналогию русло реки – это провода, электрический ток – это скорость потока воды в реке. Тогда напряжение здесь – перепад высоты между начальной точкой реки и конечной точкой. Или напряжение – это насос гоняющий воду, если река течет в одной плоскости. Такие аналогии на начальных этапах очень помогают понять, что же происходит в электрической схеме. Но, в конечном итоге, лучше от них отказаться. Лучше представить ток как некий поток электронов. Количество заряда, перемещаемое в единицу времени. Конечно, в учебниках говорится, что де электроны движутся со скоростью несколько сантиметров в минуту и значение имеет лишь электромагнитное поле, но пока забудем про это. Итак, под током можно понимать движение электрического тока, т.е. заряда. Носители заряда, электроны, отрицательно заряжены и двигаются от отрицательного потенциала к положительному, электрический ток же имеет направление от положительного потенциала к отрицательному, от плюса к минусу, так принято для удобства и так мы будем пользоваться в дальнейшем, забыв про заряд электрона.

Конечно, сам по себе ток не появится, нужно создать напряжение между двумя точками и нужна какая-либо нагрузка для протекания тока через нее, подключенная к этим двум точками. Очень полезно знать свойство, что для протекания тока нужно два проводника: прямой, до нагрузки, и обратный, от нагрузки до источника. Например, если не замкнуты проводники источника напряжения, то тока не будет.

Что же такое источник напряжения? Представим его в виде черного ящика, имеющего как минимум два вывода для подключения. Самые простые примеры из реальной жизни: электрическая розетка, батарейка, аккумулятор и т.п.

Идеальный источник напряжения обладает неизменным напряжением при протекании через него любого значения тока. Что же будет, если замкнуть зажимы идеального источника напряжения? Потечет бесконечно большой ток. В реальности источники напряжения не могут отдать бесконечно большой ток, потому что обладают некоторым сопротивлением. Например, провода в сетевой розетке 220в от самой розетки до подстанции имеют сопротивление, пусть и малое, но довольно ощутимое. Провода от подстанций до электростанций тоже имеют сопротивление. Нельзя забывать про полное сопротивление трансформаторов и генераторов. Батарейки имеют внутреннее сопротивление, обусловленное внутренней химической реакцией, которая имеет конечную скорость протекания.

Что же такое сопротивление? Вообще, это тема довольно обширная. Возможно, опишу в одной из следующих глав. Если кратко – это параметр, связывающий ток и напряжение. Оно характеризует, какой ток потечет при приложенном напряжении к этому сопротивлению. Если говорить «водной» аналогией, то сопротивление – это дамба на пути реки. Чем меньше отверстие в дамбе – тем больше сопротивление. Эту связь описывает закон Ома: . Как говорится: «Не знаешь закон Ома, сиди дома!».

Зная закон Ома, не сидя дома, имея какой-либо источник тока с заданным напряжением и сопротивление в виде нагрузки, мы очень точно можем предсказать какой потечет ток.
Реальные источники напряжения имеют какое-то свое внутреннее напряжение и отдают некий конечный ток, называемый током короткого замыкания. При этом батареи и аккумуляторы еще и разряжаются со временем и имеют нелинейное внутреннее сопротивление. Но пока тоже забудем об этом, и вот почему. В реальных схемах удобнее проводить анализ с использованием сиюминутных мгновенных значений напряжения и тока, поэтому будем считать источники напряжения идеальными. За исключением того факта, когда потребуется посчитать максимальны ток, который способен отдать источник.

Насчет «водной» аналогии электрического тока. Как я уже писал, она не очень правдива, поскольку скорость движения реки до дамбы и после дамбы будет разным, также разным будет кол-во воды до и после дамбы. В реальных схемах электрический ток втекающий в резистор и вытекающий из него будет равен между собой. Ток по прямому проводу, к нагрузке, и по обратному проводу, от нагрузки до источника, тоже равен между собой. Ток ни откуда не берется и никуда не девается, сколько «втекло» в узел схемы, столько и «вытечет», даже если путей несколько. Например, если есть два пути протекания тока от источника, то он потечет по этим путям, при этом полный ток источника будет равен сумме двух токов. И так далее. Это и есть иллюстрация закона Кирхгофа. Это очень просто.

Также есть еще два важных правила. При параллельном соединении элементов, напряжение в каждом из элементов одинаково. Например, напряжение на резисторе R2 и R3, на рисунке выше, одинаковы, но токи могут быть разными, если резисторы имеют разные сопротивления, по закону Ома. Ток через батарейку равен току на резисторе R1 и равен сумме токов на резисторах R2 и R3. При последовательном соединении напряжения элементов складываются. Например, напряжение которое выдает батарея, т.е. ее ЭДС, равно напряжению на резисторе R1 + напряжение на резисторе R2 или R3.

Как я уже писал, напряжение измеряется всегда между двумя точками. Иногда, в литературе можно встретить: «Напряжение в точке такой-то». Это означает напряжение между этой точкой и точкой нулевого потенциала. Создать точку нулевого потенциала можно, например, заземлив схему. Обычно «землят» схему в месте самого отрицательно потенциала около источника питания, например, как на рисунке выше. Правда это бывает не всегда, да и применение нуля довольно условно, например, если нам нужно двухполярное питание +15 и -15 вольт, то «землить» надо уже не -15в, а потенциал посредине. Если же заземлить -15в, то мы получим 0, +15, +30в. См. рисунки ниже.

Заземление также применяется в качестве защитного или рабочего. Защитное заземление называют зануление. Если нарушится изоляция схемы в каком-нибудь другом участке, отличном от земли, то по нулевому проводу потечет большой ток и сработает защита, которая отключит часть схемы. Защиту мы должны предусмотреть заранее, поставив автоматический выключатель или иное устройство на пути протекания тока.

Иногда «землить» схему нельзя или невозможно. Вместо земли применяют термин общая точка или ноль. Напряжения в таких схемах указываются относительно общей точки. При этом вся схема относительно земли, т.е. нулевого потенциала может располагаться где угодно. См. рисунок.

Обычно, Xv близко к 0 вольт. Такие незаземленные схемы с одной стороны более безопасны, поскольку если человек прикоснется одновременно к схеме и земле ток не потечет, т.к. нет обратного пути протекания тока. Т.е. схема станет «заземлена» через человека. Но с другой стороны такие схемы каверзны. Если вдруг нарушится изоляция схемы от земли в какой-либо ее точке, то мы этого не узнаем. Что может быть опасно, при больших напряжениях Xv.

Вообще земля — это термин довольно обширный и расплывчатый. Есть очень много терминов и названий земли, смотря где «землить» схему. Под землей может пониматься как защитная земля, так и рабочая земля (по протеканию тока через нее при нормальной работе), как сигнальная земля, так и силовая земля (по роду тока), как аналоговая земля, так и цифровая земля (по роду сигнала). Под землей может пониматься общая точка или наоборот, под общей точкой пониматься земля или и быть ей. Также в схеме могут присутствовать все земли одновременно. Так что надо смотреть по контексту. Есть даже такая забавная картиночка в иностранной литературе, см. ниже. Но обычно земля – это схемные 0 вольт и это точка от которой измеряют потенциал схемы.

До сих пор, упоминая источник напряжения, я не касался рода этого самого напряжения. Напряжение есть меняющееся со временем и есть не меняющееся. Т.е. переменное и постоянное. Например, напряжение, меняющееся по синусоидальному закону всем хорошо знакомо, это напряжение сети 220в в бытовых розетках. С постоянным напряжением работать очень просто, мы это уже делали выше, когда рассматривали закон Кирхгофа. А что же делать с переменным напряжением и как его рассматривать?

На рисунке приведены несколько периодов переменного напряжения 220в 50Гц (синяя линия). Красная линия – постоянное напряжение 220в, для сравнения.

Определимся, сначала что такое напряжение 220в, кстати, по новому стандарту положено считать 230в. Это действующее значение напряжения. Амплитудное значение будет в корень из 2х раз выше и составит примерно 308в. Действующее значение – это такое значение напряжения, при котором за период переменного тока в проводнике выделяется столько же теплоты, сколько и при постоянном токе такого же напряжения. Выражаясь математическим языком – это среднеквадратичное значение напряжения. В английской литературе используется термин RMS, а приборы, которые измеряют истинное действующее значение имеют знак «true RMS».

На первый взгляд это может показаться неудобным, какое-то действующее значение, но это удобно для расчетов мощности без необходимости конвертации напряжения.

Переменное напряжение еще удобно рассматривать как постоянное напряжение, взятое в какой-либо точке времени. После чего проводить анализ схемы несколько раз, изменяя знак постоянного напряжение на обратный. Сначала рассмотреть работу схемы с постоянным положительным напряжением, потом, изменить знак, с положительного на отрицательный.
Для переменного напряжения также необходимо два провода. Они называются фаза и ноль. Иногда ноль заземляют. Такая система называется однофазной. Напряжение фазы измеряется относительно нуля и меняется со временем, как показано на рисунке выше. При положительной полуволне напряжения ток протекает от фазы к активной нагрузке и от нагрузки возвращается обратно по нулевому проводу. При отрицательной полуволне ток течет по нулевому проводу и возвращается по фазному.

В промышленности широко применяют трехфазную сеть. Это частный случай многофазных систем. По сути все тоже самое, что и однофазная система, только умноженная на 3, т.е. применение одновременно трех фаз и трех земель. Впервые изобретено Н. Тесла, впоследствии усовершенствовано М. О. Доливо-Добровольским. Усовершенствование состояло в том, что для передачи трехфазного электрического тока можно было выкинуть лишние провода, достаточно четырех: три фазы ABC и нулевой провод или же вовсе три фазы, отказавшись от нуля. Нулевой провод очень часто заземляют. На рисунке ниже ноль общий.

Почему же 3 фазы, и не больше, не меньше? С одной стороны, 3 фазы гарантированно создают вращающееся магнитное поле, так необходимое электрическим двигателям для вращения или получаемое от генераторов электростанций, с другой стороны это экономически выгодно с материальной точки зрения. Меньше нельзя, а больше и не нужно.

Чтобы гарантировано создавать вращающееся поле в трехфазной сети нужно чтобы фазы напряжения были сдвинуты друг относительно друга. Если принять полный период напряжения за 360 градусов, то 360/3 = 120 градусов. Т.е. напряжение каждой фазы сдвинуто относительно друг друга на 120 градусов. См. рисунок ниже.

Здесь показан график напряжения 3-х фазной сети 380в по времени. Как видно из рисунка, все тоже самое, что и с однофазной сетью, только напряжений стало больше. 380в – это так называемое линейное напряжение сети Uл, т.е. напряжение, измеряемое между двумя фазами. На рисунке показан пример нахождения мгновенного значения Uл. Оно также изменяется по синусоидальному закону. Также наряду с линейным напряжением различают фазное Uф. Оно измеряется между фазой и нулем. Фазное напряжение в данной трехфазной сети равно 220в. Под фазным и линейным напряжение, конечно же подразумевается действующее напряжение. Соотносятся линейное к фазному напряжению, как корень из трех.

Нагрузку к трехфазной сети можно подключать как угодно – к фазному напряжению: между какой-либо фазой и нулем, либо к линейному напряжению: между двумя фазами. Если нагрузка подключена к фазному напряжению, то такая схема соединения называется звездой. Она и показана выше. Если к линейному напряжения – то соединение треугольником. Если одинаковая нагрузка подключается к линейным напряжениям между всеми тремя фазами, то такие сети симметричные. Ток через нулевой провод в симметричных сетях не течет. См рис. ниже. Промышленные сети также считаются условно симметричными. Как правило ноль в таких сетях присутствует, но лишь в защитных целях. Иногда может и отсутствовать вообще. Веселая картиночка из вики наглядно иллюстрирует как протекает ток в таких сетях.

На этом кратенький обзор по электросетям и электричеству завершен. Возможно в будущем объясню на пальцах как работает диод и транзистор, что такое стабилитрон, тиристор и другие элементы. Пишите, про что вам интересно почитать.

Библиографический список

  1. Искусство схемотехники, П. Хоровиц. 2003.
  2. GROUNDS FOR GROUNDING. A Circuit-to-System Handbook, Elya B. Joffe, Kai-Sang Lock.
  3. Wiki и интернет ресурсы.

Электрический ток — Физика — Теория, тесты, формулы и задачи

Оглавление:

 

Основные теоретические сведения

Электрический ток.

Сила тока. Сопротивление

К оглавлению…

В проводниках при определенных условиях может возникнуть непрерывное упорядоченное движение свободных носителей электрического заряда. Такое движение называется электрическим током. За направление электрического тока принято направление движения положительных свободных зарядов, хотя в большинстве случае движутся электроны – отрицательно заряженные частицы.

Количественной мерой электрического тока служит сила тока I – скалярная физическая величина, равная отношению заряда q, переносимого через поперечное сечение проводника за интервал времени t, к этому интервалу времени:

Если ток не постоянный, то для нахождения количества прошедшего через проводник заряда рассчитывают площадь фигуры под графиком зависимости силы тока от времени.

Если сила тока и его направление не изменяются со временем, то такой ток называется постоянным. Сила тока измеряется амперметром, который включается в цепь последовательно. В Международной системе единиц СИ сила тока измеряется в амперах [А]. 1 А = 1 Кл/с.

Средняя сила тока находится как отношение всего заряда ко всему времени (т.е. по тому же принципу, что и средняя скорость или любая другая средняя величина в физике):

Если же ток равномерно меняется с течением времени от значения I1 до значения I2, то можно значение среднего тока можно найти как среднеарифметическое крайних значений:

Плотность тока – сила тока, приходящаяся на единицу поперечного сечения проводника, рассчитывается по формуле:

При прохождении тока по проводнику ток испытывает сопротивление со стороны проводника. Причина сопротивления – взаимодействие зарядов с атомами вещества проводника и между собой. Единица измерения сопротивления 1 Ом. Сопротивление проводника R определяется по формуле:

где: l – длина проводника, S – площадь его поперечного сечения, ρ – удельное сопротивление материала проводника (будьте внимательны и не перепутайте последнюю величину с плотностью вещества), которое характеризует способность материала проводника противодействовать прохождению тока. То есть это такая же характеристика вещества, как и многие другие: удельная теплоемкость, плотность, температура плавления и т.д. Единица измерения удельного сопротивления 1 Ом·м. Удельное сопротивление вещества – табличная величина.

Сопротивление проводника зависит и от его температуры:

где: R0 – сопротивление проводника при 0°С, t – температура, выраженная в градусах Цельсия, α – температурный коэффициент сопротивления. Он равен относительному изменению сопротивления, при увеличении температуры на 1°С. Для металлов он всегда больше нуля, для электролитов наоборот, всегда меньше нуля.

Диод в цепи постоянного тока

Диод – это нелинейный элемент цепи, сопротивление которого зависит от направления протекания тока. Обозначается диод следующим образом:

Стрелка в схематическом обозначении диода показывает, в каком направлении он пропускает ток. В этом случае его сопротивление равно нулю, и диод можно заменить просто на проводник с нулевым сопротивлением. Если ток течет через диод в противоположном направлении, то диод обладает бесконечно большим сопротивлением, то есть не пропускает ток совсем, и является разрывом в цепи. Тогда участок цепи с диодом можно просто вычеркнуть, так как ток по нему не идет.

 

Закон Ома. Последовательное и параллельное соединение проводников

К оглавлению…

Немецкий физик Г.Ом в 1826 году экспериментально установил, что сила тока I, текущего по однородному металлическому проводнику (то есть проводнику, в котором не действуют сторонние силы) сопротивлением R, пропорциональна напряжению U на концах проводника:

Величину R принято называть электрическим сопротивлением. Проводник, обладающий электрическим сопротивлением, называется резистором. Это соотношение выражает закон Ома для однородного участка цепи: сила тока в проводнике прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника.

Проводники, подчиняющиеся закону Ома, называются линейными. Графическая зависимость силы тока I от напряжения U (такие графики называются вольт-амперными характеристиками, сокращенно ВАХ) изображается прямой линией, проходящей через начало координат. Следует отметить, что существует много материалов и устройств, не подчиняющихся закону Ома, например, полупроводниковый диод или газоразрядная лампа. Даже у металлических проводников при достаточно больших токах наблюдается отклонение от линейного закона Ома, так как электрическое сопротивление металлических проводников растет с ростом температуры.

Проводники в электрических цепях можно соединять двумя способами: последовательно и параллельно. У каждого способа есть свои закономерности.

1. Закономерности последовательного соединения:

Формула для общего сопротивления последовательно соединенных резисторов справедлива для любого числа проводников. Если же в цепь последовательно включено n одинаковых сопротивлений R, то общее сопротивление R0 находится по формуле:

2. Закономерности параллельного соединения:

Формула для общего сопротивления параллельно соединенных резисторов справедлива для любого числа проводников. Если же в цепь параллельно включено n одинаковых сопротивлений R, то общее сопротивление R0 находится по формуле:

Электроизмерительные приборы

Для измерения напряжений и токов в электрических цепях постоянного тока используются специальные приборы – вольтметры и амперметры.

Вольтметр предназначен для измерения разности потенциалов, приложенной к его клеммам. Он подключается параллельно участку цепи, на котором производится измерение разности потенциалов. Любой вольтметр обладает некоторым внутренним сопротивлением RB. Для того чтобы вольтметр не вносил заметного перераспределения токов при подключении к измеряемой цепи, его внутреннее сопротивление должно быть велико по сравнению с сопротивлением того участка цепи, к которому он подключен.

Амперметр предназначен для измерения силы тока в цепи. Амперметр включается последовательно в разрыв электрической цепи, чтобы через него проходил весь измеряемый ток. Амперметр также обладает некоторым внутренним сопротивлением RA. В отличие от вольтметра, внутреннее сопротивление амперметра должно быть достаточно малым по сравнению с полным сопротивлением всей цепи.

 

ЭДС. Закон Ома для полной цепи

К оглавлению…

Для существования постоянного тока необходимо наличие в электрической замкнутой цепи устройства, способного создавать и поддерживать разности потенциалов на участках цепи за счет работы сил неэлектростатического происхождения. Такие устройства называются источниками постоянного тока. Силы неэлектростатического происхождения, действующие на свободные носители заряда со стороны источников тока, называются сторонними силами.

Природа сторонних сил может быть различной. В гальванических элементах или аккумуляторах они возникают в результате электрохимических процессов, в генераторах постоянного тока сторонние силы возникают при движении проводников в магнитном поле. Под действием сторонних сил электрические заряды движутся внутри источника тока против сил электростатического поля, благодаря чему в замкнутой цепи может поддерживаться постоянный электрический ток.

При перемещении электрических зарядов по цепи постоянного тока сторонние силы, действующие внутри источников тока, совершают работу. Физическая величина, равная отношению работы Aст сторонних сил при перемещении заряда q от отрицательного полюса источника тока к положительному к величине этого заряда, называется электродвижущей силой источника (ЭДС):

Таким образом, ЭДС определяется работой, совершаемой сторонними силами при перемещении единичного положительного заряда. Электродвижущая сила, как и разность потенциалов, измеряется в вольтах (В).

Закон Ома для полной (замкнутой) цепи: сила тока в замкнутой цепи равна электродвижущей силе источника, деленной на общее (внутреннее + внешнее) сопротивление цепи:

Сопротивление r – внутреннее (собственное) сопротивление источника тока (зависит от внутреннего строения источника). Сопротивление R – сопротивление нагрузки (внешнее сопротивление цепи).

Падение напряжения во внешней цепи при этом равно (его еще называют напряжением на клеммах источника):

Важно понять и запомнить: ЭДС и внутреннее сопротивление источника тока не меняются, при подключении разных нагрузок.

Если сопротивление нагрузки равно нулю (источник замыкается сам на себя) или много меньше сопротивления источника, то тогда в цепи потечет ток короткого замыкания:

Сила тока короткого замыкания – максимальная сила тока, которую можно получить от данного источника с электродвижущей силой ε и внутренним сопротивлением r. У источников с малым внутренним сопротивлением ток короткого замыкания может быть очень велик, и вызывать разрушение электрической цепи или источника. Например, у свинцовых аккумуляторов, используемых в автомобилях, сила тока короткого замыкания может составлять несколько сотен ампер. Особенно опасны короткие замыкания в осветительных сетях, питаемых от подстанций (тысячи ампер). Чтобы избежать разрушительного действия таких больших токов, в цепь включаются предохранители или специальные автоматы защиты сетей.

Несколько источников ЭДС в цепи

Если в цепи присутствует несколько ЭДС подключенных последовательно, то:

1. При правильном (положительный полюс одного источника присоединяется к отрицательному другого) подключении источников общее ЭДС всех источников и их внутреннее сопротивление может быть найдено по формулам:

Например, такое подключение источников осуществляется в пультах дистанционного управления, фотоаппаратах и других бытовых приборах, работающих от нескольких батареек.

2. При неправильном (источники соединяются одинаковыми полюсами) подключении источников их общее ЭДС и сопротивление рассчитывается по формулам:

В обоих случаях общее сопротивление источников увеличивается.

При параллельном подключении имеет смысл соединять источники только c одинаковой ЭДС, иначе источники будут разряжаться друг на друга. Таким образом суммарное ЭДС будет таким же, как и ЭДС каждого источника, то есть при параллельном соединении мы не получим батарею с большим ЭДС. При этом уменьшается внутреннее сопротивление батареи источников, что позволяет получать большую силу тока и мощность в цепи:

В этом и состоит смысл параллельного соединения источников. В любом случае при решении задач сначала надо найти суммарную ЭДС и полное внутреннее сопротивление получившегося источника, а затем записать закон Ома для полной цепи.

 

Работа и мощность тока. Закон Джоуля-Ленца

К оглавлению…

Работа A электрического тока I, протекающего по неподвижному проводнику с сопротивлением R, преобразуется в теплоту Q, выделяющееся на проводнике. Эту работу можно рассчитать по одной из формул (с учетом закона Ома все они следуют друг из друга):

Закон преобразования работы тока в тепло был экспериментально установлен независимо друг от друга Дж.Джоулем и Э.Ленцем и носит название закона Джоуля–Ленца. Мощность электрического тока равна отношению работы тока A к интервалу времени Δt, за которое эта работа была совершена, поэтому она может быть рассчитана по следующим формулам:

Работа электрического тока в СИ, как обычно, выражается в джоулях (Дж), мощность – в ваттах (Вт).

 

Энергобаланс замкнутой цепи

К оглавлению…

Рассмотрим теперь полную цепь постоянного тока, состоящую из источника с электродвижущей силой ε и внутренним сопротивлением r и внешнего однородного участка с сопротивлением R. В этом случае полезная мощность или мощность, выделяемая во внешней цепи:

Максимально возможная полезная мощность источника достигается, если R = r и равна:

Если при подключении к одному и тому же источнику тока разных сопротивлений R1 и R2 на них выделяются равные мощности то внутреннее сопротивление этого источника тока может быть найдено по формуле:

Мощность потерь или мощность внутри источника тока:

Полная мощность, развиваемая источником тока:

КПД источника тока:

 

Электролиз

К оглавлению…

Электролитами принято называть проводящие среды, в которых протекание электрического тока сопровождается переносом вещества. Носителями свободных зарядов в электролитах являются положительно и отрицательно заряженные ионы. К электролитам относятся многие соединения металлов с металлоидами в расплавленном состоянии, а также некоторые твердые вещества. Однако основными представителями электролитов, широко используемыми в технике, являются водные растворы неорганических кислот, солей и оснований.

Прохождение электрического тока через электролит сопровождается выделением вещества на электродах. Это явление получило название электролиза.

Электрический ток в электролитах представляет собой перемещение ионов обоих знаков в противоположных направлениях. Положительные ионы движутся к отрицательному электроду (катоду), отрицательные ионы – к положительному электроду (аноду). Ионы обоих знаков появляются в водных растворах солей, кислот и щелочей в результате расщепления части нейтральных молекул. Это явление называется электролитической диссоциацией.

Закон электролиза был экспериментально установлен английским физиком М.Фарадеем в 1833 году. Закон Фарадея определяет количества первичных продуктов, выделяющихся на электродах при электролизе. Итак, масса m вещества, выделившегося на электроде, прямо пропорциональна заряду Q, прошедшему через электролит:

Величину k называют электрохимическим эквивалентом. Он может быть рассчитан по формуле:

где: n – валентность вещества, NA – постоянная Авогадро, M – молярная масса вещества, е – элементарный заряд. Иногда также вводят следующее обозначение для постоянной Фарадея:

 

Электрический ток в газах и в вакууме

К оглавлению…

Электрический ток в газах

В обычных условиях газы не проводят электрический ток. Это объясняется электрической нейтральностью молекул газов и, следовательно, отсутствием носителей электрических зарядов. Для того чтобы газ стал проводником, от молекул необходимо оторвать один или несколько электронов. Тогда появятся свободные носителя зарядов — электроны и положительные ионы. Этот процесс называется ионизацией газов.

Ионизировать молекулы газа можно внешним воздействием — ионизатором. Ионизаторами может быть: поток света, рентгеновские лучи, поток электронов или α-частиц. Молекулы газа также ионизируются при высокой температуре. Ионизация приводит к возникновению в газах свободных носителей зарядов — электронов, положительных ионов, отрицательных ионов (электрон, объединившийся с нейтральной молекулой).

Если создать в пространстве, занятом ионизированным газом, электрическое поле, то носители электрических зарядов придут в упорядоченное движение – так возникает электрический ток в газах. Если ионизатор перестает действовать, то газ снова становится нейтральным, так как в нем происходит рекомбинация – образование нейтральных атомов ионами и электронами.

Электрический ток в вакууме

Вакуумом называется такая степень разрежения газа, при котором можно пренебречь соударением между его молекулами и считать, что средняя длина свободного пробега превышает линейные размеры сосуда, в котором газ находится.

Электрическим током в вакууме называют проводимость межэлектродного промежутка в состоянии вакуума. Молекул газа при этом столь мало, что процессы их ионизации не могут обеспечить такого числа электронов и ионов, которые необходимы для ионизации. Проводимость межэлектродного промежутка в вакууме может быть обеспечена лишь с помощью заряженных частиц, возникших за счет эмиссионных явлений на электродах.

Электрический ток, сила, плотность, условия существования. Источник тока. Курсы по физике

Тестирование онлайн

  • Электрический ток. Основные понятия

  • Сила, плотность тока

Условия существования тока

Электрический ток — направленное движение заряженных частиц. Направление, в котором движутся положительно заряженные частицы, считается направлением тока. Вещества, в которых возможно движение зарядов, называются проводниками.

В металлах единственными носителями тока являются электроны. Направление тока противоположно направлению движения электронов.

Для существования тока необходимо:
1) наличие свободных заряженных частиц;
2) существование внешнего электрического поля;
3) наличие источника тока — источника сторонних сил.

Характеристики тока

Сила тока — скалярная величина, определяется по формуле

Если ток изменяется, то заряд, прошедший через поперечное сечение проводника, определяется как площадь фигуры, ограниченной зависимостью I(t).

Плотность тока — векторная величина, определяется по формуле

Прибор для измерения силы тока называется амперметром. Включается в сеть последовательно. Собственное сопротивление амперметра должно быть мало, поскольку включение амперметра не должно изменять силу тока в цепи.

В быту «источником тока» часто неточно называют любой источник электрического напряжения (батарею, генератор, розетку), но в строго физическом смысле это не так, более того, обычно используемые в быту источники напряжения по своим характеристикам гораздо ближе к источнику ЭДС, чем к источнику тока.

Примерами источника тока могут являться катушка индуктивности, вторичная обмотка трансформатора. Внутреннее сопротивление источника тока стремится к нулю.

Под действием электрического поля, созданного источником тока, свободные заряды движутся в веществе с некоторой средней скоростью — скорость дрейфа.

7. Направление электрического потока. Диод | 1. Основы электроники | Часть1

7. Направление электрического потока. Диод

 

Направление электрического потока. Диод

«Приятной особенностью большого количества стандартов является то, что есть из чего выбрать»

Эндрю Таненбаум, профессор информатики

Когда Бенджамин Франклин сделал своё предположение относительно направления потока зарядов (из воска в шерсть), он создал прецедент для электрических обозначений, который существует и по сей день, несмотря на то, что все знают, что электроны являются составными частями заряда, и что при натирании они переходят из шерсти в воск, а не наоборот. Благодаря именно Франклину говорят что электроны имеют отрицательный заряд, и движется этот заряд, на самом деле, в направлении противоположном тому, которое указал Франклин. Поэтому объекты, которые он назвал «отрицательными» (имеющими недостаток заряда), фактически имеют избыток электронов.  

К тому времени, когда было открыто истинное направление движения потока электронов, обозначения «положительный» и «отрицательный» уже настолько прочно укоренились в научном сообществе, что попытки изменить их даже не предпринимались, хотя, применительно к «избыточному» заряду,  правильно было бы назвать электрон «положительно» заряженным . По большому счету, термины «положительный» и «отрицательный» являются человеческими изобретениями и, как таковые, не имеют абсолютного значения за пределами условного языка научных описаний. С такой же легкостью Франклин мог бы назвать избыток заряда «черным», а его недостаток — «белым», в этом случае ученые говорили бы, что электрон имеет «белый» заряд (при условии использования гипотезы Франклина).

Поскольку мы склонны связывать слово «положительный» с «избытком» а слово «отрицательный» с «недостатком», то стандартное обозначение электрического заряда нам кажется противоположным. Благодаря этому, многие инженеры решили сохранить старое понятие электричества, где «положительный» означает избыток заряда, и соответственно обозначается направление движения зарядов (тока). Такое обозначение известно как общепринятое обозначение потока:

Другие инженеры для обозначения потока зарядов выбрали фактическое направление движения электронов в цепи. Такое обозначение известно как обозначение потока электронов:

Общепринятое обозначение потока показывает нам движение заряда в соответствии со знаками + и — (технически неправильно). Применять это обозначение имеет смысл, но направление движения потока зарядов здесь не соответствует действительности. Обозначение потока электронов показывает нам фактическое направление движения электронов в цепи, но знаки + и — выглядят здесь задом наперед. А вообще, имеет ли значение, как мы определяем направление движения потока зарядов в цепи? Не имеет, если мы последовательно используем одно из обозначений. Производя анализ цепи, вы можете с равным успехом использовать любое из этих обозначений. Понятия напряжения, тока, сопротивления, непрерывности, и даже математические методы анализа, такие как законы Ома и Кирхгофа будут действовать как в одном, так и в другом случае.

Как вы можете убедиться, общепринятому обозначению потока следует большинство инженеров-электриков, и оно встречается в большинстве технических учебников. Обозначение потока электронов встречается в учебниках для начинающих и в трудах профессиональных ученых, особенно физиков твердых тел, которым важно фактическое движение электронов в веществах. Большинство исследований электрических цепей не зависит от технически точного отображения направления потока зарядов, поэтому выбор между общепринятым обозначением потока и обозначением потока электронов произволен …. почти.

Многие электрические устройства допускают прохождение через них реальных токов любого направления без каких либо различий в работе. Например, лампы накаливания излучают свет одинаково эффективно, независимо от направления тока. Они хорошо работают даже при переменном токе (AC), который с течением времени быстро меняет свое направление. Проводники и выключатели также отлично работают независимо от направления тока. Все вышеперечисленные компоненты (электрическая лампочка, выключатель и провода) называются неполярными. И наоборот, любые устройства, которые по разному реагируют на токи разных направлений, называются полярными.

Существует множество полярных устройств, применяемых в электрических схемах. Основная масса этих устройств изготавливается из так называемых полупроводниковых материалов, и подробно будет рассмотрена нами позже. Каждое из этих устройств (как и выключатели, ламы и батареи) изображается на схеме с помощью уникального символа. Как можно догадаться, символы полярных устройств в своем составе обычно сдержат стрелку для обозначения допустимого направления тока. Вот здесь-то конкуренция обозначений общепринятого потока и потока электронов имеет большое значение. Но, поскольку инженеры уже давно в качестве стандартного используют общепринятое обозначение, и они же изобретают электрические устройства и придумывают для них условные обозначения (символы), то стрелки, используемые в символах этих устройств, показывают направление общепринятого потока. Иными словами, у всех символов таких устройств есть значок стрелки, который указывает против фактического потока электронов.

Лучшим примером полярного устройства может послужить диод, который является односторонним «клапаном» для электрического тока. Принцип его действия аналогичен обратному клапану, используемому в водопроводе и гидравлических системах. В идеале, диод обеспечивает беспрепятственный поток для тока в одном направлении (практически не оказывая ему сопротивления), и препятствует этому потоку в обратном направлении (оказывая ему бесконечное сопротивление). Условное обозначение (символ) диода выглядит следующим образом:

Если мы поместим диод в схему с батареей и лампочкой, то выполняемая им работа будет следующей:

Когда диод стоит в правильном направлении, разрешающем поток, лампочка горит. В противном случае диод блокирует поток электронов аналогично обрыву цепи, и лампочка гореть не будет.

Если мы используем общепринятое обозначение потока в цепи, то стрелка символа диода указывает на направление потока зарядов от положительного контакта к отрицательному:

И наоборот, при использовании обозначения потока электронов, стрелка символа диода направлена против этого потока:

Исходя из вышеизложенного и во избежание путаницы с условными обозначениями электронных компонентов, большинство людей выбирает общепринятое обозначение потока при анализе электрических схем.    

AC/DC: что такое полярность тока

Вы знаете, что означают надписи AC (переменный ток) и DC (постоянный ток) на сварочных аппаратах и электродах? По сути эти термины описывают полярность электрического тока, который вырабатывается источником питания и направляется к рабочему изделию через электрод. Выбор правильной полярности для той или иной марки электродов оказывает существенное влияние на прочность и качество соединений – поэтому не забывайте проверить надпись на упаковке! Чтобы лишний раз убедиться, Вы можете сделать две пробные попытки с разной полярностью на краю рабочего изделия.

В обиходе используются термины «прямая» и «обратная» полярность или «электрод-отрицательная» и «электрод-положительная» полярность. Последнее звучит более наглядно и поэтому здесь мы будем использовать именно эти обозначения.

Полярность обусловлена тем, что электрический контур имеет отрицательный и положительный полюсы. Постоянный ток (DC) все время движется в одном направлении, из-за чего его полярность всегда одинакова. Переменный ток (AC) половину времени движется в одном направлении и половину – в другом. Таким образом, при частоте 60 Герц полярность тока меняется 120 раз в секунду.

Сварщик должен хорошо понимать, что такое полярность и какое влияние она оказывает на процесс сварки. С некоторыми исключениями электрод-положительная (обратная) полярность обеспечивает более глубокое проплавление. Электрод-отрицательная (прямая) полярность имеет более высокую производительность расплавления электрода и, как следствие, производительность наплавки. На это могут влиять химические вещества в покрытии. Электроды из углеродистой стали с покрытием целлюлозного типа, например, Fleetweld 5P или Fleetweld 5P+, обычно рекомендуют использовать с положительной полярностью. Некоторые типы электродов для сварки в среде защитных газов пригодны для сварки с обоими типами полярности.

Применение сварочных аппаратов трансформаторного типа породило необходимость в электродах, пригодных для сварки с любой полярностью из-за постоянных смен направления переменного тока. Хотя переменный ток сам по себе не имеет полярности, если электроды для сварки на переменном токе использовать с постоянным, они покажут более низкие результаты. Поэтому производители электродов обычно указывают наиболее подходящую полярность на покрытии и упаковке электродов.

Чтобы обеспечить необходимое проплавление, однородную форму шва и высокие сварочные характеристики, обязательно нужно использовать подходящую полярность. Неправильная полярность вызовет недостаточное проплавление, непостоянную форму шва, избыточное разбрызгивание, сложности с контролем дуги, перегрев и быстрое сгорание электрода.

На большинстве аппаратов четко обозначены контакты или подробно описано, как их настроить на определенную полярность. Например, некоторые аппараты имеют переключатель полярности, а на других для этого нужно сменить кабельные разъемы. Если Вы не уверены, какая в данный момент используется полярность, есть два несложных способа это выяснить. Первый – это сварка угольным электродом для постоянного тока, который будет нормально работать только при прямой полярности. Второй – сварка электродом Fleetweld 5P, который показывает намного лучшие результаты с обратной полярностью.

 

Проверка полярности:

А: Определение полярности с помощью угольного электрода

1. Проведите очистку основного металла и расположите его горизонтально.
2. Заострите кончики двух угольных электродов на шлифовальном диске, чтобы они имели одинаковую форму в плавным скосом, начинающимся в 5–7.5 см от кончика электрода.
3. Вставьте один электрод в электрододержатель возле начала скоса.
4. Настройте силу сварочного тока 135–150А.
5. Выберите интересующую Вас полярность.
6. Подожгите дугу (не забывайте о маске) и некоторое время подождите. Увеличьте длину дуги, чтобы было удобнее наблюдать действие дуги.
7. Понаблюдайте за дугой. При электрод-отрицательной (прямой) полярности дуга имеет коническую форму и отличается высокой стабильностью, легкой управляемостью и однородностью.
При электрод-положительной (обратной) полярности дугой достаточно сложно управлять. Она будет оставлять черные отложения углерода на основном металле.
8. Смените полярность. Подожгите дугу вторым электродом и подождите такое же время. Понаблюдайте за дугой.
9. Сравните кончики двух электродов. При прямой полярностью электрод сгорает равномерно, сохраняя свою форму. При обратной полярности электрод быстро сгорает и принимает плоскую форму.


Б. Определение полярности с помощью металлического электрода (E6010)

1. Проведите очистку основного металла и расположите его горизонтально.
2. Настройте силу сварочного тока 130–145 А (для электродов диаметром 4 мм).
3. Выберите одну из полярностей.
4. Подожгите дугу. Начните сварку, соблюдая стандартную длину дуги и угол наклона электрода.
5. Прислушайтесь к звуку дуги. При подходящей полярности, нормальной длине дуги и силе тока, дуга будет издавать равномерный «треск».
Неправильная полярность при нормальной длине дуги и силе тока вызовет нерегулярный «хруст» и «хлопки» и нестабильность дуги. См. выше, как ведет себя дуга и как выглядит шов при использовании металлического электрода с правильной и неправильной полярностью.
7. Смените полярность и создайте второй шов.
8. Проведите чистку швов и внимательно их осмотрите. При неправильной, прямой полярности шов будет иметь отрицательные характеристики, перечисленные в Уроке 1.6.
9. Повторите несколько раз, пока Вы не научитесь быстро определять текущую полярность.

В каком направлении на самом деле течет ток?


Если вы спросите нескольких инженеров-электронщиков, техников, ученых или профессоров, как протекает ток в электрической цепи, некоторые скажут вам, что он течет от отрицательной клеммы источника питания через нагрузку к положительной клемме источника питания. Другие скажут вам прямо противоположное, что ток на самом деле течет от плюсовой стороны источника напряжения к минусу.

Кто прав? Как может так много технических профессионалов запутаться в таком простом деле, как текущий поток? Знаем ли мы вообще, в каком направлении течет ток? И действительно ли имеет значение, в каком направлении течет ток? Давайте проясним все это.

Почему это так важно?

Основным принципом любого электронного приложения является контроль тока. Думаю об этом. Разве все, что мы делаем в электронике, не предназначено для управления током каким-либо образом, чтобы получить полезный результат, например, телевизор, компьютеры или сотовые телефоны? Взгляните на Рисунок 1 . Эта очень простая модель представляет все электронные приложения. Мы производим входы, которые представляют собой какой-то тип электронного сигнала, обрабатываем их определенным образом, а затем генерируем соответствующие выходные сигналы.Например, входной сигнал может поступать с микрофона. Он обрабатывается усилителем для увеличения уровня мощности. Выход приводит в движение динамик.

РИСУНОК 1. Упрощенная модель всех электронных схем и оборудования.


Теперь рассмотрим еще раз, что находится в поле с надписью «процесс» на рис. 1 . В простейшей форме это может быть всего лишь один электронный компонент, например резистор. Но это также может быть схема, такая как инструментальный усилитель, или миллионы полевых МОП-транзисторов, как в микропроцессоре Pentium.

Теперь посмотрим на Рисунок 2 . Вот еще один способ помочь вам визуализировать, что происходит во всех электрических или электронных цепях. Источник напряжения инициирует ток в нагрузке. Источником напряжения может быть батарея, генератор сигналов, источник питания, радиосигнал или сигнал от преобразователя, такого как микрофон или фотоэлемент. Нагрузка — это устройство, которое дает полезный конечный результат. Это может быть лампочка, нагревательный элемент, двигатель, соленоид или просто другая электронная схема. Теперь обратите внимание на элемент управления.Это электронный компонент или схема, которая контролирует ток в нагрузке.

РИСУНОК 2. Упрощенное объяснение того, как работают все электронные схемы.


Схемы управления могут быть более сложными, например операционный усилитель или набор логических вентилей, или даже полный набор различных электронных схем. Компоненты и схемы управляют током, создаваемым начальным входом, различными способами, иногда с помощью множества различных последовательных и параллельных шагов, до тех пор, пока не будет сгенерирован соответствующий выходной сигнал.Суть в том, что создание и управление током — это и есть вся электроника.

Зависимость условного тока от потока электронов

Ученые, инженеры, профессора колледжей и другие уже более 100 лет знают, что ток действительно перемещает электроны. Тем не менее, они продолжали использовать исходную модель протока положительно-отрицательного тока. Это стало известно как обычный ток (CCF). Сегодня эта концепция все еще широко используется и почти повсеместно преподается в научных и инженерных программах.

Только в середине 20-го века электронный поток (EF) получил широкое распространение. Это произошло в результате массового обучения техников-электронщиков во время Второй мировой войны. Армия и флот решили, что поток электронов более уместен, чем обычный поток, поэтому они разработали все свои классы и учебные материалы с использованием потока электронов. После войны поток электронов прижился и стал основным способом обучения техников в общественных колледжах, технических институтах и ​​профессиональных училищах.Почему научное, инженерное и академическое сообщества отказались перейти на электронный поток, неизвестно. Вероятно, возникло ощущение, что теория электричества всегда преподавалась с использованием традиционной модели протекания тока, и не было особой необходимости, желания или причины для изменений. Изменения — дело трудное, а традиции умирают с трудом.

Что такое электрон?

Электрон — это субатомная частица, одна из нескольких различных частей атома. Атомы — это крошечные частицы, из которых состоит вся материя.Все, что мы знаем, чувствуем, видим, прикасаемся и обоняем, состоит из атомов. Атомы — это мельчайшие частицы материалов, которые мы называем элементами. Элементы — это основные строительные блоки природы. Типичные элементы — кислород, водород, углерод, медь, серебро, золото и кремний. Если вы, например, возьмете кусок меди и разделите его снова и снова, пока не получите наименьший возможный кусок, который все еще распознается как медь, то у вас будет один атом меди. Все, что не является основным элементом, состоит из двух или более элементов, объединенных в то, что мы называем соединениями.Вода — это соединение двух атомов водорода и одного атома кислорода, ну вы знаете, h3O. Соль — это соединение натрия и хлора (HCl). Самая маленькая распознаваемая частица соединения называется молекулой.

Атомы можно разделить на более мелкие части. Поскольку на самом деле никто никогда не видел атома, физики веками строили теории о том, как атом выглядит и из чего состоит. Одна популярная теория гласит, что атом состоит из центрального ядра, состоящего из крошечных частиц, называемых протонами и нейтронами.Протоны имеют положительный электрический заряд. Нейтроны, конечно, нейтральны. Вокруг ядра вращаются кольца или оболочки электронов. Электроны имеют отрицательный электрический заряд. Электронов столько же, сколько протонов, поэтому атом электрически сбалансирован или нейтрален. Число протонов в атоме — это его атомный номер, и это число определяет характеристики элемента.

На рисунке 3 показан атом меди. Есть 29 протонов и 29 электронов.Обратите внимание на внешнюю оболочку атома. Это называется валентной оболочкой, поскольку она содержит электроны, которые объединяются и реагируют с другими элементами, образуя химические связи в соединениях.

РИСУНОК 3. Атом меди.


И именно электрон или электроны во внешней валентной оболочке высвобождаются, чтобы создать ток в электрических и электронных компонентах и ​​схемах.

Как течет ток

В большинстве электрических и электронных цепей протекает ток электронов.Однако есть некоторые особые случаи, когда задействованы и другие частицы. Предположим, что медный провод подключен между положительной и отрицательной клеммами элемента фонарика, как показано на рисунке 4 . Избыток электронов накапливается на отрицательном выводе ячейки, в то время как на положительном выводе электронов не хватает. Это состояние вызвано химическим действием в клетке.

РИСУНОК 4. Электронный поток в медной проволоке.


Когда медный провод подсоединяется к ячейке, происходят две вещи.Во-первых, положительный вывод отводит валентные электроны от атомов меди в проводе. Когда атом теряет один или несколько электронов, он становится положительным ионом, потому что теперь у него больше протонов, чем электронов. Будучи положительными, ионы притягивают другие отрицательные электроны от соседних атомов, создавая цепную реакцию протекания тока.

В тот же момент отрицательный вывод ячейки отталкивает валентные электроны от соседних атомов в медной проволоке. Эти освобожденные электроны притягиваются к положительным ионам, создаваемым положительным выводом ячейки.Конечным результатом является массовое движение электронов от отрицательной клеммы батареи к положительной. Так протекает ток в проводах и кабелях, а также в большинстве электронных компонентов.

Не весь ток протекает за счет движения электронов. В некоторых случаях ток на самом деле является движением других носителей тока. Например, отверстия являются уникальными для протекания тока в определенных типах полупроводниковых материалов. Ионный поток — это метод протекания тока в плазме и электрохимических реакций в батареях.

Ток в полупроводниках

Полупроводник — это особый тип материала, удельное сопротивление или проводимость которого находится где-то между хорошими проводниками, такими как медь и алюминий, и изоляторами, такими как стекло, керамика или пластик. Полупроводники уникальны тем, что они могут иметь любую желаемую степень проводимости. Конечно, полупроводники — это материалы, из которых сделаны диоды, транзисторы и интегральные схемы.

Наиболее распространенным полупроводниковым материалом является элемент кремний (Si).Германий (Ge) — еще один полупроводниковый элемент. Существуют также полупроводниковые соединения, такие как арсенид галлия (GaAs), фосфид индия (InP) и кремний-германий (SiGe). Кремний, как и другие полупроводниковые материалы, уникален тем, что имеет четыре валентных электрона. Эта характеристика заставляет атомы кремния связываться вместе таким образом, что они разделяют свои валентные электроны. Результатом является уникальная структура кристаллической решетки, подобная показанной на , рис. 5, . Показаны только валентные электроны.Обратите внимание, как атомы разделяют валентные электроны с соседними атомами. В результате каждый атом думает, что на его внешней орбите находится восемь электронов. Это делает материал чрезвычайно стабильным.

РИСУНОК 5. Чистый кремний состоит из атомов, которые образуют ковалентные связи с соседними атомами, образуя структуру кристаллической решетки.


Атомы кремния образуют так называемую структуру кристаллической решетки. Все валентные электроны полностью заняты, так как они распределяются между атомами.Это означает, что в структуре кристаллической решетки чистого кремния нет электронов, доступных для электронного потока, поскольку все они заняты своими ковалентными связями. В результате полупроводники, такие как кремний в чистом виде, по сути, являются изоляторами. Конечно, если к кремнию приложить достаточно тепла или приложить высокое внешнее напряжение, некоторые электроны могут высвободиться, что вызовет протекание небольшого количества тока.

Чтобы сделать кремний проводящим, мы добавляем в него другие химические вещества. Этот процесс называется допингом.Легируя кремний химическими веществами, имеющими три или пять валентных электронов, мы можем создать кремний, в котором легко течет ток. Рисунок 6 показывает, что происходит, когда мы добавляем в кремний мышьяк (As). Мышьяк имеет пять валентных электронов. Четыре электрона соединяются с электронами в соседних атомах кремния, как и раньше, с образованием ковалентных связей. Однако остался один лишний электрон. Этот дополнительный электрон доступен для протекания тока.

РИСУНОК 6.Полупроводниковый материал N-типа использует электроны для протекания тока.


Кремний, легированный химическими веществами, имеющими дополнительный электрон, называется полупроводником N-типа. «N» означает отрицательный, что относится к дополнительному отрицательному электрону. Когда внешнее напряжение подается на кусок полупроводникового материала N-типа, легко течет ток, поскольку несвязанные электроны притягиваются и протягиваются через кремний внешним напряжением. Если кремний сильно легирован мышьяком, доступно много свободных электронов и будет течь большой ток.Это то же самое, что сказать, что у материала очень низкое сопротивление. Если добавлено только несколько атомов мышьяка, меньше электронов доступно для протекания тока, поэтому уровень тока будет меньше при внешнем напряжении. Такой материал имеет гораздо более высокую стойкость.

Как видите, ток в полупроводниковом материале N-типа по-прежнему осуществляется электронами. Однако мы также можем легировать кремний материалом, который имеет только три валентных электрона. Это проиллюстрировано на рис. 7, , где кремний легирован атомами бора (B).

РИСУНОК 7. Полупроводниковый материал P-типа, в котором дырки являются носителями тока.


Три валентных электрона в атоме бора образуют ковалентные связи с соседними атомами кремния. Однако у одного из атомов кремния отсутствует электрон. Этот недостающий валентный электрон называется дыркой. Следовательно, дырка — это не настоящая частица, а просто вакансия в валентной оболочке структуры кристаллической решетки, которая действует как носитель тока.Эта вакансия или дыра имеет положительный заряд. Если электрон проходит рядом с отверстием, он притягивается и заполняет отверстие, завершая ковалентную связь.

Ток в этом типе полупроводникового материала протекает через отверстия. Этот тип полупроводникового материала называется материалом P-типа. P означает положительный, что относится к заряду отверстия.

Когда электрическое напряжение подается на кусок полупроводникового материала P-типа, электроны перетекают в материал с отрицательной клеммы источника напряжения и заполняют отверстия.Положительный заряд внешнего источника напряжения вытягивает электроны с внешних орбит, создавая новые дыры. Таким образом, электроны перемещаются от дырки к дырке. Электроны по-прежнему текут от отрицательного к положительному, но дырки перемещаются от положительного к отрицательному, поскольку они создаются внешним зарядом.

Ионный поток

В некоторых типах материалов, особенно в жидкостях и плазме, ток представляет собой комбинацию электронов и ионов.

На рисунке 8 показан упрощенный чертеж ячейки напряжения.Все элементы состоят из двух электродов из разных материалов, погруженных в химикат, называемый электролитом. Происходящая химическая реакция разделяет создаваемые заряды. Электроны накапливаются на одном электроде, поскольку он отдает положительные ионы, создавая отрицательный вывод, в то время как электроны вытягиваются из другого электрода, создавая положительный вывод.

РИСУНОК 8. Течение в химической ячейке.


Когда вы подключаете внешнюю нагрузку к этой батарее, электроны текут от отрицательной пластины через нагрузку к положительному электроду.Внутри ячейки электроны текут от положительного к отрицательному, а положительные ионы — от отрицательного к положительному.

Жизнь в отрицании

Так почему же мы продолжаем увековечивать миф об обычном потоке тока (CCF), когда мы уже сто лет знаем, что ток в большинстве электрических и электронных цепей является потоком электронов (EF)? Я уже много лет задаю этот вопрос своим коллегам и другим специалистам в сфере промышленности и науки. Несмотря на то, что поток электронов — это реальность, все инженерные школы настаивают на преподавании CCF.Если вы служили в вооруженных силах или поднялись по служебной лестнице в качестве технического специалиста, скорее всего, вы научились и предпочитаете поток электронов.

То, как вы выучили его в школе, вы обычно используете, когда разрабатываете, анализируете, устраняете неполадки или преподаете в реальном мире.

Действительно ли это важно?

Как вы, возможно, знаете, на самом деле не имеет значения, какое направление тока вы используете для анализа схемы и проектирования, работает в любом случае. Фактически, эта проблема затрагивает только DC, который течет только в одном направлении.В переменном токе электроны текут в обоих направлениях, перемещаясь вперед и назад с рабочей частотой. Но если на самом деле не имеет значения, какое направление мы выберем, то почему бы нам не последовать истине и не положить конец этой чепухе раз и навсегда?

В заключение

Если вы когда-нибудь захотите завязать оживленную беседу или даже поспорить, попробуйте поднять эту тему в группе технических специалистов. Вы просто можете быть удивлены накалом чувств и ханжеством с обеих сторон.Я делал это много раз, и меня до сих пор поражает эмоциональная реакция, которую вызывает этот вопрос.

Я пришел к выводу, что концепция CCF никогда не будет оставлена. Это в некоторой степени похоже на принуждение всех нас перейти к метрической системе измерения с использованием метров и Цельсия, а не футов и Фаренгейта, с которыми мы более знакомы и привыкли. С этого момента обучение CCF будет продолжено. Я пришел к выводу, что все это — одна из странных причуд электроники. NV


ИСТОРИЧЕСКАЯ СПРАВКА

Ранние исследователи электричества сначала открыли концепцию напряжения и полярности, а позже определили ток как движение зарядов.Термин «напряжение» означает энергию, которая заставляет ток течь. Первоначально напряжение создавалось статическими средствами, такими как трение или молния. Позже химические элементы и батареи использовались для создания постоянного заряда или напряжения. Затем были разработаны механические генераторы.

Заряды относятся к некоему физическому объекту, который движется, когда на него действует сила напряжения. Конечно, еще в 18 веке те, кто работал над электрическими проектами, толком не знали, что это за заряды.Насколько они знали, заряды могли быть микроминиатюрными фиолетовыми кубиками внутри провода или другого проводника. Что они действительно знали, так это то, что напряжение заставляло заряды двигаться. В целях анализа и обсуждения они произвольно предположили, что заряды были положительными и перетекали с положительного на отрицательный. Это ключевой момент. Они действительно не знали направления тока, поэтому предположили, что происходит. И, как оказалось, не угадали. Нет ничего плохого в том, чтобы ошибаться, поскольку ученые часто выдвигают одну гипотезу, а позже обнаруживают, что истина — это что-то другое.Большая ошибка состоит в том, что неверная гипотеза сохраняется и преподается как истина.

В конце 19 века было окончательно установлено, что обсуждаемые заряды на самом деле были электронами, а ток на самом деле был электронами, текущими от отрицательного вывода источника напряжения через цепь к положительной стороне источника напряжения. Британский физик Джозеф Дж. Томсон сделал это открытие в 1897 году. Наконец правда была доказана и открыта.


Корпус для обычного протекания тока.

  1. Традиционно.
  2. Большинство инженеров и некоторых технических специалистов узнали это таким образом.
  3. Очень сложно изменить такие вещи, как учебники по инженерии и условные обозначения (стрелки на диодах и транзисторах указывают в направлении CCF).
  4. Человеческая природа не терпит перемен.
  5. CCF стал стандартом де-факто.

Корпус для электронного потока.

  1. Это правда.
  2. Работу электронных устройств легче объяснить и изучить с помощью электронного потока.
  3. Почему бы не стандартизировать то, что есть на самом деле?

Собственный полупроводник — условный ток

Обычный текущий

Электрический ток, протекающий с положительной клеммы аккумуляторной батареи. к отрицательной клемме аккумулятора называется обычным Текущий. Обычное направление тока такое же направление потока отверстий, но против направления потока свободного электроны.

Когда Бен Франклин начал экспериментировать с электричество, он предположил, что электрический ток (положительный носители заряда) текут с положительного на отрицательный. Но позже мир понял, что это было неправильно. Фактически электрический ток течет от отрицательной клеммы к положительный полюс аккумуляторной батареи.

поток носителей заряда называется током.Здесь носители заряда протоны или электроны. Но именно ток переносится электронов, а не протонов, потому что протоны сильно связаны с ядро атома из-за сильного ядерная сила. Итак, электроны, которые слабо связаны с ядро атома разрывает связь с родительским атомом и стать свободным. Электроны, не связанные с атомами, текут свободно и представляют собой текущие.Электроны текут из отрицательного клемма к плюсовой клемме аккумуляторной батареи.

Большинство людей в мире подписаны на условное направление тока. В некоторых учебниках актуальны направление написано противоположно обычному току направление, т.е. рассматривая поток электронов как направление Текущий. Но в большинстве учебников используется обычный ток. направление.Большинство электронные устройства анализируются с использованием этого обычного текущее направление.

Это важно понимать разницу между обычными направление тока и направление тока электронного потока. Мы можем следовать любому. Неважно, используем ли мы обычное направление тока или направление потока электронов. Оба из них дадут тот же результат.Мы можем спроектировать схему используя любой из них.



Электричество и магнетизм — направление тока

Электричество и магнетизм — направление тока Электрический ток имеет направление

Есть направление для потока электричества, как и для поток жидкости.Вы должны следить за направлением электрический ток, чтобы понять схему. Некоторые устройства не будет работать должным образом, если ток течет в неправильном направлении (это также верно и для жидкостных устройств — рассмотрим кухонную мойку с поменяны местами водопровод и канализация!). Это говорит о том, что что-то движется в провода при наличии тока; мы представляем себе «электрическую жидкость» который выходит из положительного полюса батареи. Электрический жидкость называется зарядом ; что на самом деле движется электроны.В описании есть сложности, что электроны имеют отрицательный заряд, в результате чего направление тока противоположно направлению движения электронов. Не думайте об электронах! Мы можем описать воду, текущую в трубах не говоря уже о молекулах; нам не нужно описание «частицы» здесь тоже. Эксперименты, в которых можно различить два описания (электроны движутся в одну сторону или положительные заряды движутся в другую) справедливо тонкий; нет эксперимента мы можем провести , который выявит в каком направлении идут дела.

Давайте рассмотрим электрические компоненты с этого момента просмотр:

  • Батарея типа D имеет два конца. Когда батарея питает цепь, ток выходит из положительный конец (верх аккум — конец с шишкой на нем) и идет к отрицательному концу (нижнему).

  • Многие электрические компоненты, например двигатель в вашем комплекте, имеют провода разного цвета. Красный подключается к положительный конец батареи, а другой (синий или черный или почти любой другой цвет) должен быть подключен к отрицательному конец.Если вы подключите его неправильно, он может что-то разные, а то и вовсе не работают. Или это может работать так же хорошо так или иначе. Мы можем понять этот аспект электрических устройств когда мы понимаем, что течет ток, и что он должен иди в правильном направлении. Ток выходит из плюса (неровный) конец батареи, проходит по красному проводу в устройство и выходит наружу. на черном проводе, идущем к отрицательному полюсу батареи.

Время исследовать! Вот некоторые вещи, о которых стоит подумать и сделать.
Проведите эти исследования. Запишите в свой записывать то, что вы узнали, и любые вопросы или проблемы, которые вы столкнулся. Мы попросим показать ваши журналы в конце мастерская.

  • Два конца батареи разные, а два соединительных точки у лампочки тоже разные. Тогда есть четыре способа сделать лампочку зажженной с помощью батарейки и одного провода — по касание любой части лампочки к любому концу аккумулятор, а затем замыкая схему проводом.Подтвердите это лампочка работает всеми четырьмя способами. Сделайте наброски четырех договоренности.
    Поскольку лампочке все равно, какой конец вы используете, диаграмма символ лампочки не различает концы. Если вы представляете четыре устройства в виде принципиальных схем, сколько разных схем вы получать?

  • Прикрепите кусок ленты к валу двигателя, чтобы маленький флаг. Теперь изучите влияние текущего направления на мотор. Есть ли причина для того, чтобы на нем были провода разного цвета? мотор?

    Да №



Установите флажок, когда вы сделано:
Далее: Зуммер

Авторские права 2004 J.П. Стрэйли и С.А. Шафер

Что такое электрический ток? Определение, единица измерения и направление тока

Определение : Электрический ток определяется как скорость протекания отрицательных зарядов проводника. Другими словами, непрерывный поток электронов в электрической цепи называется электрическим током. Проводящий материал состоит из большого количества свободных электронов, которые беспорядочно перемещаются от одного атома к другому.

Единица тока

Поскольку заряд измеряется в кулонах, а время — в секундах, единицей измерения электрического тока является кулон / сек ( C / s, ) или амперы ( A, ).Амперы — это единица измерения SI проводника. I — символическое представление тока.

Таким образом, считается, что по проводу проходит ток в один ампер, когда по нему течет заряд со скоростью один кулон в секунду.

Когда к металлическому проводу прикладывается разность электрических потенциалов, свободно прикрепленные свободные электроны начинают двигаться к положительному выводу ячейки, показанной на рисунке ниже. Этот непрерывный поток электронов составляет электрический ток.Токи в проводе протекают от отрицательного вывода ячейки к положительному выводу через внешнюю цепь.

Условное направление тока

Согласно теории электронов, когда к проводнику прикладывается разность потенциалов, через цепь протекает какое-то вещество, составляющее электрический ток. Считалось, что это вещество течет от более высокого потенциала к более низкому потенциалу, то есть положительный вывод к отрицательному выводу ячейки через внешнюю цепь.

Это правило протекания тока настолько твердо установлено, что оно все еще используется. Таким образом, обычное направление протекания тока — от положительного вывода элемента к отрицательному выводу элемента через внешнюю цепь. Величина протекания тока на любом участке проводника — это скорость потока электронов, то есть заряда, протекающего в секунду.

Математически это представлено как

В зависимости от протекания электрического заряда ток в основном подразделяется на два типа, т.е.е. переменный ток и постоянный ток. При постоянном токе заряды протекают в одном направлении, тогда как при переменном токе заряды протекают в обоих направлениях.

Объяснитель урока: Электрический ток | Nagwa

В этом объяснителе мы узнаем, что такое электрический ток и как определить направление электрического тока в цепи.

Электрический ток — это поток электрического заряда. Напомним, что электрический заряд происходит из разных частей атома, как показано ниже.

Вместе положительно заряженные протоны, показанные розовым цветом, и нейтральные нейтроны, показаны зеленым цветом, составляют ядро. Отрицательно заряженные электроны, показанные на синие, находятся вне ядра.

Электрический ток — это поток электрического заряда через электрическую дирижер. Типичный электрический проводник — это провод, сделанный из металла, такого как медь, железо или серебро.

При обсуждении потока электрического заряда движутся электроны. через провод.Протоны и нейтроны не двигаются. Когда мы говорим об электрических ток, мы имеем в виду поток электронов, движущихся в том же направлении по тот же путь. На схеме ниже показан провод, по которому движутся электроны.

Электроны всегда находятся внутри провода, даже когда они не движутся. Если электроны движутся, значит, электрический заряд течет через провод. Электрический ток — это поток электрического заряда по проводу.

Если электроны находятся в проводе, но не движутся, то электрический заряд не течет, как показано на диаграмме ниже.

Для протекания электрического тока электроны должны иметь движение.

Давайте посмотрим на пример.

Пример 1: Определение частей потока атомов в проводе

На рисунке показаны электроны и атомные ядра в срезе меди. провод. Синие кружки представляют электроны, а красные кружки — атомные ядра.

  1. Когда в проводе есть электрический ток, движутся ли электроны по проводу?
    1. Нет
    2. Да
  2. Когда в проводе есть электрический ток, атомные ядра двигаться по проводу?
    1. Да
    2. Нет

Ответ

Часть 1

Когда в проводе есть электрический ток, электроны движутся.Если электроны не движутся, электрический ток отсутствует.

Ответ B: да, электроны движутся по проводу.

Часть 2

Когда есть электрический ток, атомные ядра остаются неподвижными. Только электроны движутся, когда есть электрический ток.

Ответ на вторую часть: B: нет, атомные ядра не движутся провод.

Электрический ток измеряется в амперы, сокращенно А.Так 10 ампер могут быть написано как 10 А. Когда есть ток 0 А в В цепи электроны вообще не движутся.

Говоря конкретно о движении электронов в проводе, мы можем сослаться на к нему как электронный ток, также называемый электронным потоком.

Электроны отрицательны, поэтому они текут к положительному полюсу ячейки и от отрицательной клеммы, как показано на схеме ниже.

Движение электронов — это то, что создает электрический ток, поскольку никакие другие заряженная частица движется.

Давайте посмотрим на пример вопроса.

Пример 2: Определение направления потока электронов в цепи

На схеме показана электрическая цепь, содержащая элемент и лампочку.

В каком направлении движутся электроны по цепи?

  1. По часовой стрелке
  2. Против часовой стрелки

Ответ

Направление потока электронов в цепи далеко от отрицательного терминал клетки и к положительному полюсу.

Более короткая сторона ячейки в верхней части этой цепи является ее отрицательной Терминал. Более длинная сторона ячейки — это положительный полюс. Электрон поток в этом контуре, таким образом, будет двигаться против часовой стрелки, как в контуре диаграмма ниже.

Правильный ответ B: против часовой стрелки.

Хотя названия очень похожи, электронный ток и электрический ток не то же самое. Электронный ток — это поток электронов в проводе, а электрический ток — это поток электронов в проводе. ток — это поток носителей заряда в проводе.

Ранние ученые не знали, что электроны текут по цепи при электрическом ток присутствовал. Когда эти ученые писали о потоке электрического заряда, они предположили, что поток электрического заряда исходит от положительно заряженного частицы.

Это означает, что они измерили направление носителей электрического заряда. от положительной клеммы к отрицательной клемме ячейки. Такой электрический поток показан на диаграмме ниже.

Соглашение, установленное этими учеными, до сих пор используется по умолчанию. направление электрического тока. Это текущее направление по умолчанию называется обычный ток.

Направление обычного тока противоположно электронному, поскольку предполагает наличие положительных носителей заряда. На самом деле никаких положительных зарядов течь вообще; они чисто фиктивные. По проволоке движутся только электроны. Показана диаграмма, сравнивающая обычный ток с электронным током. ниже.

Электронный ток или поток электронов, в частности, относится к потоку электроны. Электрический ток является более общим, поскольку он относится к потоку заряда. перевозчиков, и по умолчанию принимает направление обычных Текущий.

Давайте рассмотрим несколько примеров вопросов.

Пример 3: Определение условного направления тока по потоку электронов

На рисунке ниже показаны электроны и атомные ядра в разрезе медная проволока.Синие кружки представляют электроны, а красные кружки представляют собой атомные ядра. В проводе есть электрический ток, и электроны в нем движутся вправо.

Какое направление условного тока в проводе?

  1. Справа
  2. Слева

Ответ

Поток отрицательно заряженных электронов на диаграмме справа, но обычный ток предполагает, что носители заряда в токе положительный.

Это означает, что обычное направление тока противоположно направление электронов. Это будет левее, так как электроны текут вправо.

Правильный ответ B: слева.

Пример 4: Определение условного направления тока в цепи

На схеме показана электрическая цепь, содержащая элемент и лампочку.

Какое направление обычного тока в цепи?

  1. По часовой стрелке
  2. Против часовой стрелки

Ответ

Обычное направление тока в цепи предполагает наличие положительных носителей заряда.Это означает, что поток этих зарядов будет исходить от положительного вывода ячейку к отрицательной клемме.

Положительный полюс ячейки, более длинная линия, направлена ​​вниз. Положительные заряды должны были бы течь против часовой стрелки, а это означает, что правильный ответ B.

Является ли носитель заряда фиктивным положительным зарядом в обычном ток или электрон в электронном токе, заряд должен течь, чтобы там быть электрическим током.

Не имеет значения, сколько заряда присутствует, важно только то, что он движется. В На диаграмме ниже показаны две цепи, в одной из которых гораздо больше электронов, чем в Другие.

Обе цепи имеют ток 0 А когда электроны не движутся, независимо от того, сколько электронов там.

Электроны также не расходуются по мере уменьшения тока в цепи. Все электроны все еще присутствуют; они просто двигаются медленнее. Если ток уменьшается до 0, это означает, что электроны полностью перестали двигаться.На диаграмме ниже показано электроны, движущиеся через лампочку, приводят ее в действие и заставляют ее загораться.

Поскольку электроны проходят через лампочку, лампочка их не использует вверх или заставить их исчезнуть. Движение электронов — вот что приводит в действие лампочку, поэтому, если электроны движутся медленнее, лампа будет более тусклой. Если электроны перестаньте двигаться, лампочка вообще не будет светить.

Давайте рассмотрим несколько примеров вопросов.

Пример 5: Описание количества электронов в цепи после операции

На схеме показана электрическая цепь, содержащая элемент и лампочку. Эту схему устанавливают на верстаке и оставляют на 1 час.

В конце час, есть ли больше электронов, меньше электронов или такое же количество электронов в провода цепи, чем в начале час?

  1. В проводах больше электронов.
  2. В проводах меньше электронов.
  3. В проводах столько же электронов.

Ответ

Когда цепь включена, электроны движутся по цепи, питая лампочку, когда они движутся через нее.

Электроны питают лампочку своим движением. В течение 1 час, некоторые электроны могли замедлиться из-за питания лампочки, но там все еще такое же количество электронов в цепи.

В конце часа, после включения лампочки в ней находится такое же количество электронов. провода. Правильный ответ: C.

Пример 6: Определение причины появления лампы затемнения

На схеме показана электрическая цепь, содержащая элемент и лампочку. Эту схему устанавливают на верстаке и оставляют на 1 час.

В течение час, лампа постепенно тускнеет. Какое из следующих утверждений правильно объясняет почему?

  1. Количество электронов в ячейке со временем уменьшается, поэтому их становится меньше электроны, которые могут течь по цепи.
  2. Количество энергии в ячейке со временем уменьшается, поэтому энергии меньше которые могут быть преобразованы в свет с помощью лампочки.

Ответ

Когда цепь включена, электроны движутся по цепи, питая лампочку, когда они движутся через нее.

Когда лампочка тускнеет, это не потому, что в ней меньше электронов. В цепи движется меньше электронов, способных привести ее в действие. В количество электронов в цепи остается прежним.

Поскольку энергия ячейки медленно иссякает, она не может протолкнуть столько электроны через провод и, следовательно, через лампочку. Правильный ответ is B.

Давайте подведем итог тому, что мы узнали в этом объяснении.

Ключевые моменты

  • Электрический ток — это поток электрического заряда, который измеряется в амперы.
  • Обычный ток предполагает, что носители заряда положительны, то есть они течет от положительных клемм к отрицательным клеммам.
  • Электронный ток — это фактический поток электронов, которые текут в обратном направлении. направление условного тока.
  • Электроны не разрушаются и не расходуются в цепи при отсутствии тока; они просто перестают двигаться.

Что такое электрическая схема? Какое направление тока в цепи

Ответ:

An el ectric cir cuit 1 a закрыто путь в 905 elec tric токи потоки A circ uit is usu 905 usu 905 905 сделано соединение электрическое компоненты 900 с piec es из провод

Когда we Переключатель на 9005 ctric swi tch , 905 905 и дает из лиг ht . Колба горит потому что 905 we пресс swi swi elect ric cu rrent потоки batt ery в 905 к Bul b горло ugh 905 металл полосы Я the . conducti ng полосы prov idex a cl osed путь f или 905 у.

h ope it помогает you . .

Какое направление электрического тока? — MVOrganizing

Какое направление электрического тока?

Направление электрического тока принято считать направлением, в котором должен двигаться положительный заряд.Таким образом, ток во внешней цепи направлен от положительной клеммы к отрицательной клемме батареи. Электроны действительно будут двигаться по проводам в противоположном направлении.

Какое положительное направление тока?

Положительный знак для тока соответствует направлению движения положительного заряда. В металлических проводах ток переносится отрицательно заряженными электронами, поэтому стрелка положительного тока указывает в направлении, противоположном движению электронов.

Может ли ток течь в двух направлениях?

Ток может течь только в одном направлении. Вопрос лишь в том, какой узел имеет более высокое напряжение. Ток всегда будет идти от более высокого потенциала к более низкому.

Ток отменяется?

Закон Кирхгофа просто гласит, что сумма токов, текущих в узел, всегда равна нулю. Ответ на ваш вопрос — да, но токи, текущие в противоположных направлениях, нейтрализуют друг друга, и провод, несущий разницу между ними.

Что происходит, когда встречаются два электрических тока?

Первоначальный ответ: что произойдет, если два электрических тока, идущие с противоположных концов, столкнутся? В линейной среде, как в медной проволоке, они проходят друг через друга (принцип суперпозиции). Мгновенное напряжение — это сумма напряжений двух отдельных электрических импульсов.

Буквально ли электроны движутся по цепи?

Электроны движутся физически при приложении напряжения — очень медленно.Получается 8,4 см / час. Не совсем быстро. Ключевым моментом является тот факт, что по цепи почти мгновенно проходит энергия, а не сами электроны.

Что блокирует электрический ток?

Типичные материалы, используемые для электромагнитного экранирования, включают листовой металл, металлический экран и металлическую пену. Обычные листовые металлы для защиты включают медь, латунь, никель, серебро, сталь и олово.

Почему в проводнике течет ток?

Когда электрический ток течет по проводнику, он течет как дрейф свободных электронов в металле.Электричество легко проходит через проводник, потому что электроны могут свободно перемещаться внутри объекта. Когда электроны движутся по проводнику, возникает электрический ток.

Может ли ток течь через изолятор?

В проводнике электрический ток может течь свободно, в изоляторе — нет. Металлы, такие как медь, являются типичными проводниками, в то время как большинство неметаллических твердых тел считаются хорошими изоляторами, имеющими чрезвычайно высокое сопротивление потоку заряда через них.

Как протекает ток в электрической цепи?

Электроны, которые непрерывно движутся по проволоке, называются электрическим током. Для твердых проводников электрический ток относится к направленным электронам, направленным от одного атома к другому. Ток течет от положительного к отрицательному, а электроны — от отрицательного к положительному.

В каком направлении течет постоянный ток?

Направление тока Электроны текут от отрицательного к положительному. В цепи постоянного тока (DC) ток течет только в одном направлении, и один полюс всегда отрицательный, а другой полюс всегда положительный.

Каким образом ток течет через источник напряжения?

В большинстве случаев ток вытекает из положительной клеммы источника напряжения. Если вы примените соглашение о знаках пассивных элементов к источнику напряжения, в большинстве случаев ток будет иметь отрицательный знак.

Протекает ли постоянный или переменный ток только в одном направлении?

При постоянном токе (DC) электрический заряд (ток) течет только в одном направлении. Напротив, электрический заряд переменного тока периодически меняет направление.Напряжение в цепях переменного тока также периодически меняется на противоположное, потому что ток меняет направление.

Что меняет направление тока?

Время от времени электроны меняют направление. В переменном токе электроны не движутся равномерно вперед. Вместо этого они просто двигаются вперед и назад. Когда электроны в переменном токе переключают направление, направление тока и напряжение в цепи меняются на противоположные.

Движутся ли электроны в переменном токе?

Электроны в цепи переменного тока на самом деле не движутся вместе с током.Вместо этого они как бы сидят и покачиваются взад и вперед. Они движутся в одном направлении за 1/60 секунды, а затем разворачиваются и идут в другом направлении за 1/60 секунды.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *