Нейтрализатор выхлопных газов дизельного двигателя – Очистка отработавших газов в дизельном двигателе

Содержание

Системы нейтрализации выхлопных газов

При современном уровне развития техники наиболее эффективным способом снижения токсичности выхлопа является нейтрализация токсичных компонентов отработавших газов с использованием химических реакций окисления и (или) восстановления. С этой целью в выпускную систему двигателя устанавливают специальный термический реактор (каталитический нейтрализатор). Постоянное повышение экологических требований к выбросам вредных веществ заставляет автопроизводителей совершенствовать системы нейтрализации.

Как работает каталитический нейтрализатор

Содержание статьи

Системы нейтрализации бензиновых двигателей

Еще при введении норм Евро-3 в методику испытаний добавили режим холодного пуска: измерения производятся сразу же после запуска двигателя при температуре -7 градусов. При отрицательных температурах смесь нужно сильно обогащать – количество СО и СН при этом в выхлопных газах резко возрастает. А не успевший прогреться до рабочей температуры каталитический нейтрализатор практически бездействует.

Для решения этой проблемы было найдено несколько способов. Первый, сравнительно простой – расположить нейтрализатор не под днищем автомобиля, а поближе к выпускному коллектору. Так появились катколлекторы, в которых два узла объединены в один. Для более быстрого прогрева их изготавливают не из чугуна, а из тонкой стали. Чтобы уменьшить потери тепла предусматривается теплоизоляция.

Ускорить прогрев нейтрализатора можно и другим способом – добавить в выхлопные газы воздуха с одновременным обогащением топлива. Таким образом «лишняя» горючая смесь, догорая вне цилиндра, повышает температуру отработанных газов, а они, в свою очередь, быстрее нагревают нейтрализатор. В двигателях с непосредственным впрыском того же эффекта добиваются подачей дополнительной порции бензина во время рабочего хода. Есть и третий способ – разогрев нейтрализатора электрическим термоэлементом.

Повысить точность работы системы нейтрализации удалось добавлением второго датчика кислорода. Первый предназначен для контроля качества смеси – богатая она или бедная. А по показаниям второго контроллер более точно корректирует работу системы топливоподачи. Еще более совершенными являются широкополосные датчики – они способны определять, насколько соотношение воздуха и бензина отличается от стехиометрического.

Произошли изменения и в материале изготовления сот нейтрализатора. Мы привыкли к тому, что их изготавливают из керамики. Но она имеет ряд недостатков – в силу своей хрупкости не переносит тряски и ударов, быстро разрушается некачественным топливом или в случае нарушений в работе ЭСУД. В настоящее время все больше применяются соты из металлической проволоки. Они медленнее прогреваются и имеют меньшую рабочую поверхность, зато легко переносят механические воздействия и высокие температуры. Очень важно также то, что металлические соты создают намного меньшее сопротивление потоку выхлопных газов.

Еще одну проблему пришлось решать для современных двигателей с непосредственным впрыском, которые способны работать на бедных смесях. При этом достигается заметная экономия топлива, однако количество оксидов азота в выхлопных газов также значительно возрастает. Обычный нейтрализатор не в состоянии с ними справиться. Поэтому в выпускную систему дополнительно вводится NO-накопитель. Конструктивно он практически не отличается от обычного нейтрализатора, за исключением веществ, которыми покрываются его соты. Оксиды калия, стронция, циркония, кальция, лантана, бария задерживают оксиды азота. Периодически рабочая смесь обогащается, и накопленные вредные вещества выжигаются, разлагаясь при этом на азот и углекислый газ. Располагается накопитель после нейтрализатора, так как для его работы нужна более низкая температура (около 400 градусов).

Системы нейтрализации дизельных двигателей

Другой подход нужен к дизелям. Здесь приходится бороться с углеводородами, оксидами азота и сажей (твердыми частицами).

Сажевые фильтры придуманы давно. В первых конструкциях накопившуюся сажу периодически выжигали при температуре около 600 градусов, кратковременно обогащая смесь. Но при этом увеличивался выброс других вредных веществ. Поэтому в современных конструкциях сажевый фильтр объединили с окислительным нейтрализатором. Одно устройство и оксиды азота разлагает, и сажу сжигает, причем при более низкой температуре (около 250 градусов).

Для очистки выхлопа грузовиков дополнительно применяется технология SCR (Selective Catalitic Reduction). Ее суть – периодический впрыск в нейтрализатор раствора мочевины (AdBlue). Там она превращается в аммиак и вступает в реакцию с оксидами азота. В результате образуются безвредные азот и вода.

Однако возможности ученых и изобретателей не безграничны. Нормы Евро-6, по всей видимости, – предел, достижимый современными ДВС. А дальше придется искать другие экологически чистые источники энергии.

Практические рекомендации

Во время и после работы двигателя корпус нейтрализатора имеет достаточно высокую температуру. В связи с этим, во избежание пожара, не следует парковать автомобиль над легко воспламеняющимися предметами, например сухими листьями, травой, бумагой и т.д.

Следует соблюдать основные правила, направленные на предупреждение ситуации, когда в нейтрализатор может попасть значительное количество несгоревшего топлива. В этом случае возможная вспышка может привести к его разрушению.

Наиболее общие рекомендации таковы:

  • не следует бесполезно крутить двигатель стартером длительное время;
  • нельзя пускать двигатель путем буксировки. Следует использовать метод “прикуривания” от другого автомобиля;
  • запрещается проверять работу цилиндров, отключая свечи зажигания.
  • при перебоях в работе системы зажигания не допускайте работы двигателя с высокой частотой вращения коленвала до устранения неисправности;
  • не заливайте моторное масло сверх максимального уровня. Излишки масла, попав в каталитический нейтрализатор, могут повредить покрытие или полностью разрушить его.

avtonov.info

Нейтрализатор отработанных газов. Устройство и принцип действия

Назначение

Нейтрализатор отработанных газов предназначен для нейтрализации вредных веществ, находящихся в отработанных газах выпускной системы.

Принцип работы

Постоянные усилия разработчиков по улучшению процессов сгорания, оптимизации управления системами двигателя достигли определённой точки, при которой требовались новые методы и способы для уменьшения выбросов вредных веществ в атмосферу многочисленными автомобилями. Разработаны и применяются т.н. нейтрализаторы отработанных газов, которые устанавливаются в выпускной системе. В настоящее время используются нейтрализаторы нескольких типов:

  • каталитические;
  • термические;
  • накопительные;
  • и др.

В каталитических процесс нейтрализации интенсифицируется за счёт применения катализаторов, а в термических — за счёт высокой температуры с добавлением воздуха к отработанным газам.

Каталитические нейтрализаторы

Каталитические нейтрализаторы называют окислительными, т.к. они предназначены для окисления СО и СН, находящихся в отработанных газах. За короткое время, пока газы проходят через нейтрализатор, все реакции должны завершиться при температуре 250 — 800 град.

При температуре менее 250 град, эффективность нейтрализатора мала, а при температуре выше 1 000 гр. происходит «спекание» мелких кристаллов платины и разрушение активной поверхности, т.е. дезактивация нейтрализатора.

Рис. Окислительный нейтрализатор

На рисунке представлена конструкция каталитического нейтрализатора. 1 — керамическая пористая основа с нанесённым покрытием из платины и родия, 2 — изоляционные и теплоотводящие компоненты, 3 — датчик содержания кислорода в отработанных газах. Дезактивация катализатора особенно велика в первые 20 тыс.км. Особенно быстро дезактивация наступает при использовании этилированного бензина. Повторим, что рабочая температура в нейтрализаторе 400-700 гр., поэтому для быстрого прогрева и эффективной работы нейтрализатор располагают ближе к выпускному коллектору. Такое расположение является положительным фактором при холодном пуске и прогреве двигателя — нейтрализатор быстрее начинает работать, но при этом повышается его эксплуатационная температура, а это может способствовать дезактивации катализатора.

Блок-носитель каталитического нейтрализатора делают из керамики сотовой структуры, гофрированной фольги из нержавеющей стали или в виде сферических гранул из оксида алюминия, которые укладывают в металлический цилиндр, закрытый по торцам сетками. На поверхность носителя наносится каталитический материал и помещают внутрь корпуса из нержавеющей жаропрочной стали. Между блоком-носителем и корпусом ставится терморасширяющаяся прокладка. Для уменьшения вибрационных нагрузок нейтрализатор присоединяется шарнирными соединениями или компенсаторами колебаний.

Рис. Эффективная зона работы нейтрализатора

На рисунке показана зона эффективной работы нейтрализатора. Заштрихованная область — зона «стехиометрической» смеси, по оси абсцисс (В) отображено отношение «воздух-топливо», по оси ординат (А)-эффективность работы нейтрализатора.

В зоне «богатых» смесей — от 10 до 14,6 преобладают высокие концентрации оксида азота(NОх) и низкие СО и СН. Нейтрализаторы, преобразующие СО, СН, N0, называют трёхкомпонентными или бифункциональными. Для нейтрализации смеси оксида азота, получающегося в процессе сгорания смеси, используются реакции его восстановления до азота N2 и аммиака Nh4. В материалах, служащих катализатором при нейтрализации вредных веществ, используются платина, палладий, родий и др.

Трёхкомпонентные нейтрализаторы являются окислительными и восстановительными. В связи с тем, что состав вредных веществ резко меняется в зависимости от «обогащения» или «обеднения» топливовоздушной смеси, необходимо поддерживать работу двигателя в районе «стехиометрической» смеси.

Для выполнения такой задачи используется электронное управление работой двигателя с системой обратной связи (замкнутая система). Датчики, обеспечивающие работу обратной связи, называются: лямбда зондами (отношение «воздух-топливо») и устанавливаются до и после нейтрализатора, а также термометры газов в зоне процессов нейтрализации и окисления вредных веществ.

Термические нейтрализаторы

Термические нейтрализаторы представляют собой камеру, в которой при высокой температуре окисляются СО и СН. При работе двигателя на обогащенной смеси, требуется подача воздуха перед нейтрализатором. При работе на обеднённой смеси температура будет не высокой и требуется дополнительный прогрев нейтрализатора. Термический нейтрализатор начинает работать при температуре 600 гр, что существенно выше, чем у каталитических нейтрализаторов. Кроме этих требований, нужны более прочные и жаростойкие материалы, стойкость к высокой коррозионной агрессивности. Не получили широкого распространения.

Ранее отмечалось, что нейтрализатор не работает на режимах прогрева двигателя, т.к. температура в нём не достаточно высока, кроме того, двигатель в это время работает на обогащенных смесях и в отработанных газах нет достаточного количества кислорода, необходимого для окисления СН в нейтрализаторе.

Для ускоренного прогрева нейтрализатора уменьшается угол опережения зажиганием, или электрическим подогревом нейтрализатора путём сжигания перед ним топлива в горелке, или подачи воздуха в, поток отработанных газов с помощью специального насоса.

Рис. Методы подогрева нейтрализатора: 1 — топливная форсунка, 2 — нейтрализатор, 3 — свеча для поджигания смеси, 4 — воздушный насос

В некоторых системах используют «стартовый» нейтрализатор, который устанавливается перед или параллельно основному При параллельном расположении весь поток отработанных газов направляется в стартовый нейтрализатор, который быстро прогревается и начинает эффективно работать.

После прогрева двигателя поворотом заслонки поток газов направляется в основной нейтрализатор. На рисунке приведена одна из схем построения системы с параллельным и основным нейтрализаторами.

Рис. Система со стартовым нейтрализатором: 1 — двигатель, 2 — стартовый нейтрализатор, 3 — глушитель, 4 — основной нейтрализатор, 5 — кислородный датчик (лямбда-зонд), 6 — заслонка

При очистке отработанных газах дизельных двигателей внимание уделяется сокращению содержания твёрдых частиц и оксидов азота (NOx). Приведём краткое описание некоторых способов очистки ОГ, применяемых в дизельных двигателях.

Фильтр твёрдых частиц используется для сбора и их дальнейшей регенерации. Используется с окислительным нейтрализатором. Перед и после нейтрализатора и фильтра твёрдых частиц устанавливаются датчики давления и температуры, по которым косвенным способом определяется загрязнение элементов. Далее ЭБУ двигателем переводит работу двигателя на разные режимы для запуска системы регенерации твёрдых частиц.

Накопительный нейтрализатор NOx

Накопительный нейтрализатор NOx собирает на своей поверхности оксиды азота, а затем конвертирует их в азот (N2). При холодном пуске отработанные газы нагреваются для сокращения количества NOx. ЭБУ двигателем периодически обогащает, а затем обедняет рабочую смесь и, тем самым, создаёт условия для разложения оксидов азота.

Расположение

После выпускного коллектора сразу в подкапотном пространстве или под днищем автомобиля. Обычно снизу дополнительно защищен металлической сетчатой пластиной.

Неисправности

Засоряется от некачественных (или несгоревших) топлив и масел. Разрушается при уларах. Обычно двигатель не запускается при правильности всех параметров, т.к. отработанным газам некуда выходить — выпускная система забита.

Методика проверки

Если возникли подозрения на неисправность нейтрализатора, необходимо проверить давление газов перед нейтрализатором. Холостой ход — не более 0,9 bar и режим нагрузок (примерно 3000 оборотов) не более 2,5 bar. Если нет измерительного манометра — просто выкрутить кислородный датчик для выпуска отработанных газов. Если двигатель запустился, значит нейтрализатор «забит». Признаком неисправности нейтрализатора служат раскалённые газы, идущие из выпускной системы; перегрев двигателя и «хлопки» во впускной коллектор.

Ремонт

Нейтрализатор отработанных газов ремонту не подлежит. Пробивать отверстие в нейтрализаторе нельзя, можно разрезать и удалить все внутренности, что не приветствуется по причине нарушения экологических норм выброса отравляющих веществ. Лучше заменить на новый, как обычный сменный элемент со своим сроком службы (примерно 150 тыс.км.).

ustroistvo-avtomobilya.ru

Катализаторы для дизельных двигателей | Системы снижения токсичности автомобиля

Дизельные двигатели всегда работают с избытком воздуха и в силу конструкции имеют небольшие выбросы СО и углеводородов. В результате в дизельном двигателе не хватает СО для восстановления оксидов азота в традиционных катализаторах. По этой причине в дизельных двигателях нельзя устанавливать катализаторы тройного действия. Для дизельных двигателей нужно было разработать совершенно новые концепции очистки ОГ. Уменьшения концентрации вредных веществ лишь за счет внутримоторных технологий уже недостаточно. Ниже описаны некоторые новые, внешние системы очистки ОГ для дизельных двигателей.

Дизельный катализатор

Рис. Дизельный катализатор

Традиционный дизельный катализатор представляет собой обычный окислительный катализатор для нейтрализации оксида углерода и углеводородов. В качестве благородных металлов для окисления используются платина и частично палладий. Из-за высокого содержания кислорода в ОГ процессы окисления в катализаторе протекают очень эффективно. СН и СО окисляются уже при температурах выше 160°С.

Поскольку частицы захватывают также углеводороды и оксид углерода, то прилипающие к частицам вредные компоненты нейтрализуются. С использованием окислительных катализаторов нельзя существенно снизить собственно выбросы частиц. Пройдя через катализатор, частицы становятся примерно на 30% легче, поскольку в нем нейтрализуются содержащиеся в частицах и прилипшие к ним углеводороды и оксид углерода. Зерна сажи остаются. Для соблюдения предельных значений Евро-2 и Евро-3 это уже был пройденный путь. Для выполнения же требований Евро-4 и других стандартов этого уже недостаточно.

SCR-катализатор (Катализатор с селективным каталитическим восстановлением)

С появлением нормы Евро-4 значительно снизились предельные концентрации вредных компонентов и для грузовых автомобилей. По сравнению с Евро-3 для оксидов азота это означает уменьшение на 30%, а по выбросам частиц — даже на 80%. С 2005 года в Европе была серийно запущена технология SCR-Для стандарта Евро-5 дополнительно требуются датчики NOx и аммиака (Nh4). Новые системы в сочетании с сажевыми фильтрами обеспечивают большой потенциал и для использования в легковых автомобилях. Следует обратить внимание, что накопительные SCR-катализаторы не только имеют точку начала температурного скачка (около 200°С), но и не позволяют достичь достаточной степени нейтрализации выше определенной температуры (около 450°С).

Сочетание сажевого фильтра, рециркуляции ОГ и систем катализаторов, работающих по принципу селективного каталитического восстановления (SCR), готово к пуску в серийное производство, а у некоторых автопроизводителей этот вопрос уже решен.

Эти катализаторы называют также SINOx-катализаторами. Покрытие катализатора состоит из V205/TiO2 (оксида ванадия или диоксида титана) или V205/W02/TiO2 (оксида ванадия, диоксида вольфрама или диоксида титана). Для восстановления оксидов азота нужно впрыскивать восстановитель в ОГ перед катализатором. Он превращает оксиды азота в N2 и Н2O. Степень нейтрализации составляет около 90% NOx. В качестве восстановителя используется газообразный или растворенный в воде аммиак (Nh4) или мочевина ([СО (Nh3)2]). Разложение раствора мочевины происходит в гидролизном катализаторе (полное нейтрализация Nh4 и СO2). В качестве гидролизных катализаторов можно использовать как отдельные оксиды металлов — AL2O3 и CO2 (анатас) так и имеющиеся в катализаторе оксиды благородных металлов. Химические реакции превращения оксидов азота начинаются примерно при 200°С и протекают по следующим уравнениям:

4 NO + 4 Nh4 + O2 —> 4 N2 + 6 h3O
6 NO2 + 8 Nh4 -> 7 N2 + 12 h3O.

Рис. Комбинированная система очистки ОГ [источник: Bosch]

Технология SCR базируется на добавке, впрыскиваемой в поток ОГ. В качестве добавки используется 32,5% водный раствор мочевины (±0,5%), находящийся в отдельном баке. Водный раствор мочевины называют AdBlue, он специфицирован стандартом DIN 70070. Расход AdBlue составляет около 4-6% расхода топлива. Раствор мочевины впрыскивается в поток ОГ, где она под воздействием температуры и содержащейся в ОГ воды выделяет аммиак. Аммиак превращает образующиеся при сгорании оксиды азота в SCR-катализаторе в молекулярный азот и воду.

Точная дозировка добавки, зависящая от нагрузки и оборотов — один из центральных факторов регулировки системы. Отношение мочевины к дизельному топливу составляет около 6:100. Дозировка в основном зависит от температуры катализатора и общих выбросов NOx. Однако учитываются и обменные реакции NOx, поглощение Nh4 в катализаторе, температура наддувочного воздуха и влажность воздуха. Впрыск добавки происходит согласно характеристике. Очистка ОГ на базе технологии SCR позволяет снизить выбросы оксидов азота на 80% и кроме того, уменьшает выбросы частиц примерно на 40%.

Благодаря технологии SCR грузовые автомобили легко выполняют жесткие требования по содержанию NOx стандарта Евро-4 и даже Евро-5.

Для оптимальной реакции в катализаторе важна точная дозировка и регулирование впрыска мочевины. Для этого необходимы датчики, измеряющие температуру, концентрацию, электропроводность и уровень заполнения раствора мочевины, и передающие данные в реальном времени в систему контроля SCR. Измерение температуры важно потому, что при -11 °С раствор замерзает, а замерзшая мочевина расширяется примерно на 10%. При слишком сильном падении температуры бак и трубопроводы необходимо обогревать. Отдельные компоненты системы должны быть рассчитаны на давление замерзшей мочевины. Выше порядка 40°С стабильность AdBlue низка, и может потребоваться дополнительное охлаждение добавки.

Важную роль играет новый датчик мочевины. Если датчик фиксирует сильно отличающуюся, например, явно слишком малую концентрацию мочевины в баке, то впрыск прекращается. Концентрация определяется по принципу электропроводимости раствора.

Таким образом, можно распознать как слишком низкий уровень заполнения, так и (по косвенным признакам) наличие посторонних веществ в баке. Эта информация может отображаться на панели приборов или обрабатываться системой OBD. Возможен также механизм контроля, автоматически снижающий мощность двигателя на 30-50%, если в баке оказывается слишком мало мочевины. Возможно два варианта датчиков. Так называемый DT-датчик находится в выпускном трубопроводе между бачком с мочевиной и насосом и измеряет концентрацию, электропроводимость и температуру протекающего раствора мочевины. DLT-датчик — многофункциональный датчик, находящийся непосредственно в бачке и контролирующий уровень заполнения.

При недостаточной температуре или времени реакции в системе SCR могут образовываться нежелательные побочные продукты (например, сульфат аммония или гидросульфат аммония). Эти побочные продукты могут деактивировать катализатор. Если после SCR-катализатора установить окислительный катализатор, то возникает опасность повторного образования NOx. Проблематичной является дозирование мочевины или аммиака при непостоянных условиях эксплуатации двигателя. Здесь кроется самая большая проблема для запуска серийного производства. Системы очень чувствительно реагируют на ошибочные дозы. Если ввести слишком мало мочевины, то ограничится степень нейтрализации, если ввести ее слишком много, то некоторая часть восстановителя будет выброшена неизрасходованной. Это приводит к появлению неприятного запаха и новым выбросам вредных веществ. Подача восстановителя происходит в зависимости от характеристики.

Концерн Mercedes-Benz для своих новых дизельных катализаторов использует добавку под названием BluTec, похожую на AdBlue. Еще одной альтернативой, которую можно использовать в качестве добавки, является «Denoxium». Это смесь водного раствора мочевины и аммонийной добавки. Ее свойства очень похожи на свойства AdBlue, но температуру замерзания можно понизить до -35 °С. В качестве добавки можно также использовать мочевину в твердой форме. Проблемой в этом случае является образование токсичных паров, если автомобиль загорится. Для применения в легковом автомобиле опробуется впрыск мочевины с воздухом. В таблице приведено сравнение возможных восстановителей на основе мочевины.

Таблица. Сравнение восстановителей для SCR-катализаторов

Основной проблемой всех новых систем катализаторов является их чувствительность к сере. Особенно у накопительных катализаторов пространства для оксидов азота могут быть заняты и серой, из-за чего резко падает способность катализатора к аккумулированию NO4. Уже при небольшом пробеге имеет место отравление серой и нейтрализации оксидов азота оказывается недостаточно. Эта проблема касается бензиновых и дизельных двигателей. На рисунке изображена основная зависимость степени нейтрализации от содержания серы в топливе.

Рис. Характеристика степени нейтрализации в зависимости от содержания серы в топливе

Прочие системы катализаторов для дизельных двигателей

Катализатор CH-SCR (Катализатор с СН-селективным каталитическим восстановлением)

Функцию аммиака, как восстановителя, могут выполнять и другие, безазотные восстановители — например, углеводороды, которые всегда содержатся в выхлопе в известной концентрации. При необходимости можно впрыскивать дополнительный восстановитель (топливо) либо сразу после сжигания в камеру сгорания или непосредственно перед катализатором в систему выпуска. Удаление оксидов азота происходит путем восстановления имеющихся углеводородов. Чтобы система работала оптимально, необходимо определенное соотношение СН и NOx. Степень нейтрализации может составлять до 60% NOx. При температуре ниже 100°С поглотительная способность системы очень мала, а свыше 350°С могут окислиться используемые цеолиты (щелочные силикаты алюминия). До сих пор известно два основных способа: низкотемпературные катализаторы на базе платины и высокотемпературные катализаторы на базе цеолитов.

Рис. Преобразование СН

На рисунке показана зависимая от температуры картина нейтрализации молекул СН.

Селективная рециркуляция оксидов азота (SNR)

Еще один перспективный вариант — селективная рециркуляция оксидов азота. В NO-адсорбере со щелочным или щелочноземельным покрытием улавливаются и отфильтровываются оксиды азота NCK Во время накопления оксиды азота каталитически окисляются. Затем в камеру сгорания возвращается NO, где преобразуется. Оксиды азота NOx улавливаются уже при температуре ОГ 150°С, а отдаются лишь при 350°С.

Плазменная технология и микроволновая индукция

При плазмоиндуцированной очистке в отработавших газах создаются радикалы. Радикалы запускают реакции разложения или превращения вредных компонентов. Отработавшие газы проходят через реактор, в котором высокоэнергетические электроны создают радикалы. Плазма — это газ, ионизирующийся при подаче электрического напряжения. Из-за большого количества свободных электронов она обладает высокой химической активностью. Эта активность используется для проведения реакций, для которых потребовалось бы большое количество энергии при значительно более низких температурах. Помимо восстановления оксидов азота также происходит уменьшение выбросов частиц. Преимуществом этих систем является независимость от температуры ОГ и мгновенное действие при включении плазмогенератора. Таким образом, система может начать работать сразу после холодного пуска. Проблемы этих систем заключаются в их очень высоком энергопотреблении, приводящем к увеличению расхода топлива и снижению степени нейтрализации оксидов азота до неудовлетворительного уровня. Эти разработки пока находятся на начальной стадии.

Для снижения вредных выбросов также апробируются технологии с микроволновой индукцией. По микроволновому нагреву уже есть перспективные наработки и небольшие прототипы, но еще требуется прояснить множество моментов:

  • обеспечение надежного экранирования микроволновой энергии;
  • обеспечение электромагнитной совместимости (ЭМС) системы в целом;
  • обеспечение достаточно большой микроволновой энергии без дополнительной нагрузки на бортовую сеть;
  • обеспечение достаточно компактной конструкции для встраивания в автомобиль.

Приемлемые решения и в этой системе появятся лишь через несколько лет.

ustroistvo-avtomobilya.ru

Современные технологии очистки отработавших газов

Чтобы воздух стал чище

Л. Цинцевич

И к бензиновым, и к дизельным двигателям внутреннего сгорания (ДВС), которыми оснащают в том числе средства напольного транспорта, экологи постоянно предъявляют претензии. Если привод первого типа вызывает их недовольство по причине повышенного содержания в отработавших газах таких токсичных для организма человека соединений, как угарный газ СО, углеводород СН, окиси азота NОх, то дизельные двигатели – из-за содержания частиц сажи и окиси азота NOх в выхлопе.

Изначально эти проблемы решали одним способом – совершенствуя систему питания. Для бензиновых двигателей этого оказалось недостаточно, и потому был создан каталитический нейтрализатор отработавших газов, который установили в выпускную систему. С дизелями дело обстояло проще, но лишь до начала нового тысячелетия, а точнее, до ввода в действие норм Еuro 4 (2005 г.) и Еuro 5 (2008 г.). Как только были обнародованы новые требования экологов, разработчики топливных систем для дизелей совместно с автопроизводителями бросили все силы на усовершенствование своих разработок и системы выпуска отработавших газов, внедрив в нее еще более эффективные сажевые фильтры и каталитические нейтрализаторы.

Сажевые фильтры

Сажевые фильтры могут иметь как отдельный корпус, так и находиться «под одной крышей» с каталитическим нейтрализатором. Рабочий элемент сажевых фильтров обычно делают из керамики или металлокерамики; чаще всего он имеет особую конструкцию, которая обеспечивает равномерное накапливание сажи на его поверхностях. Принцип действия и функции нейтрализатора и фильтра значительно различаются. Если первый превращает токсичные газы в безвредные, то второй механически удерживает частицы сажи, из-за чего возрастает противодавление в системе выпуска. В среднем это противодавление не должно превышать 150 мбар, как установили разработчики двигателей. Лишь только сопротивление фильтра из-за засорения сажей приблизится к этому предельному значению, его надо либо заменять, либо подвергнуть очистке (регенерации), сжигая в фильтре твердые частицы. В настоящее время более широко применяют конструкции второго типа.

В автомобилях режим «сжигания» сажи активизируется блоком управления двигателем, если он получил от специальных датчиков в системе выпуска информацию о заполнении фильтра. Особенность этого режима в том, что в цилиндры на дожиг подается большее количество отработавших газов, впрыскивается больше топлива и снижается подача воздуха. Температура отработавших газов при этом заметно возрастает, благодаря чему сажа выгорает. В погрузчиках и других типах машин, двигатели которых работают не постоянно, а периодически, температура отработавших газов не достигает нужного для сгорания сажи значения, поэтому в них используются специальные системы дожига, о которых будет рассказано ниже.

Нормативы ужесточаются

Принятые документы предусматривают, что содержание вредных веществ в отработавших газах в ближайшие годы во всех странах Европы будет снижаться. Уже существуют многочисленные нормативы (Еuro 1…5 для легковых и грузовых автомобилей), которые для защиты здоровья людей требуют устанавливать на технику фильтры, являющиеся основной составляющей системы нейтрализации отработавших газов. Сегодня можно исходить из того, что все новое транспортное оборудование будут поставлять только с такими фильтрами.

Частицы сажи настолько мелкие (их размер от 0,001 до 1 мкм), что при вдыхании они осаждаются в легких человека и по кровеносной системе могут достичь любого внутреннего органа, включая мозг. В зависимости от размера они могут проникать в легкие на разную глубину и действовать как возбудители опасных заболеваний. Нормативы ЕС 1999/30/EG уже сейчас регулируют предельные значения концентрации таких мелких частиц, как сажа, следующим образом: «Доза в 50 мкг/м3 не должна превышаться чаще, чем 35 раз в год» (Приложение III). С января 2010 г. допускается лишь семь превышений.

Технические требования TRGS-554, принятые в Германии, предписывают применять сажевые фильтры для дизельных двигателей в закрытых или частично закрытых помещениях, начиная с 1996 г. В соответствии с этим документом также должны выдерживаться определенные предельные значения содержания мелких частиц сажи в отработавших газах в городах и местах скопления людей. В документе редакции 2001 г. вопросам токсичности отработавших газов дизелей уделено еще больше внимания. Причина этого в том, что действие отработавших газов может стать в том числе причиной заболевания раком (см. § 35, абзац 4 постановления № 4 по вредным веществам Gef-StoffV). Область действия норм TRGS-554 охватывает все полностью или частично закрытые помещения, в которых используется транспортное оборудование с дизельным приводом и персонал подвержен воздействию отработавших газов. Это помещения складов, производственные цехи, мастерские, туннели, контейнеры, закрытые кузова автотранспортных средств, грузовые помещения судов и самолетов, места стоянки и ремонта транспортного оборудования, применения на подземных выработках в горнодобывающей промышленности и тоннельном строительстве (ср. TRGS-554, 2001, с. 3f).

Этот документ не ограничивается определением зоны защиты и мероприятий по снижению эмиссии, но «осмеливается» также определять параметры фильтров твердых частиц. Так, в нем уточнен метод измерения токсичности отработавших газов и установлена величина степени очистки выхлопа (на данный момент она должна составлять не менее 95%) вне зависимости от нагрузки на двигатель (TRGS-554, 2001, с. 10), а также имеются указания на то, каким должно быть состояние техники. Кроме этого предписано, что пропуск отработавших газов мимо фильтров и использование снижающих токсичность добавок в топливо без подключения фильтров не допускается, а также что окислительные каталитические нейтрализаторы фильтрами не являются. Указано и на то, что при регенерации фильтра не должно возникать вторичной эмиссии вредных веществ.

В других странах предписания еще более жесткие. В Швейцарии уже с марта 2000 г. действуют требования к установке фильтров на технику, применяемую в подземных выработках (на строительстве туннелей) и на крупных строительных площадках. На крупных стройплощадках существует требование к оснащению фильтрами с 01.09.2003 г. двигателей мощностью 37 кВт, а с 01.09.2005 г. – мощностью 18…37 кВт. Швейцария – страна, которая считается лидером в защите окружающей среды, и к продаже там допускаются лишь фильтры, которые соответствуют самым строгим нормативным требованиям и сертифицированы по VERT, например, такие, как выпускает фирма HUSS Umwelttechnik. Жесткие требования по установке фильтров на транспортное оборудование с дизельными двигателями действуют и в Дании. Законодательная инструкция № 82, принятая в Австрии, предписывает установку фильтров сажевых частиц на технику с дизелями мощностью более 18 кВт, работающую на строительных площадках.

Сажевые фильтры опасны для здоровья?

Сенсационное заявление о том, что сажевые фильтры нельзя рассматривать в качестве панацеи в борьбе за экологию городов, сделал еще в 2005 г. профессор Рейнхард Цельнер (кафедра химии университета Дуйсбурга). Представленные им аргументы были достаточно серьезными. По оценкам профессора, промышленные экземпляры фильтров и так работают на пределе дисперсности, и это приводит к увеличению расхода топлива на 10%. Если капилляры фильтров еще сузить, потребление топлива возрастает в геометрической прогрессии. Между тем существующие фильтры не обеспечивают задержку микрочастиц менее 10 мкм и ароматических фракций, а ведь именно эти составляющие выхлопа более всего инициируют развитие рака. Более того, по мере эксплуатации фильтров в них скапливаются отложения, и вместо задержки наиболее опасных для здоровья микрочастиц фильтры становятся их источником. С тех пор в Германии ведется дискуссия о запрете эксплуатации дизельных автомобилей без фильтров по выходным, а также бюджетном стимулировании их владельцев к применению фильтров.

За это, в частности, выступает местное министерство природы. По его данным, в крупнейших городах Германии, включая Берлин, содержание микрочастиц в воздухе в 10 раз превышает нормы ЕС. Противники тотального внедрения фильтров, в числе которых и некоторые автоконцерны, подсчитали тогда, что дизельный выхлоп становится причиной только 9% загрязнений атмосферы городов, а львиная доля приходится на промышленность и коммунальное хозяйство.

Какой погрузчик лучше?

Продолжительное время дизельный вилочный погрузчик вовсе не допускали в закрытые помещения, например, складские: он выбрасывал в воздух слишком много сажи. Разработчики погрузочной техники большее внимание уделяли более экологичной технике с электроприводом. Действительно, в создании противовесных погрузчиков с электродвигателем за последние десятилетия сделан большой шаг вперед. Из маломощной машины, которая зависит от внешнего питания сети и очень часто является причиной многочисленных простоев, они превратились в достойную альтернативу дизельной технике. С точки зрения привода дизельный погрузчик и сейчас сохраняет свое превосходство, но только при работе на трассах большой протяженности, на подъемах и при перевозке тяжелых грузов. В остальных случаях покупатель зачастую затрудняется в выборе погрузчика, особенно в случаях, когда техника приобретается по схеме лизинга, а проблемы с ремонтом и сервисным обслуживанием электропогрузчика возникают в большинстве случаев только после окончания гарантийного срока.

Электропогрузчик, кажется, может записать в свой актив еще один «плюс»: он не выбрасывает частиц сажи при сгорании дизельного топлива. В основном это правильно, однако при соответствующей переработке отработавших газов дизельный погрузчик может предложить высокую мощность, продолжительность автономной работы и… чистоту. Сегодня работа в помещениях погрузчика с дизельным приводом перестала быть проблемой. Соответствующие системы фильтров делают это возможным.

Основные характеристики системы очистки, определенные TRGS-554, не облегчают тем не менее потребителю выбор «правильного» фильтра. Однако хорошим критерием для принятия решения по выбору того или иного устройства может служить такой параметр, как степень очистки, и многие изготовители ориентируются в первую очередь на нее. Существуют компании, которые предлагают фильтрацию 99% частиц во всех своих изделиях вне зависимости от того, какой метод измерения эмиссии частиц применяется и какой конструкции отдает предпочтение потребитель. Целесообразно выбирать устройства с особенно высокой долей отделения самых мелких частиц размером всего несколько нанометров, ведь они проникают в организм человека наиболее глубоко и практически не выводятся из него, а потому особенно опасны для здоровья. Устройства с невысокой степенью очистки или такие, в которых этот параметр меняется в зависимости от частоты вращения двигателя, не только недопустимы по TRGS-554, но и не имеют смысла с точки зрения качества фильтрации частиц.

Новые решения: выбор – за потребителем

В последнее время направление разработок по снижению концентрации вредных веществ в выхлопе изменилось. Раньше нормативы, регламентирующие состав отработавших газов, предусматривали прежде всего снижение количества частиц сажи, а сегодня более актуальными являются мероприятия по снижению предельных значений содержания оксидов азота. Необходимые для этого технологии есть уже сейчас. А пока для большинства специалистов в этой области очевидно, что дизельный фильтр частиц сажи останется на машинах, которые будут выпускать в будущем, даже если более широкое применение найдет метод «сжигания» HCCI (Homogeneous Charge Compression Indition) или если станут еще более производительными системы селективного каталитического восстановления (Selective Catalytic Reduction, SCR), принцип действия которых основан на химической реакции аммиака с окисью азота отработавших газов, в результате чего образуется безвредный для здоровья азот и водяной пар.

Принятие более строгих нормативов по предельно допустимым концентрациям вредных веществ в США (с 2010 г.) или в Европе (в 2012–2013 гг.) нацелено прежде всего на снижение содержания в отработавших газах оксидов азота NОх. Современные технологии в целом позволяют выполнить эти предельные нормативы за счет изменения конструкции самих двигателей, однако затраты на это в итоге оказываются несоразмерно большими.

С помощью высокопроизводительной SCR-системы, разработанной фирмой Emitec (Ломар, ФРГ), более жесткие значения предельного содержания отработавших газов, которые уже прописаны в будущих нормативах, могут быть выдержаны при значительно меньших издержках. Ключом к успеху этого инновационного решения стал рабочий узел, получивший название Metallit. Он представляет собой металлические пластины-катализаторы, состоящие из слоев гладкой металлической фольги, перфорированной фольги, волнистых слоев из LS (продольных структур), а также специальных лопастных пластин, в которых происходит смешивание газовоздушных потоков. Metallit создает турбулентность, за счет которой обеспечивается высокоэффективное превращение вредных веществ в экологически безопасные. С помощью именно такой системы SCR известный производитель грузовых автомобилей компания МАN смогла снизить предельное содержание NОх ниже требуемого значения.

Фирма IVECO Motors, входящая в Fiat Powertrain Technologies (FPT, Турин, Италия), является ведущим изготовителем дизельных двигателей для внедорожников, к которым согласно классификации фирмы Jingheinrich относится также индустриальный транспорт, а значит, и вилочные погрузчики. Шестицилиндровые дизели типа Cursor 8, например, имеют рабочий объем 7,8 л и развивают мощность 265 кВт при 2400 мин-1 и крутящий момент 1500 Н•м при 1125 мин-1. С помощью системы SCR достигнута степень эмиссии 3В, предусматриваемая в предельных значениях нормативов Евросоюза на 2012 г. Одновременно со снижением количества частиц сажи в выхлопе сильно сократился и уровень выбросов NОх.

Известный поставщик комплектующих для легковых и грузовых автомашин фирма Eberspcher (Есслинген) предлагает изготовителям грузовых автомобилей, а также фирмам – производителям напольного транспорта и строительных машин различное оборудование для очистки отработавших газов c использованием технологий SСR и/или сажевого фильтра. Чтобы удовлетворить требования нормативов, которые предусматривают более жесткие значения предельно допустимой концентрации (ПДК) вредных веществ (степень 3В) и вступят в силу уже довольно скоро, специалисты компании, работающие по теме очистки отработавших газов, разрабатывают более совершенные системы для двигателей новых поколений. В настоящее время уже создано компактное устройство, состоящее из комбинации систем очистки от сажи и NОх в одном корпусе и получившее название Onebох. Оно позволяет достичь лучшей очистки выхлопа, чем предусматривают нормы Euro 5. Швабская фирма уже несколько лет выпускает сажевые фильтры для вилочных погрузчиков и строительных машин, основой которых служит монолитный кордиерит. В зависимости от мощности двигателя фильтры имеют размеры 78 или 912 дюймов.

Компания Теnnесо Automotive Inc. (шт. Иллинойс, США) поставляет известным изготовителям грузовых автомашин и внедорожников такие изделия для систем выпуска, как каталитические нейтрализаторы, сажевые фильтры, а также глушители фирм Walker или Gillet. С целью организации производства самых разнообразных систем очистки отработавших газов специально для такой техники, как вилочные погрузчики, универсальные коммунальные и пожарные машины, в восточногерманское предприятие компании инвестировано свыше 5 млн. евро. Наряду с фильтрами сажи и SCR-системами компания поставляет также абсорберы оксидов азота, которые продаются главным образом в США, так как эти устройства увеличивают расход топлива на 5%.

При комплектации транспортного оборудования, предназначенного для эксплуатации на протяженных маршрутах, Теnnесо ориентируется на систему SСР, а для оснащения среднего и тяжелого транспортного оборудования – на сажевые фильтры с непрерывной регенерацией посредством оксидного катализатора. Для легкого транспортного оборудования используются сажевые фильтры с дополнительной системой очистки.

Чтобы максимально снизить противодавление выпуска, сажевый фильтр должен обладать большой пористостью. В фильтрах со связанным кремнием (Si–SiC) число каналов может регулироваться в зависимости от требований заказчика между 40 и 62%. Пористость рекристаллизованных сажевых фильтров в настоящее время составляет лишь 36…45%. В зависимости от конкретного применения используются фильтры с разным количеством каналов. Если фильтр со связанным кремнием пористостью 53% заменяют фильтром с пористостью 60%, то сопротивление давлению меняется на 30%, что позволяет экономить топливо. Одновременно с количеством каналов японские инженеры смогли варьировать у Si–SiC-фильтров и размеры каналов в диапазоне от 8 до 33 мкм, что позволило удовлетворить самые различные требования в отношении двигателей и систем выпуска.

Наряду с технологиями регенерации, которые пока применяются довольно ограниченно, в будущем предполагается использовать и альтернативные материалы. Фирма NGK уже сегодня снабжает сажевыми фильтрами из кордиерита фирму Toyota, которая применяет их для систем DPNR, представляющих собой комбинацию фильтра с NОх-абсорбером. Преимуществами таких устройств являются большая пористость, возможность нанесения на них покрытия, а также пониженный коэффициент расширения. Фирма Сorning, ближайший конкурент NGK, не только выпускает кордиеритовые сажевые фильтры, но возлагает особые надежды на свою новую разработку из керамики на основе алюминия и титана. По данным изготовителя, эти так называемые АT-фильтры имеют такую же хорошую теплоемкость, как карбид кремния, и столь же малое тепловое расширение, как кордиерит. Это означает, что они обеспечивают температурный контроль во время фазы регенерации и могут быть изготовлены из одного монолитного куска. Не так давно одной из первых стала внедрять эти керамические фильтры в большие серии своих изделий компания Volkswagen.

Еще одна ведущая мировая компания по выпуску оборудования для очистки выхлопа Аrvin Meritor (Troy, шт. Мичиган, США) также имеет обширную номенклатуру продукции. Для значительного снижения концентрации всех составляющих отработавших газов она предлагает комбинировать оксидный катализатор с SCR- и фильтрующими системами. Чтобы контролировать возможную закупорку каналов фильтра, возникающую при кратковременной работе транспортного средства и перемещении небольших грузов (это типичная ситуация в работе вилочных погрузчиков), компания предлагает использовать различные способы активной регенерации. С помощью устройства Atomizer дизельное топливо распыляется на катализатор, который способствует его окислению, в результате чего выделяется тепло. При этом в противоположность системам дожигания ни катализатор, ни расположенный за ним сажевый фильтр не подвергаются экстремальным термическим нагрузкам, что позволяет применять вместо дорогого кремниевого сажевого фильтра более дешевый кордиеритовый.

При использовании «термического регенератора» восстановить полностью сажевый фильтр возможно с помощью электронагрева независимо от характера работы и условий эксплуатации двигателя. В эту систему входят устройство сжигания и сам фильтр. Система «термонагреватель», напротив, повышает температуру газов на выходе из двигателя, в результате чего регенерация сажевого фильтра возможна даже при очень низких температурах.

Разработчики, если хотят исключить недостатки имеющегося на рынке фильтра типа Wall-Flow, нe обойдут вниманием PM-фильтр-катализатор (Particulate Matters) компании Еmiteс. РМ-фильтр-катализатор в противоположность закрытым Wall-Flow-системам работает по принципу проникающего параллельного потока. Это гарантирует бесперебойную работу двигателя даже при неполной регенерации. Размеры задерживаемых частиц благодаря реакции с NO2, который вырабатывается в подключенном окислительном катализаторе, постоянно уменьшаются. РМ-фильтр-катализатор нельзя повредить, и сам он не может повредить дизельный двигатель, а расход топлива по мере его эксплуатации не повышается. Более того, этот фильтр не требует обслуживания в течение всего срока службы транспортного средства. Выделение вредных для здоровья мельчайших частиц снижается более чем на 90%, общее число частиц – на 80%, а масса частиц – по меньшей мере на 30%. Все РМ-фильтры-катализаторы удовлетворяют требования нормативов по эмиссии, которые будут приняты в недалеком будущем, и уже успешно применяются в серийных изделиях ведущих производителей легковых и грузовых автомобилей.

Поскольку в настоящее время действуют очень мягкие нормативы по ПДК для разных веществ в отработавших газах, средства напольного транспорта серийно поставляются без устройств очистки отработавших газов. Покупатели, которые хотят применять экологически чистое транспортное оборудование или вынуждены это делать, поскольку эксплуатируют технику в закрытых помещениях, должны дополнительно оснащать его средствами очистки. В Германии существует много поставщиков и изготовителей систем очистки выхлопа: DES Diesel (Менден), ЕНС Теknik GmbH (Зиген), ETB GmbH (Бремен), GAT Каtalysаtoren GmbH (Гладбек), GfA Gesellschaft fr Abgasentgiftungsanlagen (Хейдесхайм), Greentор GmbH (Нойе-Аншпах), HUSS Umwelttechnik (Нюрнберг), Johnson Matthey GmbН (Зульцбах), Krone GmbH (Ахим), Оbеrland Mangold GmbH (Эшенлое), а также Twintec GmbH (Кёнигсвинтер). Эти фирмы предлагают все многообразие различных концепций очистки от сажи – от монолитной керамики (компании EHC, ETB, GfA и др.), металлокерамических фильтров (DЕS), керамической или металлической губки (GAT) до катализатора на основе композиции металлическая фольга/ металлический нетканый материал РМ (Twintec).

Предлагает фирма HUSS

Немецкая фирма HUSS Umwelt-technik предлагает особенно большое число решений для транспортного оборудования, у которого температура отработавших газов достаточно низкая или меняется со временем (сюда относятся и вилочные погрузчики). Ее производственная программа обширна: от сменных фильтров, которые очищают на специальной стационарной станции, систем активной регенерации с помощью дизельной горелки, впрыска дизельного топлива или электрического нагрева до сажевых фильтров с дополнительной системой очистки. В ассортименте изделий этого производителя есть даже оригинальная SСR-система, что позволяет покупателю выбрать наиболее подходящую систему в зависимости от условий эксплуатации техники. Вилочные погрузчики таких компаний, как Hyster, Jungheinrich, Nissan, STILL, Tоуоtа и Yale, в большинстве уже оборудованы такими устройствами. Одно из последних успешных внедрений HUSS связано с решением компании Mitsubishi установить на свои погрузчики системы очистки FS 50 MKS – фильтры с дизельным дожигателем.

В распоряжении HUSS имеются оригинальные устройства для регенерации фильтров. Наиболее распространенными видами очистки от сажи выхлопа вилочных погрузчиков в настоящее время являются регенерация с помощью присадок (система МА) и дизельных дожигателей (система МК).

Система МА (пассивная). В этой системе сажа сгорает в фильтре во время движения машины, а принцип ее работы основан на добавлении присадок в топливо. Для полного перемешивания топлива с присадкой применяют дозирующее устройство Additive Control System (АСS) (TRGS-554, 2001, с. 10), которое является «саморегулируемым»: в зависимости от нагрузки на двигатель оно обеспечивает добавку оптимального количества присадки, автоматически увеличивая или уменьшая его, или совсем прекращает подачу присадки. Благодаря этому не только эффективно защищается двигатель, но и параллельно сокращается до минимума расход присадки (на 3000 л топлива достаточно 1 л присадки). Это решение идеально, начиная со средних температур отработавших газов. Еще одним достоинством системы МА является то, что двигатель транспортного оборудования не надо останавливать.

Система МК (активная). Загрязненные сажей фильтры можно быстро регенерировать с помощью системы МК, которая использует имеющееся в машине дизельное топливо. Работающий на дизтопливе мощный дожигатель нагревает рабочий элемент фильтра до температуры выше температуры возгорания сажи. После работы машины в течение 8…10 ч время регенерации фильтра составляет в зависимости от его размера от 5 до 35 мин. Высокая мощность (свыше 20 кВт) дожигателя HUSS обеспечивает очень быструю регенерацию. Расход топлива на регенерацию незначителен и составляет от 100 до 300 см3 в зависимости от размера фильтра.

Эта система подкупает своей автономностью. Поскольку достичь температуры отработавших газов, необходимой для регенерации, сложно именно для вилочных погрузчиков, работа которых периодически прерывается, система МК является для этой техники оптимальным решением и позволяет отказаться от авантюрных предложений некоторых поставщиков фильтров с регенерацией типа «попробуйте быстро проехать на погрузчике по двору» или «попробуйте нагрузить мотор гидравликой, чтобы повысить температуру».

Разумеется, можно отрегулировать систему HUSS Control на допускаемое производителем двигателя противодавление в системе выпуска, при этом повреждение двигателя или турбонаддува при правильной эксплуатации фильтра будет исключено. И поскольку регенерация происходит на холостом ходу, оборудование не дает вторичной эмиссии, что полностью соотносится с требованием TRGS-554.

Фильтрующие системы Huss возможно устанавливать и на новые машины, и на уже находящиеся в эксплуатации. Там, где есть отделения компании Huss, сделать это могут ее сервисные инженеры. В большинстве случаев фильтр можно установить под противовесом, там его совсем не видно. После установки проводят инструктаж обслуживающего персонала. Для варианта установки до начала эксплуатации погрузчика компания разработала многочисленные специальные монтажные наборы, специфичные для конкретного оборудования каждого изготовителя, например, для погрузчиков фирм Jungheinrich, Mitsubishi и Caterpillar.

Благодаря согласованным решениям разных специалистов в области очистки отработавших газов по своим возможности дизельный погрузчик выходит на новый уровень. Приведение в соответствии нормам TRGS-554 по эмиссии делает эту технику совершенно безопасной для здоровья людей. Современные технические решения специально согласованы с типами транспортного оборудования и легко встраиваются в него.

По материалам зарубежной печати

sitmag.ru

Катализатор подробно — Энциклопедия журнала «За рулем»

КАТАЛИТИЧЕСКИЙ НЕЙТРАЛИЗАТОР ВЫХЛОПНЫХ ГАЗОВ


Об­щие све­де­ния

Тре­бо­ва­ния по ог­ра­ни­че­нию то­к­сич­но­сти от­ра­бо­тав­ших га­зов дви­га­те­лей вну­т­рен­не­го сго­ра­ния по­я­ви­лись в 70-х го­дах про­шло­го сто­ле­тия в США и Япо­нии, а за­тем и в дру­гих стра­нах. В свя­зи с уве­ли­че­ни­ем ко­ли­че­ст­ва ав­то­мо­би­лей и их от­ри­ца­тель­ным воз­дей­ст­ви­ем на ок­ру­жа­ю­щую сре­ду эти тре­бо­ва­ния по­сто­ян­но уже­сто­ча­ют­ся. На про­тя­же­нии трех де­ся­ти­ле­тий ве­дет­ся ра­бо­та, на­пра­в­лен­ная на ре­ше­ние этой про­б­ле­мы. Все из­вест­ные спо­со­бы сни­зить ко­ли­че­ст­во вред­ных вы­бро­сов за счет ре­гу­ли­ро­вок или из­ме­не­ния кон­ст­рук­ции дви­га­те­ля не да­ли ожи­да­е­мо­го эф­фе­к­та. Кро­ме то­го, их ис­поль­зо­ва­ние при­во­дит к уве­ли­че­нию рас­хо­да то­п­ли­ва и су­ще­ст­вен­но­му сни­же­нию мощ­но­сти.
Не­пол­но­та сго­ра­ния в порш­не­вых бен­зи­но­вых дви­га­те­лях не по­з­во­ля­ет умень­шить ко­ли­че­ст­во ок­си­да уг­ле­ро­да, уг­ле­во­до­ро­дов и оки­слов азо­та в от­ра­бо­тав­ших га­зах до тре­бу­е­мо­го уров­ня1.
Нейт­ра­ли­за­ция то­к­сич­ных ком­по­нен­тов от­ра­бо­тав­ших га­зов с ис­поль­зо­ва­ни­ем хи­ми­че­ских ре­ак­ций окис­ле­ния и (или) вос­ста­но­в­ле­ния яв­ля­ет­ся наи­бо­лее эф­фе­к­тив­ным спо­со­бом сни­же­ния то­к­сич­но­сти вы­хло­па при со­в­ре­мен­ном уров­не раз­ви­тия тех­ни­ки. С этой це­лью в вы­пу­ск­ную си­с­те­му дви­га­те­ля ус­та­на­в­ли­ва­ют спе­ци­аль­ный тер­ми­че­ский ре­а­к­тор (ней­т­ра­ли­за­тор).
В от­сут­ст­вие ка­та­ли­за­то­ров пол­ное пре­об­ра­зо­ва­ние ок­си­да уг­ле­ро­да и не­сго­рев­ших уг­ле­во­до­ро­дов про­ис­хо­дит в ди­а­па­зо­не тем­пе­ра­тур от 700 до 850°С при ус­ло­вии из­быт­ка ки­с­ло­ро­да. Нейт­ра­ли­зо­вать окис­лы азо­та при этом не­воз­мож­но, так как обя­за­тель­ным ус­ло­ви­ем их вос­ста­но­в­ле­ния яв­ля­ет­ся не­до­с­та­ток сво­бод­но­го ки­с­ло­ро­да.
В при­сут­ст­вии ка­та­ли­за­то­ров — ве­ществ, ак­ти­ви­зи­ру­ю­щих хи­ми­че­ские ре­ак­ции, тем­пе­ра­ту­ра ней­т­ра­ли­за­ции сни­жа­ет­ся и обес­пе­чи­ва­ет­ся воз­мож­ность пре­об­ра­зо­ва­ния всех то­к­сич­ных ком­по­нен­тов.
Ка­та­ли­ти­че­ские ней­т­ра­ли­за­то­ры ос­но­ва­ны на ис­поль­зо­ва­нии “бла­го­род­ных” ме­тал­лов, что свя­за­но с вы­со­кой хи­ми­че­ской аг­рес­сив­но­стью от­ра­бо­тав­ших га­зов. При­ме­не­ние со­от­вет­ст­ву­ю­щих ка­та­ли­за­то­ров обес­пе­чи­ва­ет воз­мож­ность од­но­вре­мен­но окис­лять ок­сид уг­ле­ро­да и уг­ле­во­до­ро­ды, а так­же вос­ста­на­в­ли­вать окис­лы азо­та. Та­кие ней­т­ра­ли­за­то­ры до­с­та­точ­но дол­го­веч­ны, их при­ме­не­ние не при­во­дит к су­ще­ст­вен­но­му уве­ли­че­нию рас­хо­да то­п­ли­ва и сни­же­нию мощ­но­сти дви­га­те­ля. При оп­ти­маль­ном уп­ра­в­ле­нии про­цес­сом сго­ра­ния и ре­цир­ку­ля­ци­ей от­ра­бо­тав­ших га­зов мо­гут быть вы­пол­не­ны са­мые же­ст­кие эко­ло­ги­че­ские тре­бо­ва­ния, предъ­я­в­ля­е­мые к ав­то­мо­би­лям.

Ус­т­рой­ст­во ней­т­ра­ли­за­то­ра

В штам­по­ван­ном кор­пу­се, из­го­то­в­лен­ном из не­ржа­ве­ю­щей ста­ли, рас­по­ло­жен ка­та­ли­ти­че­ский но­си­тель и эла­стич­ная тер­мо­изо­ля­ци­он­ная про­клад­ка (рис.1).
Устройство автомобильного нейтрализатора выхлопных газов:
1 — штампованный корпус из нержавеющей стали;
2 — каталитический носитель;
3 — эластичная термоизоляционная прокладка. а — керамический носитель; б — металлический носитель из гофрированной фольги.

Ке­ра­ми­че­ский но­си­тель (рис. “а”) про­ни­зан про­доль­ны­ми по­ра­ми-со­та­ми, на по­верх­ность ко­то­рых на­не­сен ак­тив­ный ка­та­ли­ти­че­ский слой. По­ры об­ра­зу­ют мно­же­ст­во тон­ких ка­на­лов для про­пу­с­ка от­ра­бо­тав­ших га­зов. Бла­го­да­ря спе­ци­аль­ной под­лож­ке тол­щи­ной 20—60 ми­к­рон с раз­ви­тым ми­к­ро­рель­е­фом об­щая пло­щадь по­верх­но­сти это­го слоя мо­жет до­хо­дить до 20000 м2. Мас­са ка­та­ли­за­то­ров, на­не­сен­ных на эту ог­ром­ную пло­щадь, со­ста­в­ля­ет все­го 2—3 грам­ма.
Для умень­ше­ния га­ба­ри­тов ке­ра­ми­че­ской де­та­ли и сни­же­ния тер­ми­че­ских на­пря­же­ний в ней но­си­тель из та­ко­го ма­те­ри­а­ла ча­с­то из­го­та­в­ли­ва­ет­ся со­став­ным.
Ме­тал­ли­че­ский но­си­тель (рис. “б”) пред­ста­в­ля­ет со­бой тон­чай­шие со­ты, из­го­то­в­лен­ные из гоф­ри­ро­ван­ной фоль­ги. Это по­з­во­ля­ет уве­ли­чить пло­щадь ра­бо­чей по­верх­но­сти по срав­не­нию с ке­ра­ми­че­ским но­си­те­лем, сни­зить со­про­ти­в­ле­ние дви­же­нию га­зов и ус­ко­рить ра­зо­грев бло­ка до ра­бо­чей тем­пе­ра­ту­ры.

Эла­стич­ная тер­мо­изо­ля­ци­он­ная про­клад­ка слу­жит для ком­пен­са­ции раз­ли­чия тер­ми­че­ско­го рас­ши­ре­ния кор­пу­са и но­си­те­ля. Она так­же пред­на­зна­че­на для за­щи­ты от ви­б­ра­ции, уда­ров, дру­гих ме­ха­ни­че­ских воз­дей­ст­вий и мо­жет из­го­та­в­ли­вать­ся:
— в ви­де про­во­лоч­ной сет­ки из не­ржа­ве­ю­щей тер­мо­стой­кой ста­ли;
— как по­душ­ка из во­ло­кон си­ли­ка­та алю­ми­ния с до­бав­кой слю­ды.

Нейт­ра­ли­за­то­ры для бен­зи­но­вых дви­га­те­лей

Окис­ли­тель­ные ка­та­ли­ти­че­ские ней­т­ра­ли­за­то­ры до­жи­га­ют в при­сут­ст­вии пла­ти­ны и из­быт­ке ки­с­ло­ро­да ок­сид уг­ле­ро­да и уг­ле­во­до­ро­ды.
Не­до­ста­ток за­клю­ча­ет­ся в том, что в этих ус­ло­ви­ях не­воз­мож­но ней­т­ра­ли­зо­вать окис­лы азо­та.

Двух­сту­пен­ча­тые ней­т­ра­ли­за­то­ры при­ме­ня­ют для пре­об­ра­зо­ва­ния всех трех то­к­сич­ных ком­по­нен­тов. Они со­сто­ят из двух ча­с­тей, ус­та­но­в­лен­ных по­с­ле­до­ва­тель­но. Пер­вая сту­пень вос­ста­на­в­ли­ва­ет окис­лы азо­та при де­фи­ци­те ки­с­ло­ро­да, а вто­рая окис­ля­ет ок­сид уг­ле­ро­да и уг­ле­во­до­ро­ды при при­ну­ди­тель­ной по­да­че в нее воз­ду­ха.
Двух­сек­ци­он­ные ней­т­ра­ли­за­то­ры име­ют от­но­си­тель­но слож­ную кон­ст­рук­цию. Ис­поль­зо­ва­ние сме­сей с из­быт­ком то­п­ли­ва, что не­об­хо­ди­мо для вос­ста­но­в­ле­ния оки­слов азо­та, при­во­дит к по­вы­шен­но­му рас­хо­ду то­п­ли­ва.

Трех­ком­по­нент­ные ней­т­ра­ли­за­то­ры спо­соб­ны од­но­вре­мен­но под­дер­жи­вать ре­ак­ции окис­ле­ния и вос­ста­но­в­ле­ния то­к­сич­ных ком­по­нен­тов, со­дер­жа­щих­ся в вы­хлоп­ных га­зах. В ка­че­ст­ве ка­та­ли­за­то­ров для пре­об­ра­зо­ва­ния оки­слов азо­та в азот при­ме­ня­ют пла­ти­ну и ро­дий. Для сни­же­ния тем­пе­ра­ту­ры до­жи­га­ния ок­си­да уг­ле­ро­да и уг­ле­во­до­ро­дов, кро­ме пла­ти­ны, ино­гда ис­поль­зу­ют ру­те­ний. Ре­ак­ции ней­т­ра­ли­за­ции в при­сут­ст­вии ка­та­ли­за­то­ров на­чи­на­ют­ся при тем­пе­ра­ту­ре 250°С. Пре­об­ра­зо­ва­ние наи­бо­лее эф­фе­к­тив­но в ди­а­па­зо­не тем­пе­ра­тур от 400 до 800°С.
Для обес­пе­че­ния ра­бо­ты трех­ком­по­нент­но­го ней­т­ра­ли­за­то­ра не­об­хо­дим сте­хио­мет­ри­че­ский со­став то­п­ли­во-воз­душ­ной сме­си. При этом на 1кг то­п­ли­ва долж­но по­да­вать­ся 14,7—14,9кг воз­ду­ха, что обес­пе­чи­ва­ет наи­бо­лее пол­ное сго­ра­ние.
Си­с­те­ма по­да­чи то­п­ли­ва с элек­трон­ным бло­ком уп­ра­в­ле­ния обес­пе­чи­ва­ет сте­хио­мет­ри­че­ский со­став го­рю­чей сме­си на всех ре­жи­мах ра­бо­ты дви­га­те­ля. Уп­ра­в­ле­ние осу­ще­ст­в­ля­ет­ся с ис­поль­зо­ва­ни­ем сиг­на­ла, ге­не­ри­ру­е­мо­го спе­ци­аль­ным дат­чи­ком ки­с­ло­ро­да (рис.5), ус­та­но­в­лен­ным в си­с­те­ме вы­пу­с­ка.

Лямбда-Зонд (Дат­чик ки­с­ло­ро­да) вы­да­ет элек­т­ри­че­ский им­пульс в за­ви­си­мо­сти от на­ли­чия или от­сут­ст­вия ки­с­ло­ро­да в от­ра­бо­тав­ших га­зах. Ес­ли ки­с­ло­род по­я­вил­ся, смесь со­дер­жит из­бы­ток воз­ду­ха (обед­не­на), ес­ли ки­с­ло­род ис­чез, смесь со­дер­жит из­бы­ток то­п­ли­ва (обо­га­ще­на). По сиг­на­лу дат­чи­ка элек­трон­ная си­с­те­ма уп­ра­в­ле­ния дви­га­те­лем по­сто­ян­но под­дер­жи­ва­ет смесь сте­хио­мет­ри­че­ско­го со­ста­ва.

Нейт­ра­ли­за­то­ры для ди­зе­лей

Срав­ни­тель­но не­боль­шое со­дер­жа­ние вред­ных ком­по­нен­тов в от­ра­бо­тав­ших га­зах ди­зе­лей не тре­бо­ва­ло в про­шлом ус­та­нов­ки спе­ци­аль­ных уст­ройств. Од­на­ко уже­сто­че­ние норм то­к­сич­но­сти кос­ну­лось и их. По­я­ви­лись си­с­те­мы сни­же­ния то­к­сич­но­сти вы­хло­па, вклю­ча­ю­щие ре­цир­ку­ля­цию от­ра­бо­тав­ших га­зов, ка­та­ли­ти­че­ский ней­т­ра­ли­за­тор и спе­ци­аль­ный са­же­вый фильтр. Са­жа, со­дер­жа­ща­я­ся в вы­хло­пе, не­то­к­сич­на, но она ад­сор­би­ру­ет на по­верх­но­сти сво­их ча­с­тиц кан­це­ро­ген­ные по­ли­ци­к­ли­че­ские уг­ле­во­до­ро­ды, в том чис­ле бенз-а-пи­рен. Ка­та­ли­ти­че­ские ней­т­ра­ли­за­то­ры в этом слу­чае не тре­бу­ют по­да­чи до­пол­ни­тель­но­го воз­ду­ха, по­сколь­ку ди­зе­ли ра­бо­та­ют на очень бед­ных сме­сях и в вы­хлоп­ных га­зах все­гда при­сут­ст­ву­ет сво­бод­ный ки­с­ло­род. Кон­цен­т­ра­ция про­ду­к­тов не­пол­но­го сго­ра­ния в от­ра­бо­тав­ших га­зах зна­чи­тель­но ни­же, чем в бен­зи­но­вом дви­га­те­ле.
Са­же­вые фильт­ры из­го­та­в­ли­ва­ют в ви­де по­ри­с­то­го фильт­ру­ю­ще­го ма­те­ри­а­ла из кар­би­да крем­ния. Пе­ри­о­ди­че­ски фильт­ры очи­ща­ют от­ра­бо­тав­ши­ми га­за­ми, тем­пе­ра­ту­ру ко­то­рых для это­го по­вы­ша­ют пу­тем впры­ска то­п­ли­ва в ци­лин­д­ры с за­по­зда­ни­ем. Для сни­же­ния тем­пе­ра­ту­ры ре­ге­не­ра­ции при­ме­ня­ет­ся спе­ци­аль­ная при­сад­ка к то­п­ли­ву. Очи­ст­ка фильт­ра про­ис­хо­дит по ко­ман­де бло­ка уп­ра­в­ле­ния по­с­ле ка­ж­дых 400—500 км про­бе­га ав­то­мо­би­ля.

Ре­ко­мен­да­ции

Для обес­пе­че­ния эф­фе­к­тив­ной ра­бо­ты ней­т­ра­ли­за­то­ра не­об­хо­ди­мо ис­поль­зо­вать толь­ко ка­че­ст­вен­ное не­эти­ли­ро­ван­ное то­п­ли­во, так как со­дер­жа­щий­ся в бен­зи­не те­т­ра­этил­сви­нец (ТЭС) не­об­ра­ти­мо “от­ра­в­ля­ет” ка­та­ли­ти­че­скую по­верх­ность.
Во вре­мя и по­с­ле ра­бо­ты дви­га­те­ля кор­пус ней­т­ра­ли­за­то­ра име­ет до­с­та­точ­но вы­со­кую тем­пе­ра­ту­ру. В свя­зи с этим, во из­бе­жа­ние по­жа­ра, не сле­ду­ет пар­ко­вать ав­то­мо­биль над лег­ко вос­пла­ме­ня­ю­щи­ми­ся пред­ме­та­ми, на­при­мер су­хи­ми ли­сть­я­ми, тра­вой, бу­ма­гой и т.д.
Сле­ду­ет со­блю­дать ос­нов­ные пра­ви­ла, при­ве­ден­ные в ин­ст­рук­ции по экс­плу­а­та­ции ав­то­мо­би­лей. Они на­пра­в­ле­ны на пре­ду­пре­ж­де­ние си­ту­а­ции, ко­гда в ней­т­ра­ли­за­тор мо­жет по­пасть зна­чи­тель­ное ко­ли­че­ст­во не­сго­рев­ше­го то­п­ли­ва. В этом слу­чае воз­мож­ная вспыш­ка мо­жет при­ве­с­ти к его раз­ру­ше­нию. На­и­бо­лее об­щие ре­ко­мен­да­ции мож­но из­ло­жить сле­ду­ю­щим об­ра­зом:
· не сле­ду­ет бес­по­лез­но кру­тить дви­га­тель стар­те­ром дли­тель­ное вре­мя;
· в хо­лод­ное вре­мя го­да, ес­ли дви­га­тель не за­пу­с­тил­ся с пер­вой по­пыт­ки, не­об­хо­ди­мо из­бе­гать по­втор­ных вклю­че­ний стар­те­ра че­рез ко­рот­кие про­ме­жут­ки вре­ме­ни;
· нель­зя пу­с­кать дви­га­тель пу­тем бу­к­си­ров­ки;
· за­пре­ща­ет­ся про­ве­рять ра­бо­ту ци­лин­д­ров, от­клю­чая све­чи за­жи­га­ния.

1Основным источником образования несгоревших остатков является гашение пламени в пристеночных зонах, в зазоре между поршнем и цилиндром, между поршневыми кольцами и канавками в поршне и т.д. Другая причина — неравномерность состава смеси по объему цилиндра, особенно у непрогретого двигателя и на переходных режимах.

wiki.zr.ru

Автомобильные системы нейтрализации отработавших газов – Основные средства

Каждой норме – свой уровень очистки

Требования Еuro 5 действуют в Европе с сентября 2008 г., сменив действовавшие с 2006 г. более лояльные нормы Еuro 4. Но в 2013 г. должны вступить в силу требования Euro 6, в которых предусмотрено снижение в 3 раза содержание NOx и в 2 раза – объема выбросов твердых частиц по сравнению с нынешними.

Введение норм выбросов в первую очередь мотивируется качеством окружающего нас воздуха, которое с каждым годом вызывает все большие тревоги. Конечно, современный автомобиль несравненно меньше загрязняет окружающую среду и меньше потребляет топлива, чем это было даже 10 лет назад, – прогресс налицо. Значительно возросла доля дизельного и газового транспорта, который наносит менее значительный урон экологии, чем бензиновый. В 1990 г. среди приобретаемых автомобилей доля дизельных в Западной Европе составляла всего 14%. Уже в 2006 г. был превышен 50%-ный рубеж, и разница в пользу «дизелей» с каждым годом нарастает. Все новые автомобили с дизельными двигателями, которые с 2004 г. после внедрения стандартов Еuro 4 еще могли быть не оборудованы системой фильтрации, сокращающей выброс сажи и твердых частиц в атмосферу, сейчас уже при выпуске оснащаются фильтром твердых частиц (DPF).

Техническим исполнением требований Euro 4/5 явилось внедрение систем рециркуляции выхлопных газов (EGR/ AGR) в сочетании с применением сажевого фильтра. Такая комбинация существенно уменьшает выбросы NOx и твердых частиц. Для снижения выбросов СО, несгоревших углеводородов, частиц сажи устанавливают также системы селективной каталитической нейтрализации (Selective Catalytic Reduction, SCR) и системы структурной оптимизации процесса горения BlueTec.

Сегодня используются обе системы. С конструкционной точки зрения технология EGR (Exhaust Gas Recirculation) несколько проще, чем SCR, и, что немаловажно, ощутимо дешевле. Но, к сожалению, нормы Euro 5 гораздо легче достичь, используя SCR. Да и с точки зрения эксплуатационных затрат: в странах ЕС автомобилям с SCR предоставляются налоговые льготы.

К преимуществам EGR, как уже говорилось, относятся низкая стоимость приобретения и отсутствие необходимости заправки реагентом, что проявляется в большой популярности системы у владельцев личного транспорта.

Недостатков же у EGR значительно больше: для выполнения требований Euro 5 экономически невыгодно использовать рециркуляцию выхлопных газов, т. к. это приводит к повышению тепловой нагрузки на двигатель и, следовательно, резко растет износ деталей двигателя. Это, в свою очередь, сказывается на быстром засорении масла продуктами износа и окисления. Для противодействия преждевременному старению возникает необходимость использовать дорогие специальные марки масел, рассчитанные на тяжелые условия «жизнедеятельности».

Еще одним следствием является, как правило, более интенсивная работа системы охлаждения, и, что уж совсем плохо, повышается расход топлива в среднем на 3–6%. Использование сажевого фильтра увеличивает затраты на техническое обслуживание транспортного средства. Повышается риск выхода автомобиля из строя в связи со снижением пропускной способности фильтра. Риск повреждения катализатора в большой мере зависит от качества дизтоплива, а точнее, от процентного содержания в нем серы. Серный конденсат, образующийся при рециркуляции, вызывает засорение каналов, «отравляет» катализатор и быстро снижает эффективность очистки.

Необходимым элементом, обеспечивающим функционирование системы SCR, является реагент AdBlue, который представляет собой 32,5%-ный водный раствор мочевины. Это нетоксичная жидкость. AdBlue дозированно подается в поток сжатого воздуха, с помощью которого этот распыленный раствор попадает в выхлопную трубу. При контакте с горячими выхлопными газами AdBlue разлагается на аммиак и двуокись углерода СО. Свободный аммиак в каталитическом нейтрализаторе SCR реагирует с NOx, в результате образуются безвредный азот и водяной пар.

Серийный бак для AdBlue, устанавливаемый на грузовиках, вместимостью 90 л, обеспечивает каталитический процесс на пробеге в 5,2–7 тыс. км. На расход AdBlue в значительной мере влияет влажность воздуха: низкая влажность увеличивает расход, высокая – уменьшает, а также температура окружающего воздуха. При жаркой погоде расход будет выше, чем при холодной. Безусловно, влияние на расход имеет и характер эксплуатации – загрузка, рельеф местности и даже манера вождения.

Одна задача – множество путей решения

Сегодня многие компании в мире трудятся над разработкой идеальных систем нейтрализации вредных выбросов. Главным элементом системы BlueTec, системы снижения вредных выбросов, разработанным специалистами Mercedes-Benz, является оптимизированный двигатель, имеющий высокую степень сжатия и повышенное давление впрыска топлива. Это увеличивает пиковое давление сгорания, повышает эффективность сгорания топлива и снижает его расход. Процесс сгорания топлива при BlueTec оптимизирован таким образом, чтобы твердые частицы образовывались в минимальном объеме.

Бак, в котором хранится AdBlue, имеет самостоятельный подогрев. Раствор мочевины соединяется с выхлопными газами тогда, когда его собственная температура составляет не менее 200 °С. При более низких температурах химическая реакция идет не так интенсивно.

Таким образом, при подогретой AdBlue содержание NOx в выхлопных газах такое же, как и при использовании EGR, но твердых остатков выбрасывается несравненно меньше. Практика показала, что их объем на 35% ниже разрешаемого нормами Еuro 5. А при использовании BlueTec 5 наличие в выбросах NOx составляет всего 2% от объема, разрешенного требованиями Euro 4.

Но надо отметить, что при многочисленных положительных свойствах масса оборудования BlueTec составляет 150–300 кг, и на такую же величину уменьшается полезная грузоподъемность автомобиля. Недостатком является также и необходимость достаточно часто заправлять AdBlue. Для BlueTec 4, создаваемой под требования Euro 4, потребление AdBlue составляет 1,3 л/100 км, или 4% от расхода топлива. Для BlueTec 5 расход увеличился примерно на 1/3 и составляет 5–7% от расхода топлива, или 1,7л/100 км.

В части снижения выбросов оксида азота компания Bosh предложила рынку свою новую разработку. Речь идет о значительном снижении выбросов благодаря использованию новой системы фильтрации Denoxtronic2 Retrofit с сенсорными датчиками. Первая версия регулировочной системы была успешно внедрена еще в 2004 г.

Дозировочная система Bosch Denoxtronic, объединенная с каталитическими конвертерами SCR, позволяет снизить выбросы NOx на 85%. Это происходит благодаря электронной регулировке подачи AdBlue, которая учитывает такие ключевые параметры, как рабочая температура мотора и число оборотов. Блок управления дозированием, соединенный с электроникой двигателя, мгновенно определяет оптимальную дозировку AdBlue. Оборудование управления дозировкой Bosch Denoxtronic – модульного принципа и успешно работает в транспортных средствах самых разных типов.

Второе поколение Bosch Denoxtronic 2, в отличие от системы первого поколения Denoxtronic, сконструировано значительно проще, сборочных элементов меньше, и это облегчает монтаж и обслуживание. AdBlue впрыскивается без использования сжатого воздуха, при этом двигатель можно отрегулировать так, что расход топлива будет на 5% меньше, чем при использовании других концепций очистки отработавших газов. Разработчики утверждают, что, оптимизируя работу двигателя, Denoxtronic на 40% снижает выбросы твердых частиц.

Ряд известных в области разработки фильтров компаний ведут успешные разработки систем очистки отработавших газов без использования AdBlue. Так, американская Eaton разработала технологию на основе SCR, в которой необходимый для технологии очистки аммиак получают при разложении продуктов сгорания в системе выпуска, воздействуя на них очень высокими температурами. Система, безусловно, недешевая, и предназначена она в первую очередь для установки на тяжелых грузовиках и мощных тягачах.

Также и компания Behr ведет активные поиски в направлении получения безмочевинной технологии. Разработанная компанией 2-ступенчатая рециркуляция и турбонаддув с промежуточным охлаждением, дополненные увеличенным до 2500 бар давлением впрыска топлива, наглядно продемонстрировали, что возможности технологии EGR не исчерпаны. С помощью фильтрационной системы Behr на испытаниях зафиксировано снижение уровня выбросов NOx до 0,8г/кВт.ч.

Эффект, выражающийся 95%-ной нейтрализацией, по утверждениям специалистов-разработчиков, был получен американской компанией Tenneco. Предлагаемая компанией система HC-LNC использует в качестве реагента не раствор мочевины, а биотопливо Е-85, опыты также проводились и с малосернистыми дизельными топливами. Tenneco предполагает, что новая система очистки будет востребована в двигателях дорожно-строительных машин, магистральных грузовиков.

Один из мировых лидеров в области производства систем очистки, компания Emitec, делает ставку на модернизацию систем SCR и утверждает, что требования Euro 6 в первую очередь будут выполнять именно их системы. На выставке IAA-2010 компания представила 2 новейшие разработки. Двухстадийная модульная система SCRi очень компактна и может быть удобна там, где есть проблемы с местом для подобного фильтра. Эта современнейшая система позволяет, по словам разработчиков, снизить уровень выбросов NOx до 0,7 г/кВт.ч. Вторая разработка – система E-SCR предназначена для муниципального и внутрипроизводственного транспорта. В очистной системе использован принцип более эффективного процесса нейтрализации NOx, нагретой до значительных температур AdBlue.

Если Европа окажется в LEZ-зоне, то в какой зоне будем мы?

Безусловно, задают тон в разработке программ создания фильтрующих систем страны Европы, США и Япония. В мировом масштабе одним из первых шагов международного сообщества в направлении защиты окружающей среды стало вступление в силу в феврале 2005 г. Киотского протокола. И хотя еще «глобальный консенсус» отсутствует, можно сказать, что переломный момент в преодолении негативного менталитета различных правительств в отношении действий в деле сохранения экологии позади.

Сегодня примером в экологическом смысле без преувеличения является Европа. Выделены 235 зон пониженных выбросов (Low Emission Zones, или LEZ), 53 из них расположены в Германии. Первые зоны были введены в начале 2008 г. Целью создания таких зон является забота о чистоте окружающего воздуха хотя бы на узко ограниченной территории, с перспективой преобразования всех территорий в одну зону с экологически благоприятной обстановкой.

Деление территорий на зоны низкой эмиссии должно ускорить модернизацию транспортных средств. Внедрение таких зон в Европе было всесторонне продумано, учтены и маршруты общественного транспорта, сами размеры зон, ограничения скоростного режима, четко сформулирован перечень тех транспортных средств, которым в любом случае позволено въезжать, например, машинам «Скорой помощи» или с/х и лесным тракторам. Главное, был продуман контроль за соблюдением принятых положений, а также реально назначены размеры государственных субсидий, стимулирующих модернизацию техсредств, разработаны другие меры поддержки.

Кроме деления территорий на зоны параллельно было принято множество очень нужных для людей положений, таких как запрет передвижения грузовиков по наиболее загазованным улицам либо же использование «зеленой волны» для улучшения транспортных потоков в крупных городах. Большое внимание уделено мерам, способствующим распространению велосипедного движения. Кстати, было признано неэффективным использование уборки улиц моющими средствами.

Все европейские транспортные средства распределены на 4 категории. К первой относятся средства, отвечающие требованиям Euro 1 и ниже. Такие средства не получают пропуска ни в одну из экологических зон. Транспорт, отвечающий требованиям Euro 2, получает пропуск в виде красной эмблемки. Те техсредства, которые отвечают нормам Euro 3, получают желтый отличительный знак, ну а тем, кто может подтвердить соответствие нормам Euro 4 и выше, выдается зеленая наклейка.

Владельцы дизельных автомобилей могут повысить свой «статус», установив сажевый фильтр. Таким образом, грузовик с желтым «пропуском», установив фильтр твердых частиц, получает зеленый знак и более широкие возможности передвижения. Государство приветствует такие действия, каждый желающий установить на дизельный автомобиль сажевый фильтр при наличии технической возможности получает единоразовую субсидию в 330 евро. В бюджете Германии для этих целей заложена сумма в 30 млн. евро, просчитано, что модернизации необходимо подвергнуть 90 тыс. автомобилей.

Если же оператор транспортного средства забудет, что у него нет разрешения на въезд в определенную зону и нарушит принятый порядок, то в Германии он оплатит штраф в размере 40 евро, а в регистрационный центр транспортных средств поступит сигнал о произошедшем инциденте. Если таких отметок, полученных по разным поводам, в центре на данного водителя наберется 18, то он будет лишен водительских прав – вот так все очень серьезно.

С другой стороны, создается режим благоприятствования для перемещения пешком либо на велосипеде. Это и повышенное внимание к уборке тротуаров и дорог, запрет парковки машин в узких проездах, всесторонняя популяризация велодвижения.

В Копенгагене сегодня 35% населения попадают на работу либо учебу на велосипеде. И это несмотря на то, что в столице Дании в среднем 14 дней в месяце бывают дождливыми или снежными. Город инвестировал в 2010 г. около 37 евро на каждого жителя, улучшая условия для езды по городу на велосипеде. Для сравнения можно заметить, что на эти цели в Берлине выделяется не более 1–2 евро, а в Мюнхене около 3 евро на каждого жителя. К сожалению, автор не смог найти сумму, предусмотренную в московском бюджете для создания приемлемых условий для велосипедной езды по столице, а очень хотелось бы сравнить.

В качестве примера положительного эффекта наличия системы зон отметим, что берлинская LEZ занимает площадь 88 км2, на этой площади проживает около 1 млн. жителей, тогда как в целом в Берлине живет 3,4 млн. человек. В первый год существования зоны в нее был запрещен въезд только машин без каких-либо значков. Таких оказалось 7% от общего числа машин города.

Анализ показал, что за первый год снизились выбросы NOx на 14%, а выбросы твердых частиц – на 24%, что соответствует 52 т пыли и 960 т NOx в воздухе.

За 2010 г., когда ограничения на въезд транспорта усилили, эти цифры уже составили 170 т пыли и 1500 т NOx. Интересно, что доля транспортных средств, не отвечающих никаким стандартам Euro, в 2010 г. составила всего 1%. Что же касается грузовых машин г/п свыше 3,5 т, то в 2008 г. лишь 6% из них смогли получить зеленую наклейку, сообщающую о соответствии требованиям Euro 4 и выше. Сегодня же в Берлине таких автомобилей около 75%.

os1.ru

Каталитический нейтрализатор: устройство и принцип работы

В составе выхлопных газов автомобиля содержится довольно много токсичных веществ. Для предотвращения их попадания в атмосферу используется специальное устройство, получившее название «каталитический нейтрализатор» (более известный как «катализатор»). Он устанавливается на автомобилях, оснащенных двигателями внутреннего сгорания, работающих как на бензине, так и на дизельном топливе. Зная принцип работы катализатора, вы сможете понять важность его работы и оценить последствия, которые может вызвать его удаление.

Конструкция и функции каталитического нейтрализатора

Устройство каталитического нейтрализатора

Нейтрализатор является частью системы выхлопа. Он располагается сразу за выпускным коллектором двигателя. Катализатор состоит из:

  • Металлический корпус (монтажный мат), имеющий входной и выходной патрубки.
  • Керамический блок (монолит). Представляет собой пористую структуру с множеством ячеек, которые увеличивают площадь соприкосновения выхлопных газов с рабочей поверхностью.
  • Каталитический слой — специальное напыление на поверхностях ячеек керамического блока, состоящее из платины, палладия и родия. В последних моделях для напыления иногда используется золото — драгоценный металл, который имеет более низкую стоимость.
  • Металлический кожух. Выполняет функции теплоизоляции и защиты катализатора от механических повреждений.

Главная функция каталитического нейтрализатора — это нейтрализация трех основных токсических компонентов отработавших газов, поэтому он получил свое название — трехкомпонентный. Вот эти нейтрализуемые компоненты:

  • Окислы азота NOx – компонент смога, причина кислотных дождей, ядовиты для человека.
  • Угарный газ СО – смертельно опасен для человека при концентрации в воздухе от 0,1%.
  • Углеводороды CH – компонент смога, отдельные соединения канцерогены.

Принцип действия катализатора

На практике трехкомпонентный каталитический нейтрализатор имеет следующий принцип действия:

  • Выхлопные газы из двигателя попадают внутрь керамических блоков, где проникают в ячейки, полностью заполняя их.
  • Металлы-катализаторы палладий и платина провоцируют реакцию окисления, в результате которой несгоревшие углеводороды СН преобразуются в водяной пар, а угарный газ СО в углекислый.
  • Восстановительный металл-катализатор родий преобразует NOx (оксид азота) в обычный безвредный азот.
  • В атмосферу выпускаются очищенные отработавшие газы.

Если в автомобиле установлен дизельный двигатель, то возле катализатора всегда находится сажевый фильтр. Иногда эти два элемента могут быть совмещены в единую конструкцию.

Рабочая температура катализатора играет решающую роль в эффективности процесса нейтрализации токсичных компонентов. Реальное преобразование начинается только после достижения 300°С. Идеальной, с точки зрения эффективности и срока службы, считается температура от 400 до 800°С. В диапазоне температур от 800 до 1000°С наблюдается ускоренное старение нейтрализатора. Длительная работа при температуре свыше 1000°С оказывает губительное воздействие на катализатор. Альтернативой керамике, выдерживающей высокие температуры, является металлическая матрица из гофрированной фольги. Катализаторами в такой конструкции выступают платина и палладий.

Срок службы катализатора

Разрушение керамического блока катализатора

Средний ресурс катализатора составляет 100 тыс. километров пробега, но при правильной эксплуатации он может исправно функционировать и до 200 тыс. километров. Основные причины раннего износа — неисправность двигателя и качество топлива (топливовоздушной смеси). При наличии обедненной смеси происходит перегрев, а при слишком богатой возникает засорение пористого блока остатками несгоревшего топлива, что препятствует протеканию необходимых химических процессов. Это приводит к тому, что срок службы каталитического нейтрализатора существенно снижается.

Еще одной распространенной причиной неисправности керамического катализатора являются механические повреждения (трещины), возникающие при механических воздействиях. Они провоцируют быстрое разрушение блоков.

При возникновении неисправностей работа каталитического нейтрализатора ухудшается, что фиксируется при помощи второго лямбда-зонда. В этом случае электронный блок управления сообщит о неисправности, выдав на приборной панели ошибку «CHECK ENGINE». Также признаками выхода из строя являются дребезжание, увеличение расхода топлива и ухудшение динамики. В этом случае его меняют на новый (оригинального производства или универсальный). Почистить или восстановить катализаторы невозможно, а поскольку это устройство имеет высокую цену, многие автомобилисты предпочитают просто удалить его.

Можно ли удалить катализатор

При удалении катализатора его очень часто заменяют на пламегаситель. Последний выравнивает поток выхлопных газов. Его установка рекомендуется для устранения неприятных шумов, которые возникают при удалении катализатора. При этом, если вы выбрали именно удаление, лучше полностью снять устройство и не прибегать к рекомендациям некоторых автомобилистов пробить в нем отверстие. Подобная процедура улучшит ситуацию только на время.

В автомобилях, соответствующих экологическим стандартам Евро-3, помимо удаления катализатора необходима перепрошивка электронного блока управления. Ее обновляют до версии, в которой отсутствует каталитический нейтрализатор. Также можно установить эмулятор сигнала кислородного датчика, который избавит от необходимости перепрошивать ЭБУ.

Наилучшим решением при поломке каталитического нейтрализатора будет его замена на оригинальную деталь в специализированном сервисе. Таким образом будет исключено вмешательство в конструкцию автомобиля, а его экологический класс будет соответствовать заявленному производителем.

techautoport.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *