Непосредственный впрыск или распределенный впрыск: Распределенный или непосредственный впрыск (MPI или GDI). Какая разница и что лучше

Содержание

Непосредственный и распределенный впрыск: что это такое и в чем разница? | Владимирский тяжеловоз

Часто при описании характеристик двигателя мы видим обозначения MPI и GDI. Если спросить об этом какого-нибудь консультанта в автосалоне или даже первого попавшегося сервисмена, он наверняка начнет рассказывать про преимущества непосредственного впрыска и говорить, что распределенный впрыск – это вообще вчерашний день. Давайте простым языком попробуем описать, в чем же разница и что лучше.

Распределенный впрыск (MPI)– система более старая. Придумали ее вместе с самыми первыми инжекторами. Основной смысл распределенного впрыска заключается в том, что воздушно-топливная смесь приготавливается во впускном коллекторе. То есть топливные форсунки находятся, грубо говоря, в коллекторе. Туда же поступает и воздух посредством открытия дроссельной заслонки. Образуется смесь, которая потом засасывается в цилиндры через клапана под действием разрежения от хода поршня.

Но не надо думать, что распределенный впрыск – это что-то из прошлого. Двигатели с распределенным впрыском производят и сейчас, просто они считаются менее технологичными и, соответственно, меньше стоят.

Но не надо думать, что распределенный впрыск – это что-то из прошлого. Двигатели с распределенным впрыском производят и сейчас, просто они считаются менее технологичными и, соответственно, меньше стоят.

Непосредственный впрыск (GDI)– это когда образование смеси происходит прямо внутри цилиндра. Форсунки располагаются в блоке двигателя по одной на каждый цилиндр, и топливо впрыскивается уже непосредственно в цилиндр в нужной фазе. Из принципа работы вытекают и преимущества каждого вида. Распределенный впрыск более простой и надежный, так как форсунки не контактируют с камерой сгорания. Это был следующий шаг после карбюратора, намного более эффективный в плане мощности, но, увы, проигрывающий непосредственному впрыску как более технологичному.

Непосредственный впрыск сложнее за счет необходимости ювелирной настройки работы каждой из форсунок, однако и мощности он снимает больше примерно процентов на пять-десять с одного и того же объема. Также он более экономичен, но тоже не намного. Минусы у непосредственного впрыска тоже есть – двигатель более технологичный, а значит и дорогой. В случае поломки ремонт будет стоить дороже, чем у двигателя с распределенным впрыском. Ну, и к качеству топлива, пожалуй, непосредственный впрыск тоже чуть более требователен.

Постарался вкратце и простыми словами описать разницу между непосредственным и распределенным впрыском. Если есть какие-то неточности – пишите, будем исправлять! «Владимирский тяжеловоз» всегда к вашим услугам!

чем «болеют» моторы с непосредственным впрыском и как их вылечить

Загрязнение форсунок и клапанов – головная боль владельцев автомобилей VAG с непосредственным впрыском. Она сопровождается вибрацией, повышенным расходом топлива и дерганьем автомобиля при разгоне. Разберёмся, что является причиной этой проблемы и почему качество топлива или масла здесь ни при чём

Денис Карпов

Что такое послойное смесеобразование, и почему моторы с непосредственным впрыском завоевывают  мир

Термин «непосредственный впрыск» хорошо известен, поскольку данная конструкция широко применяется автопроизводителями еще с 1990-х годов – вспомним, например, моторы GDI (Gasoline Direct Injection – прямой впрыск бензина) от Mitsubishi. Похожая система сейчас используется концерном Volkswagen, но именуется иначе – FSI, сокращение от Fuel Stratified Injection — «послойный» впрыск топлива». Так в чем же отличие «джидаев» от тех систем, которые применяются теперь? Там и там – непосредственный впрыск, но вот состав самой смеси различается. Если на первых моделях топливная форсунка представляла собой обычный распылитель, при котором получалась однородная (гомогенная) смесь, и различие между непосредственным и распределенным (MPI) впрыском было только в количестве отверстий распылителя, их расположении и разных показателей давления, то на современных моделях производители уже научились разделять топливовоздушную смесь на зоны с переобогащенной и переобедненной смесью. Зачем это понадобилось? Из-за характеристик сгорания переобедненной смеси. Перечислим плюсы, которые мы получаем во время работы ДВС на такой смеси.

  1. Высокая температура сгорания, высокий КПД и, как следствие, высокий крутящий момент на выходе.
  2. Сокращение расхода топлива (до 15 %, но это только в теории).
  3. Малая эмиссия углеводородов в выхлопных газах.

Вполне достаточно, чтобы заработать на звание «Мотор года», не находите? Внедрение таких моторов пошло полным ходом с 2005 года. В качестве примера можно вспомнить массовый переход на FSI-моторы концерна VW. И, разумеется, первые «блины» вышли комом – достаточно спросить обладателей первых Passat B6 с атмосферными FSI-моторами, выпущенных в 2006 году, с их многочисленными прошивками ЭБУ и проблемами с запуском зимой. «Четырехколечное» подразделение концерна поступило мудрее, не став рисковать своим имиджем ради новых технологий. Вот выдержка из материала самообучения по двигателю 2.0 TFSI, то, что написано в самом начале документа (здесь и далее цитаты из официальных и обучающих документов VW AG).

Впрочем, полностью отказаться от послойного смесеобразования производитель все же не смог. Давайте рассмотрим подробнее, что же такое послойное смесеобразование.

Хорошо видно, что область использования переобедненных смесей находится в промежутке от 1000 до 3500 об/мин, т. е. в наиболее часто используемом водителями диапазоне оборотов ДВС . Если брать диаграмму относительно нагрузки ДВС:

Опять мы видим в области средних/малых нагрузок работу именно на переобедненной смеси. Каким же образом реализуется такая работа? С помощью ввода специальных управляемых воздушных заслонок во впускном коллекторе…

…и ориентации (и формы) распылителей форсунок, имеющих возможность впрыска топлива прямо в цилиндры (непосредственный впрыск), собственно и становится возможным осуществить процесс работы ДВС на обедненной смеси.

Предлагаем взглянуть на моделирование начального процесса без привязки к конкретному исполнению мотора, как это воспринималось разработчиками системы непосредственного впрыска Bosch MED 7.

Обратите внимание: поток восходящий, симметричный, образующий две равнозначные, однонаправленные циркуляции (топливное «облако» и воздушный поток) в объеме ½ поперечной плоскости цилиндра. Степень насыщения воздушного «факела» топливом сильно зависит от формы днища поршня, но довольно слабо – от смещения и отклонения самой топливной струи, в данном случае сглаживаемых самой формой днища поршня.

Трудности реализации и необходимые профилактические меры

При всех положительных моментах эксплуатации двигателя на переобедненных смесях у современных автомобилей имеются проблемы, у которых нет «общих точек соприкосновения» со старым семейством MPI-впрыска, что в свою очередь вызывает трудности в диагностике. Чтобы понять, какие изменения последовали в конструкции, и сравнить, надо обратиться к самому началу появления данного типа системы впрыска в производстве. Конкретную реализацию разберем на примере моделей VW AG. Итак, сравнение поршневой группы атмосферного и турбированного ДВС…

В первом случае видна схема «встречных потоков» описанных ранее, во втором очевидно играет гораздо большую роль предварительное завихрение потока воздуха во впускном коллекторе (в этом одно из различий исполнения данных моторов) и полная направленная циркуляция в полном объеме цилиндра.

Предварительное завихрение воздушного потока во впускном коллекторе и обедняет классическую однородную (гомогенную) смесь при смешивании воздушного потока с топливом. На практике первая схема обеспечивает лучшее охлаждение поршня (а с ним – эффективную борьбу с детонационными явлениями при рабочем цикле, о чем подробнее поговорим далее). В то же время для таких моторов характерна проблема зимнего пуска, при котором свечи просто «заливало» топливом, и мотор не запускался, а самое смешное в этом вопросе (думаю, владельцы Passat B6 первых годов выпуска об этом хорошо помнят), что самая простая «жигулевская» и даже не первой свежести свеча помогала запустить замерзший ДВС, после чего следовала еще одна замена – возвращение оригинальных свечей назад. Последовало порядка десятка изменений версий программного обеспечения блока управления ДВС, прежде чем удалось решить эту проблему. Разумеется, владельцев ДВС с турбокомпрессором такие проблемы не коснулись. Пуск на гомогенной смеси при минусовой температуре воздуха отработан автопроизводителями до мелочей. В дальнейшем на цепных моторах 2008 года и далее эксперименты с формой днища поршня проводить не стали.

Обычно такие поршни обладают плоской поверхностью со стандартными выемками под клапана.

Или имеют ярко выраженную сферическую вогнутую поверхность по всей ширине гильзы цилиндров, назначение которой будет понятно немного позже.

А теперь посмотрим на организацию подачи топлива и воздуха на этих ДВС:

Используются форсунки с 6-ю отверстиями, что положительно влияет на качество распыления топлива. Обратите внимание на расположение топливной форсунки и впускного канала: они находятся в одной плоскости, а это значит, суммарного восходящего потока уже не получится. Учитывая, что топливо должно успеть равномерно распределиться по топливовоздушному заряду, получаем единственный вариант —организацию встречного потока с довольно большим дефицитом по времени эффективного распыления. Разумеется, об эффективном охлаждении поршней в этом случае речь тоже не идет. Давайте посмотрим, что думают об этом сами создатели.

Довольно простое решение подачи топлива непосредственно в зону свечи, т. е. топливный заряд оборачивается, условно говоря, в «кокон» воздушного заряда (эффект дополнительного охлаждения смеси достигается ее изолированием воздушным потоком, если говорить точнее). В итоге в зоне электрода свечи мы имеем обогащенную, легко воспламеняемую смесь, а в остальных местах камеры сгорания – переобедненную. Но путь смешивания топливного и воздушного зарядов очень короткий, в отличие от схемы, обсуждаемой ранее, а нормальное перемешивание, с отражением от поверхности поршня и равномерным распределением по фронту потока (как это было с атмосферным мотором), к сожалению, невозможно. Именно этот аспект и влияет на возможную проблемную работу ДВС в целом, а причина возникновения трудностей стабильного воспламенения довольна простая:

Симптомы и признаки загрязнения форсунок

Да, основная причина загрязнение распылителей форсунок и приносит наибольшую головную боль обладателям современных FSI-моторов. Обычно сопровождается это вибрацией, пропусками воспламенения при холодном пуске, а также повышенным расходом топлива и дерганьем автомобиля при разгоне.

Почему так происходит, вы, наверное, уже догадались. Разумеется, из-за отклонения топливной струи от расчетной траектории, ведь в данном случае совсем небольшого отклонения вполне достаточно, чтобы резко «обеднить» зону вокруг центрального электрода, при котором устойчивого воспламенения уже не будет. Но и это далеко не последняя проблема в данном ДВС. Довольно часто обсуждают следующее явление на впускных клапанах:

А вот так выглядит начало такого процесса:

Обратите внимание: налет мягкий, легко снимаемый и совершенно непохожий на тот твердый светло-бурый налет на MPI-моторах, который иначе как механической обработкой не снять. Больше всего он напоминает налет на впускных коллекторах дизельных моторов. И в этом есть часть ответа на вопрос по образованию такого нагара.

Очень часто на вопрос о загрязнении впускных клапанов и форсунок отвечают стандартными фразами: «некачественное топливо», «несвоевременное обслуживание» или «неправильно подобранное масло».

Но, к сожалению, даже при использовании высококачественных материалов и сокращенном интервале обслуживания ситуация радикальным образом не изменится. Чтобы понять причину этой проблемы, давайте рассмотрим диаграмму фаз газораспределения. Один из наиболее характерных режимов, описывающий важность регулирования фаз газораспределения, на стандартной круговой диаграмме выглядит так:

Но, как быть с увеличением NOx при повышении температуры отработавших газов? Каталитический нейтрализатор для данного соединения человечество еще не придумало. Была изобретена система возврата отработавших газов EGR, которая и занималась снижением температуры ОГ и, как следствие, уменьшением доли NOx в выхлопных газах. Но поскольку со временем клапан EGR не сильно отличался по виду от впускных клапанов, выложенных ранее, по степени негативных эмоций он прочно занимал второе место и у механиков, и у владельцев. Одна из самых «оптимистичных» конструкций клапана EGR выглядела так:

Тут конструкторы немного погорячились: поставить дроссельную заслонку на выпускные газы?! Кто хоть раз видел дроссельную заслонку на впуске, может представить, как она будет выглядеть на выпуске. Думаю, понятно, почему последствия загрязнения и отказа этого клапана занимают второе место по негативу у владельцев Passat B6. Однако, несмотря на многочисленные отказы регулирующих элементов этой системы, надо было как-то решать данный вопрос согласно постоянно ужесточающимся экологическим нормам. В ходе изысканий появилась система внутренней рециркуляции отработавших газов. Реализована она была как составляющая другой системы и не имела своих компонентов.

Теперь начинает прояснятся происхождение отложений на впускных клапанах, как и довольно слабая их зависимость от топлива, обслуживания, масла и т.д. Надо учитывать, что и загрязнение форсунок, и загрязнение поверхности впускных клапанов – процессы связанные и влияющие на один фактор – качество смеси в районе центрального электрода. В то же время заметим, что определяющим фактором влияния на характер воспламенения в цилиндрах все же является именно загрязнение распылителей форсунок. Этот «процесс» начинает беспокоить владельцев с 35 000 – 45 000 км пробега, и, увидев ошибки по «пропускам воспламенения», далеко не всегда начинают решать проблему с «правильного конца». А что же официальные лица? Неужели такой проблеме не уделяется внимание? Так сказать нельзя. Официально существует пункт при техническом обслуживании. Для примера возьмем Audi Q5:

Но возникает вопрос: а говорили ли вам о необходимости использования этой промывки на официальном ТО? А о регулярности такого мероприятия? Ведь подобные рекомендации для эксплуатации автомобиля в России есть и у BMW, и у Mercedes-Benz, и у других крупных автопроизводителей. Также нужно понимать, что использование такой промывки, учитывая ее концентрацию в полном баке, играет только профилактическую роль и полностью не очищает распылители. Но, разумеется, длительность нормального функционирования топливных форсунок увеличивает и рекомендуется к использованию.

А теперь коснемся того, почему же так важно, чтобы распылители топливных форсунок были исправными (чистыми). Дело в том, что конструкция поршней новых двигателей FSI отнюдь не обладает весомым запасом прочности к детонационному сгоранию смеси, поскольку главный принцип построения таких моторов – максимальное облегчение конструкции и снижение трения. И тут уместно вспомнить, что днище поршня в таком типе конструкции не имеет возможности омываться (охлаждаться) топливной струей, а это значит, что при любом нарушении процесса воспламенения вполне возможна детонация и, как следствие, разрушение самого поршня (перемычек), что как раз и происходит на моторах 1.4, 1.8 и 2.0 TSI.

Отметим, что, проектируя третье поколение моторов серии 888, конструкторы VAG учли этот момент и создали смешанный впрыск MPI+FSI, который как раз и призван обойти описанные проблемы. Но вот обладатели автомобилей VAG, выпущенных до 2012 года, должны учитывать и такую печальную вероятность событий.

Надеемся, что после прочтения этого материала у вас не возникнет вопроса, для чего необходимо использовать промывку топливной системы и очищать детали впускной системы двигателей с непосредственным впрыском.

Материал подготовлен экспертом компании turbo-union.ru

Редакция рекомендует:






Хочу получать самые интересные статьи

Авторская статья «Что такое LSPI?» на сайте инженерной-технологической компании Механика

Для начала определимся с терминологией – чтоб было понятнее. Во-первых, речь в этой заметке пойдет исключительно о бензиновых моторах. Во-вторых, двигатель с распределенным впрыском – в нем форсунки подают топливо во впускные каналы головки блока. А двигатель с непосредственным впрыском – где бензин распыляется прямо в цилиндр, минуя впускной коллектор.

Что такое LSPI? Это аббревиатура от английского выражения «Low Speed Pre-Ignition». На русский это можно перевести так: «Преждевременное воспламенение на малых оборотах» и под этим понимают аномальное сгорание, характерное для современных бензиновых двигателей с непосредственным впрыском и турбонаддувом, приводящее к катастрофическим повреждениям деталей.

При «нормальном» воспламенении смесь в цилиндре поджигается искрой от свечи. А вот в случае LSPI сгорание начинается задолго до того, как между электродами проскочит искра, что вызывает резкий скачок давления в цилиндре. Ударная волна запросто может повредить или даже разрушить поршень.

На фото: Картина разрушения поршня при LSPI – типично детонационная: ломаются перемычки между кольцами.

Почему LSPI характерно именно для непосредственного впрыска?

Преждевременное воспламенение характерно для двигателей с непосредственным впрыском, не в последнюю очередь, из-за высокой степени сжатия и слишком малого времени на испарение топлива. Так, у типичного мотора с непосредственным впрыском, на распыление и испарение бензина отведено менее 160° поворота коленвала. Если сравнивать с двигателем карбюраторным или с распределенным впрыском – там аналогичный процесс занимает более чем 320° поворота коленвала. И вот это сочетание – «сильное» сжатие и короткое время распыления делает двигатели с непосредственным впрыском особо чувствительным случаям аномального сгорания, таким как LSPI.

Вот, для сравнения, величина степени сжатия в двух американских двигателях:
Двигатель Степень сжатия

GM, модели LT1, непосредственный впрыск

11,5:1

GM 3. 8V6, распределенный впрыск

8,5:1

Как распыление и испарение топлива влияют на LSPI?

Стоит отметить, что в цилиндрах горит не жидкое топливо. Бензин, наливаемый в бак, это разумеется – жидкость, но, чтобы его сжечь надо, чтоб он превратился в пар. Поэтому жидкий бензин, в виде облака из мельчайших капель, распыляется в горячий и завихренный поток воздуха в цилиндре. Однако, из-за очень короткого времени, отведенного на этот процесс, часть топлива не успевает испариться и сгореть. Часть такого несгоревшего топлива оказывается в зазоре между жаровым поясом поршня и стенкой цилиндра, где смешивается с моторным маслом, смазывающим стенки цилиндра. Из этой смеси легко образуются отложения нагара (смеси сажи и прочих химически активных веществ), приводящие к LSPI. А мельчайшие частички нагара, отделяющиеся от этого слоя, становятся очагами преждевременного воспламенения.

Как химический состав масла влияет на LSPI?

Тем не менее, поскольку двигатели с непосредственным впрыском позволяют сократить расход топлива и снизить выбросы вредных веществ, Министерство энергетики США предоставило исследовательский грант Национальной лаборатории Оук Ридж – для определения способов и методов преодоления подобных недостатков.

В свою очередь, лаборатория Оук Ридж заключила контракт с компанией Driven Racing Oil, которая могла «смешивать» небольшие партии экспериментальных моторных масел разного состава и хорошо «разбиралась» в устройстве двигателей. А Driven Racing Oil, в свою очередь, в сотрудничестве с частной образовательной организацией «Университет EFI», изучающей системы впрыска с электронным управлением, провела стендовые исследования на двигателе с непосредственным впрыском (GM, модели LT1) для подбора масел нужной рецептуры, настройки и конструкторских доработок подобных форсированных двигателей.

Так вот, исследователи установили, что состав и количество моющих присадок в моторном масле очень сильно влияет на появление LSPI. Так, уменьшение количества кальция и полное удаление натрия сокращает частоту и «степень тяжести» LSPI, да и других случаев аномального сгорания. Повышение содержания молибдена тоже способствует снижению тенденции к самовоспламенению.

Была выдвинута гипотеза о том, что присадки на основе кальция и натрия реагируют с топливом, в результате чего образуются химические соединения с октановым числом, ниже чем у бензина или моторного масла и, поэтому, плохо сопротивляющиеся детонации. Поэтому подобные «смешанные» молекулы становятся запальными ядрами для того типа аномального сгорания, которое мы и называем LSPI – низкоскоростным преждевременным воспламенением. Эта гипотеза получила подтверждение после того, как в двигатель залили экспериментальное масло – без натриевой присадки и с существенно меньшим содержанием кальция. Мотор на нем работал безукоризненно.

Выводы исследователей удалось подтвердить и натурными экспериментами. Компания Driven Racing Oil поработала с двигателями гоночных автомобилей Mini, участвующих в британской серии Mini Challenge. Форсированные двигатели этих автомобилей, с турбонаддувом и непосредственным впрыском, часто страдали от LSPI, поскольку их заправляли обычным «дорожным» моторным маслом, содержавшим более 2500 ppm (частиц на миллион) моющей присадки на основе кальция. Как только организаторы серии поняли, что частые поломки поршней вызваны LSPI, то, по совету поставщика топлива Sonoco, обратились в Driven Racing Oil. В результате «стандартное» моторное масло было заменено на специальное – XP9 Racing Oil, в котором содержится всего лишь 250 ppm кальциевой присадки и добавлено 1000 ppm молибдена. Это позволило устранить поломки, вызванные LSPI.

На фото: сравнение химического состава моторных масел

Почему малые обороты?

Вы можете спросить, почему основной упор делается на малые обороты двигателя. А вот почему. На малых оборотах турбулентность «входящего» воздуха гораздо меньше, чем на высоких. В подобном режиме бензин хуже испаряется и перемешивается с воздухом.

Представьте себе – автомобиль стоит на светофоре, а двигатель работает на холостом ходу, без нагрузки. При этом смесь завихряется меньше, а температура поршня ниже. Все это, вместе взятое, мешает качественному распылению и испарению бензина. Теперь добавьте сюда противодавление от турбокомпрессора, и вы получите эффект ухудшенной продувки цилиндра плохо приготовленной топливной смесью. Поэтому нет ничего удивительного в том, что в двигателях с непосредственным впрыском моторное масло сильнее разбавляется топливом, чем в двигателях с распределенным впрыском!

Длительная работа на холостом ходу и, следующее за ней, резкое ускорение под полным дросселем создают идеальные условиях для LSPI – смешению топлива и моторного масла, с последующим нарушением сгорания и внезапными скачками давления в цилиндре.

Еще одно доказательство этой теории было найдено в результате недавнего эксперимента в «Университете EFI». Тамошние исследователи, используя V-образную «восьмерку» GMC LT1, с непосредственным впрыском, проверила два вида топлива: VP C10 и VP C20. Несмотря на схожее октановое число (100 – для C10 и 98 – для C20), оба бензина различались по степени испаряемости. Чем выше температура испарения, тем труднее бензин превращается в пар. И наоборот, чем ниже эта температура – тем легче он испаряется.

Интересно, что более высокие температуры испарения бензина С10 заставляют двигатель детонировать больше, чем работа на бензине С20, с меньшим октановым числом и меньшей температурой разгонки. Это явление доказало, что «не испарившееся/жидкое топливо», способствует случаям аномального сгорания, таким как LSPI.

Как бороться с подобным явлением?

Проведенные исследования показали, какие присадки в масле способствуют LSPI, а какие – предотвращают. Значит, подобрав соответствующую рецептуру, можно получить моторное масло, защищающее от LSPI, без ущерба от повышенного износа двигателя. Поэтому API разработала новую спецификацию – SN Plus, для поколения масел, которое должно устранить проблемы, связанные с LSPI. К слову сказать, масла GM, серии dexos, тоже доработаны с учетом защиты от LSPI.

Ну и в завершение надо добавить, что следует избегать использования масел с высоким уровнем кальциевых и натриевых присадок, в бензиновых двигателях с непосредственным впрыском. Поскольку такие моторы очень чувствительны к качеству применяемых бензина и масла, то к выбору эксплуатационных жидкостей надо подходить очень тщательно.

ХОТИТЕ СТАТЬ АВТОРОМ?

Пришлите свою статью


%d1%80%d0%b0%d1%81%d0%bf%d1%80%d0%b5%d0%b4%d0%b5%d0%bb%d0%b5%d0%bd%d0%bd%d1%8b%d0%b9%20%d0%b2%d0%bf%d1%80%d1%8b%d1%81%d0%ba — с русского на все языки

Все языкиРусскийАнглийскийИспанский────────Айнский языкАканАлбанскийАлтайскийАрабскийАрагонскийАрмянскийАрумынскийАстурийскийАфрикаансБагобоБаскскийБашкирскийБелорусскийБолгарскийБурятскийВаллийскийВарайскийВенгерскийВепсскийВерхнелужицкийВьетнамскийГаитянскийГреческийГрузинскийГуараниГэльскийДатскийДолганскийДревнерусский языкИвритИдишИнгушскийИндонезийскийИнупиакИрландскийИсландскийИтальянскийЙорубаКазахскийКарачаевскийКаталанскийКвеньяКечуаКиргизскийКитайскийКлингонскийКомиКомиКорейскийКриКрымскотатарскийКумыкскийКурдскийКхмерскийЛатинскийЛатышскийЛингалаЛитовскийЛюксембургскийМайяМакедонскийМалайскийМаньчжурскийМаориМарийскийМикенскийМокшанскийМонгольскийНауатльНемецкийНидерландскийНогайскийНорвежскийОрокскийОсетинскийОсманскийПалиПапьяментоПенджабскийПерсидскийПольскийПортугальскийРумынский, МолдавскийСанскритСеверносаамскийСербскийСефардскийСилезскийСловацкийСловенскийСуахилиТагальскийТаджикскийТайскийТатарскийТвиТибетскийТофаларскийТувинскийТурецкийТуркменскийУдмурдскийУзбекскийУйгурскийУкраинскийУрдуУрумскийФарерскийФинскийФранцузскийХиндиХорватскийЦерковнославянский (Старославянский)ЧеркесскийЧерокиЧеченскийЧешскийЧувашскийШайенскогоШведскийШорскийШумерскийЭвенкийскийЭльзасскийЭрзянскийЭсперантоЭстонскийЮпийскийЯкутскийЯпонский

 

Все языкиРусскийАнглийскийИспанский────────АлтайскийАрабскийАрмянскийБаскскийБашкирскийБелорусскийВенгерскийВепсскийВодскийГреческийДатскийИвритИдишИжорскийИнгушскийИндонезийскийИсландскийИтальянскийКазахскийКарачаевскийКитайскийКорейскийКрымскотатарскийКумыкскийЛатинскийЛатышскийЛитовскийМарийскийМокшанскийМонгольскийНемецкийНидерландскийНорвежскийОсетинскийПерсидскийПольскийПортугальскийСловацкийСловенскийСуахилиТаджикскийТайскийТатарскийТурецкийТуркменскийУдмурдскийУзбекскийУйгурскийУкраинскийУрумскийФинскийФранцузскийЦерковнославянский (Старославянский)ЧеченскийЧешскийЧувашскийШведскийШорскийЭвенкийскийЭрзянскийЭсперантоЭстонскийЯкутскийЯпонский

Непосредственный впрыск.

Непосредственный впрыск GDI — революция на границе тысячелетий.
     Уже более 100 лет на автомобили устанавливают бензиновый и дизельный ДВС. Мы давно к ним приспособились, и хорошо зная их достоинства  и недостатки, применяем тот или иной по обстоятельствам.
     Бензиновый двигатель легко пускается, разгоняется быстро и до высоких оборотов, имеет большую литровую мощность и дешевле стоит. Но любит «покушать», причем недешево. Поэтому мы его чаще видим на легковых и небольших грузовых автомобилях.
     Дизель и сам по себе стоит дороже, и дороже в обслуживании, не столь быстроходен, выдает меньшую мощность с литра рабочего объема, имеет повышенный уровень шума и хуже пускается. Зато, и это главное, потребляет куда меньше топлива, причем более дешевого. Понятно, что практически весь тяжелый и комерческий транспорт «ездит» на дизелях.
     Но лишних денег не бывает, и покупатели легковых автомобилей, причем не только в Европе, все чаще задумываются о том, какой двигатель им предпочесть. И довольно часто выбирают дизель. Хотя еще лучше , если бы два в одном… И быстрый , и тихий, и с легким пуском, и чтобы топливо зимой не застывало, да и мощность повыше не помешает, но вот только бы «ел» поменьше.
     Но чудес не бывает. Есть теория двигателей…

Простыми словами. Чтобы топливо сгорало, нужен воздух. Но надо смешать с воздухом столько топлива, сколько нужно для полного сгорания. Такое количество воздуха называется стехиометрическим, и оно, конечно же , давно известно. Например, для бензина оптимальный состав топливной смеси выражается соотношением 14.7 : 1 то есть на 1 грамм бензина нужно 14.7 грамма воздуха. Смесь в которой воздуха больше, чем нужно, называют «бедной», а там, в которой воздуха меньше, чем нужно, называется «богатой». Слишком бедную смесь не всегда удается поджечь, при работе на богатой смеси несгоревшее топливо бесполезно «вылетает» в трубу и растет выброс угарного газа.
     Но воздух нужен не только для сгорания . Чем выше давление  в цилиндре перед воспламенением смеси, тем больше отдача  двигателя. И нам очень выгодно, чтобы больше воздуха попало в цилиндр на такте впуска; тем больше потом будет давление.
     А теперь разберемся, почему дизель экономичнее.
     Вспомним, как работает двигатель внутреннего сгорания. У бензинового двигателя на такте впуска смесь воздуха и топлива поступает в цилиндр, затем он сжимается и поджигается искрой. У дизеля на такте впуска в цилиндр поступает только воздух, который сжимается поршнем под большим давлением и при этом еще и нагревается. В конце сжатия в цилиндр впрыскивается топливо, которое при высоких давлении и температуре самовоспламеняется. Давление в цилиндре дизеля намного выше, чем в цилиндре бензинового двигателя. Для современного безнаддувного дизеля вполне нормальна степень сжатия 20, а у серийных бензиновых, даже самых «зажатых», едва достигает 11. А выше давление в цилиндре, выше и эффективность. Поднять выше степень сжатия в бензиновом моторе мешают такие явления как детонация и калильное зажигание.

     Детонация — очень быстрое сгорание топлива в точках удаленных от свечи, сопровождается резким местным перегревом и перегрузкой деталей двигателя. Внешний признак детонации — стук, мы слышим , когда например, на «Жигулях» пытаемся резко разогнаться после заправки низкооктановым бензином.
     Калильное зажигание — преждевременное, (до появления искры) воспламенение смеси от перегретых деталей камеры сгорания (например от того же электрода свечи). Длительная работа с детонацией и калильным зажиганием недопустима для двигателя и ведет к его разрушению.
     Детонация и калильное зажигание провоцируют высокая температура и высокое давление. Во избежание детонации моторы с высокой степенью сжатия «кормят» высокооктановым бензином (98). но выше степени 11 и этого «не хватает».
     Теперь посмотрим, что происходит при малых нагрузках. Вот мы убавили газ и поехали медленнее. Что это значит для бензинового мотора? Когда мы отпускаем педаль акселератора, на впуске перекрывается дроссельная заслонка, а это значит, что мы уменьшаем не только количество подаваемого топлива, но и количество воздуха. Меньше воздуха в цилиндре  — меньше давления в конце сжатия.
     А как же бензиновый двигатель с впрыском топлива? Ведь там то можно уменьшить подачу топлива, не уменьшая количество воздуха. Можно, но до определенного предела. Потому, что слишком бедная смесь не будет поджигаться искрой, и чтобы смесь не обеднилась слишком сильно, дроссель все же придется прикрыть, и давление снизится. Меньше давление в цилиндре — меньше момент на выходе.
     А что значит отпустить педаль у дизеля? Это значит, что в цилиндр будет подаваться меньше топлива. Но количество всасываемого воздуха останется прежним, и давление в конце такта впуска не изменится. Да, смесь в цилиндре станет бедной , но дизель благополучно работает и на бедной смеси, ведь там другой принцип воспламенения и другое топливо..
 И дизель остается эффективным и при малых нагрузках.
     Вот, мы и дошли до главного, если мы хотим сделать бензиновый двигатель экономичным, и при этом более мощным, то мы должны избавить его от детонации и научить питаться бедной смесью.

На некалорийной пище. Итак, проблема в том, что искра упорно не желает воспламенять бензовоздушную смесь более бедную, чем 17:1. Но ведь можно заполнить чилиндр более бедной смесью, а непосредственно к свече подавать более богатую,которая загорится. В форкамерном двигателе эта идея и была заложена.  
     Реальных же результатов удалось достичь на моторах с распределенным впрыском топлива: здесь добиваются устойчивой работы на смеси с соотношением 22:1, но сильнее обеднить смесь все равно не удается. Ведь в случае обычного распределенного впрыска смесеобразование внешнее — форсунка впрыскивает бензин во впускной трубопровод. И доставить более богатую часть потока смеси к свече мы можем только за счет направления потока методами аэродинамики, например, определенным образом его завихряя. Вот если бы топливо впрыскивалась непосредственно в цилиндр….
     Бензиновые двигатели с непосредственным впрыском появились довольно давно и применялись в авиации уже в годы Второй Мировой войны. Двигатели для автомобилей тоже разрабатывались, по крайней мере в нашей стране их испытывали уже в конце 40-х. Однако еще долгое время не удавалось справиться с серьезными недостатками непосредственного впрыска, в частности — «дизельным» дымлением на мощностных режимах. Да и мотор получался довольно дорогим, а потому экономически невыгодным. И непосредственным впрыском практически перестали заниматься.
     Но не японцы. На Mitsubishi раньше других осознали, какую пользу может принести непосредственный впрыск в условиях ожесточения экологических норм, а бензин в Японии дешевым никогда не был. 15 лет усилий увенчались успехом, первые доведенные до готовности моторы с непосредственным впрыском бензина были представлены публике на Фракфуртском и Токийском автосалонах осенью 1995 года. Их обозначили GDI (Gasoline Direct Injection — непосредственный впрыск бензина). Спустя год на японском рынке появился серийный Mitsubishi Galant 1.8 GDI и наконец, в 1997 году европейцам была предложена Carusma с двигателем 1.8 GDI.

Как устроен GDI.   Действительно, этот двигатель напоминает по конструкции  обычный бензиновый и дизель. В каждом цилиндре присутствует и свеча зажигания и форсунка, а топливо подается насосом высокого давления под давлением 5 МПа (50 атм). Форсунка обеспечивает два режима впрыска топлива.

     Обратим внимание на следующие особенности . Впускной трубопровод подходит к цилиндру сверху. Это позволяет получить падающий поток воздуха, который после контакта с поршнем разворачивается и устремляется вверх, закручиваясь по часовой стрелке ( такая организация воздушного потока позволяет достичь оптимальныой концентрации топлива непосредственно около свечи). По почти прямому трубопроводу поток движется с очень высокой скоростью, и даже когда поршень достиг нижней мертвой точки, еще некоторое количество воздуха входит по инерции.

     Поршень необычный , сверху есть выемка сферической формы. Форма поршня обеспечивает  три важных функции. Во-первых, позволяет задать воздушному потоку нужное направление движения. Во-вторых, направляет впрыскиваемое топливо непосредственно к свече зажигания, что важно при работе  на предельно бедных смесях. В-третьих, определяет распространение фронта пламени.

Как работает GDI. В работе GDI различают три возможных режима в зависимости от режима движения.
     Работа на сверхбедных смесях. Этот режим используется на малых нагрузках: при спокойной городской езде и загородном движении на скорости до 120 км/час. В этом случае топливо подается в цилиндр практически как в дизеле — в конце такта сжатия. Топливо впрыскивается компактным факелом и смешиваясь с воздухом, направляется сферической выемкой поршня. В результате наиболее обогащенное топливом облако оказывается непосредственно около свечи зажигания и благополучно воспламеняется, поджигая затем бедную смесь. В результате двигатель устойчиво работает даже при общем соотношении воздуха и топлива в цилиндре 40:1.

     Работа на стехиометрической смеси. Этот режим используется при интенсивной городской езде, высокоскоростном загородном движении и обгонах. При стехиометрическом составе смеси с воспламенением никаких проблем не возникает. Но поскольку было бы желательно повысить степень сжатия, то важным становится недопустить детонацию и калильное зажигание. Впрыск топлива осущесвтляется в процессе такта впуска. Топливо впрыскивается коническим факелом, распыляется по всему цилиндру и испаряясь, охлаждает воздух в цилиндре. Благодаря охлаждению снижается поверхность детонации и калильного зажигания.
     И еще один режим реализует система управления GDI. Он позволяет повысить момент двигателя в том случае, когда водитель, двигаясь на малых оборотах, резко нажимает педаль акселератора.
     Когда двигатель работает на малых оборотах, а в него вдруг подается обогащенная смесь, вероятность детонации еще возрастает. Поэтому впрыск осущесвтляется в два этапа. Небольшое количество топлива впрыскивается в цилиндр на такте впуска и охлаждает воздух в цилиндре. При этом цилиндр наполняется сверх бедной смесью (примерно 60:1), в котором детонационные процессы не происходят. Затем, в конце такта сжатия, подается компактная струя топлива, ктоторая доводит соотношение воздуха и топлива в цилиндре до 12:1. А на подготовку детонации времени уже не остается.
     Итак, что в конце концов получается на выходе. Степень сжатия удалось поднять до 12-12.5, улучшилось наполнение воздухом. Двигатель устойчиво работает и на очень бедной смеси. Результат: по сравнению с «обычным» бензиновым двигателем GDI расходует на 10% меньше топлива, выдает на 10% больше мощности и выбрасывает на 20% меньше углекислого газа.

     Но это в Японии. Из-за того, что бензин в Европе содержит больше серы, при подготовке европейской версии мотора, от одного из преимуществ, повышения мощности, пришлось отказаться…
     Но это уже история. Сегодня двигатели с непосредственным впрыском топлива GDI успешно устанавливаются на многих моделях автомобилей разных марок и производителей…

www.gpmar.ru

Распределенный впрыск или непосредственный что лучше?


Дорогие друзья, сегодня узнаем много интересного о впрыске системы питания. И так: распределенный впрыск топлива или непосредственный? Что лучше и чем они отличаются?

Допустим у вас пришло время осуществить вашу мечту и вы серьезно взялись за выбор автомобиля. Дело серьёзное, и если выбор цвета и формы машины даётся довольно легко, то с подбором типа мотора могут возникнуть трудности, особенно у неподготовленных в техническом плане людей.

Если так, тогда вам однозначно следует внимательно прочитать эту статью.

Одноточечный..

ВПРЫСК, который также иногда называют центральным, стал широко применяться на легковых автомобилях в 80-х годах прошлого века. Подобная система питания получила свое название из-за того, что топливо подавалось во впускной коллектор лишь в одной точке.
Многие системы того времени были чисто механическими, электронного управления у них не было. Частенько основой для такой системы питания был обычный карбюратор, из которого просто удаляли все “лишние” элементы и устанавливали в районе его диффузора одну или две форсунки (поэтому центральный впрыск стоил относительно недорого). К примеру, так была устроена система TBI (“Throttle Body Injection”) компании “General Motors”.

Но, несмотря на свою кажущуюся простоту, центральный впрыск обладает очень важным преимуществом по сравнению с карбюратором – он точнее дозирует горючую смесь на всех режимах работы двигателя. Это позволяет избежать провалов в работе мотора, а также увеличивает его мощность и экономичность.

Со временем появление электронных блоков управления позволило сделать центральный впрыск компактнее и надежнее. Его стало легче адаптировать к работе на различных двигателях.

Однако от карбюраторов одноточечный впрыск унаследовал и целый ряд недостатков. К примеру, высокое сопротивление поступающему во впускной коллектор воздуху и плохое распределение топливной смеси по отдельным цилиндрам. Как результат – двигатель с такой системой питания обладает не очень высокими показателями. Поэтому сегодня центральный впрыск практически не встречается.

Кстати, концерн “General Motors” также разработал интересную разновидность центрального впрыска – CPI (“Central Port Injection”). В такой системе одна форсунка распыляла топливо в специальные трубки, которые были выведены во впускной коллектор каждого цилиндра. Это был своего рода прообраз распределенного впрыска. Однако из-за невысокой надежности от использования CPI быстро отказались.

Распределенный

ИЛИ МНОГОТОЧЕЧНЫЙ впрыск топлива – сегодня самая распро¬страненная система питания двигателей на современных автомобилях. От предыдуще¬го типа она отличается прежде всего тем, что во впускном коллекторе каждого цилиндра стоит индивидуальная форсунка. В определенные моменты времени она впрыскивает необходимую порцию бензина прямо на впускные клапаны “своего” цилиндра.

Многоточечный впрыск бывает параллельным и последовательным. В первом случае в определенный момент времени срабатывают все форсунки, топливо перемешивается с воздухом, и получившаяся смесь ждет открытия впускных клапанов, чтобы попасть в цилиндр. Во втором случае период работы каждого инжектора рассчитывается индивидуально, чтобы бензин подавался за строго определенное время перед открытием клапана. Эффективность такого впрыска выше, поэтому большее распространение получили именно последовательные системы, несмотря на более сложную и дорогую электронную “начинку”. Хотя иногда встречаются и более дешевые комбинированные схемы (форсунки в этом случае срабатывают попарно).

Поначалу системы распределенного впрыска тоже управлялись механически. Но со временем электроника и здесь одержала верх. Ведь, получая и обрабатывая сигналы от множества датчиков, блок управления не только командует исполнительными механизмами, но и может сигнализировать водителю о неисправности. Причем даже в случае поломки электроника переходит на аварийный режим работы, позволяя автомобилю самостоятельно добраться до сервисной станции.

Распределенный впрыск обладает целым рядом достоинств. Помимо приготовления горючей смеси правильного состава для каждого режима работы двигателя такая система вдобавок точнее распределяет ее по цилиндрам и создает минимальное сопротивление проходящему по впускному коллектору воздуху. Это позволяет улучшить многие показатели мотора: мощность, экономичность, экологичность и т.д. Из недостатков многоточечного впрыска можно назвать, пожалуй, лишь только довольно высокую стоимость.

Вывод

Инжектор – современное решение для современного автомобиля. Его работа обеспечивает лучшие показатели расхода, мощности и экологичности машины. Но есть и свои трудности. Ввиду сложности работы, ремонтом и диагностикой неисправностей могут заниматься только представители сервисных центров, обладающие необходимыми оборудованием для проверки. Огромное количество датчиков позволяет вычислять оптимальные дозы подачи топлива и ее смесь, однако, при их неисправности или неправильной настройке, вместо ожидаемой экономии бензина и мощности, можно получить совершенно противоположный результат. Чаще всего в системе выходят из строя датчики. Их стоимость относительная высокая, а продолжительность работы зависит в первую очередь от качества бензина. А топливо может попасться и с примесями, даже на хороших заправках.

Непосредственный..

“Goliath GP700” стал первым серийным автомобилем, двигатель которого получил впрыск топлива.

ВПРЫСК (его еще иногда называют прямым) отличается от предыдущих типов систем питания тем, что в данном случае форсунки подают топливо прямо в цилиндры (минуя впус¬кной коллектор), как у дизельного двигателя.

В принципе такая схема системы питания не нова. Еще в первой половине прошлого века ее использовали на авиационных двигателях (например на советском истребителе “Ла-7”). На легковых машинах прямой впрыск появился чуть позже – в 50-х годах ХХ века сначала на автомобиле “Goliath GP700”, а затем на знаменитом “Mercedes-Benz 300SL”. Однако через некоторое время автопроизводители практически отказались от применения непосредственного впрыска, он остался лишь на гоночных автомобилях.

Дело в том, что головка блока цилиндров у двигателя с прямым впрыском получалась очень сложной и дорогой в производстве. Кроме того, конструкторам долгое время не удавалось добиться стабильной работы системы. Ведь для эффективного смесеобразования при прямом впрыске необходимо, чтобы топливо хорошо распылялось. То есть подавалось в цилиндры под большим давлением. А для этого требовались специальные насосы, способные его обеспечить.. В итоге на первых порах двигатели с такой системой питания получались дорогими и неэкономичными.

Новые разработки

Конструкторы же на достигнутом не останавливаются. Своеобразную доработку прямого впрыска сделали в концерне VAG в силовом агрегате TFSI. У него систему питания объединили с турбокомпрессором.

Интересное решение предложила компания Orbital. Они разработали особую форсунку, которая помимо топлива впрыскивает в цилиндры еще и сжатый воздух, подающийся от дополнительного компрессора. Такая топливовоздушная смесь обладает отличной воспламеняемостью и хорошо сгорает. Но это пока только разработка и найдет ли она применение на авто, пока неизвестно.

В целом же, непосредственный впрыск сейчас является самой лучшей системой питания в плане экономичности и экологичности, хоть и имеются у нее свои недостатки.

Прямой впрыск топлива – хорошо или плохо?

Двигатели с непосредственным впрыском (также используется термин «прямой впрыск», или GDI) начали появляться на автомобилях не так давно. Однако технология набирает популярность и все чаще встречается на моторах новых автомобилей. Сегодня мы в общих чертах постараемся ответить, что такое технология непосредственного впрыска и стоит ли ее опасаться?

Для начала стоит отметить, что главной отличительной особенностью технологии является расположение форсунок, которые размещены непосредственно в головке блока цилиндров, соответственно, и впрыск под огромным давлением происходит напрямую в цилиндры, в отличие от давно зарекомендовавшей себя с лучшей стороны системы впрыска горючего во впускной коллектор.

Прямой впрыск впервые был испытан в серийном производстве японским автопроизводителем Mitsubishi. Эксплуатация показала, что среди плюсов главными преимуществами стали экономичность – от 10% до 20%, мощность – плюс 5% и экологичность. Основной минус – форсунки крайне требовательны к качеству топлива.

Стоит также отметить, что схожая система уже долгие десятилетия успешно устанавливается на дизельные двигатели. Однако именно на бензиновых моторах применение технологии было сопряжено с рядом трудностей, которые до сих пор не были окончательно решены.

В видео с YouTube-канала «Savagegeese» объясняется, что такое прямой впрыск и что может пойти не так в ходе эксплуатации автомобиля с данной системой. В дополнение к главным плюсам и минусам в видеоролике также объясняются тонкости профилактического обслуживания системы. Кроме того, в ролике затрагивается тема систем впрыска во впускные каналы, которые можно в изобилии наблюдать на более старых моторах, а также моторы, которые используют оба метода впрыска горючего. Наглядно используя диаграммы Bosch, ведущий объясняет, как все это работает.

Чтоб узнать все нюансы, предлагаем посмотреть видео ниже (включение перевода субтитров поможет разобраться, если вы не очень хорошо знаете английский). Для тех, кому не слишком интересно смотреть, об основных плюсах и минусах непосредственного впрыска бензина можно прочитать ниже, после видео:

Итак, экологичность и экономичность – благие цели, но вот чем чревато использование современной технологии в вашем автомобиле:

Другой вариант классификации

Система может быть нескольких видов и вариантов.

  • Одновременная комбинация – с практической точки зрения встречается редко. За один оборот все форсунки в ней срабатывают в одновременном порядке.
  • Параллельная работа (попарно) – в течение одного оборота вала происходит парное срабатывание форсунок, по одному разу за оборот.
  • Фазированная, последовательная – когда за выполнение валом одного оборота происходит отдельное регулирование любой из форсунок. При этом открытие элемента осуществляется 1 раз перед впуском.

Независимо от варианта классификации все механизмы имеют различия по ряду параметров, учитываемых в ходе эксплуатации.

Как работает непосредственный впрыск и так ли он хорош

Дифирамбов прямому впрыску достаточно написано в рекламных материалах. А мы попробуем говорить относительно беспристрастно.

Что такое непосредственный впрыск

Это такое устройство топливной системы, при котором бензин впрыскивается форсункой прямо в цилиндр. Этим он отличается от впрыска “обыкновенного” – когда форсунка впрыскивает топливо во впускной коллектор.

Называть эту систему инновационной, пожалуй, уже поздновато – она была реализована на многих самолетах времен Великой Отечественной войны. Так, например, она была применена на истребителе Ла-5ФН.

А вот на автомобилях относительно массовой она стала уже в конце двадцатого-начале двадцать первого века, примерно с появлением электронного управления двигателем. Это в первую очередь была фирма Mitsubishi с системой, которую они назвали GDI. Потом за ними потянулись и другие японские марки – так, например, можно назвать Toyota с двигателем D-4. Потом все это как-то притихло, и вот начавшее падать знамя непосредственного впрыска подхватил концерн VAG, да так, что по этой узкой тропинке между экономией на топливе и экономией на стоимости компонентов двигателя ломанусь и многие другие автопроизводители.

Для чего все это затевалось

Как бы ни кипел и бушевал внутренний инженер внутри любого сотрудника автомобильной компании, разработка большинства тех систем, что мы видим в современных автомобилях, вызвана была отнюдь не желанием сделать самый высокотехнологичный продукт. Нет, как правило, толчком всех инноваций в системах, управляющих формированием смеси, служат экологические нормы. Широким росчерком пера регулирующие органы вводят новые нормы. После этого (а как правило, несколько раньше) автопроизводители внедряют новые системы, позволяющие этим нормам удовлетворять.

Нам сложно сейчас судить о том, какая мотивация была у фирмы Mitsubishi, но исходя из общих тенденций – как минимум, очень схожая.

Главной особенностью (“киллер-фичей”, если задействовать сленг из другой профессиональной области) технологии GDI позиционировалась возможность работы на сверхбедных смесях. Здесь сразу надо сделать отступление и рассмотреть обычный режим работы двигателя.

На такте впуска поршень в цилиндре идет вниз, открывается впускной клапан, а форсунка “брызгает” топливом. Порцию топлива вместе с воздухом засасывает в цилиндр создаваемым разрежением. Попутно из-за турбулентности и тому подобных эффектов топливо перемешивается с воздухом, и продолжает это делать на такте сжатия, когда впускной клапан закрыт, а цилиндр идет вверх. Таким образом, к моменту достижения верхней мертвой точки в цилиндре оказывается сжатая равномерная смесь. Причем количество топлива, впрыснутое форсункой, рассчитывается так, чтобы его соотношение к воздуху составляло 1:14,7 (или немного беднее/богаче в зависимости от требуемого режима работы двигателя) – такая смесь называется стехиометрической, и горит лучше всего.

Распределенный или непосредственный впрыск — Блог компании Pitstore

Еще лет 30 назад моновпрыск топлива вместе с карбюратором присутствовал на подавляющем большинстве автомобилей. Сегодня же эта технология безнадежно устарела и встречается только в старых машинах, остался только распределенный и непосредственный вброс.

Распределенный топливный впрыск

Второе название данного типа – многоточечный. По сути, это современный инжектор, который ставится на большинство нынешних моделей машин, состоит из топливного насоса на электронике, топливной рампы и собственно самого инжектора. Существует три типа распределенного метода впрыска:

  • одновременный. Очень непрактичный, затратный по бензину и вредный для экологии метод, поскольку впрыск идет одновременно во все цилиндры независимо от текущего такта в нем;
  • параллельно-попарный. Топливо поступает только туда, где идет сжатие в данный момент;
  • фазированный тип. Здесь впрыск идет в каждую форсунку по отдельности, непосредственно перед впуском.

Из плюсов – относительно простая конструкция, доступность, лояльность к невысокому качеству топлива. Из недостатков – меньшая мощность и больший расход топлива в сравнении с альтернативным впрыском.

Непосредственный впрыск топлива

Во многом схожий с фазированным типом впрыска, когда каждая форсунка управляется автономно. Отличие в том, что каждая форсунка непосредственно соединена с двигательным блоком, и подача топлива происходит именно туда. Воздух также подается непосредственно в блок камеры сгорания, смешивание происходит непосредственно в камере двигателя, а не во входящем впускном коллекторе.

Из достоинств такого метода впрыска – экономичность топлива, большая в сравнении с распределенным впрыском мощность, меньшая токсичность. Из недостатков – сложность конструкции, дорогой ремонт и обслуживание, высокие требования к качеству топлива.

Какой метод впрыска лучше

Каждый из методов впрыска имеет свои собственные достоинства. Например, распределенный впрыск не требует применения только очень чистого высокооктанового топлива, форсунки меньше забиваются, конструкция простая, что означает доступную цену ремонта и обслуживания системы впрыска. Именно поэтому форсунки с таким впрыском ставят на большинство современных машин, не предназначенных для больших скоростей ил суперэкономии топлива.

Непосредственный впрыск более капризный, его конструкция сложнее. Зато машина с таким впрыском едет быстрее, потребляет меньше топлива, а в выхлопе несожженного бензина куда меньше. Это хороший вариант для спортивной машины, где скорость реакции имеет решающее значение. Если можете себе позволить его купить и обслуживать, то он вам понравится.

В магазине «Питстор» вы сможете найти масло, которое обеспечит надежную работу любого типа двигателя, а также трансмисии и прочих важных узлов. Также у нас в продаже есть автохимия для ухода за машиной, множество аксессуаров и прочие полезные товары. Загляните в каталог – и точно найдете отличные товары для своей любимой машины!

Может ли прямой впрыск причинить вред вашей машине?

С каждым модельным годом производители автомобилей пытаются добавить навороты, чтобы побудить потребителей покупать их автомобили. В последние годы одна из инноваций, которая стала популярной и преподносится как роскошная особенность, — это технология, называемая прямым впрыском. Если вы похожи на многих покупателей автомобилей, вы, вероятно, считаете, что любое новшество в автомобильной технике — это хорошо. Однако иногда новые технологии имеют непреднамеренные негативные последствия. Появляется все больше свидетельств того, что прямой впрыск может быть примером такой технологии.Итак, прямой впрыск помогает или вредит вашей машине? Это зависит от того, насколько тщательно вы ухаживаете за своей машиной.

Как работает прямой впрыск?

Всем известно, что автомобилям для работы нужен бензин. Система впрыска топлива вашего автомобиля отвечает за подачу топлива к вашему двигателю. Существует два типа систем впрыска: одиночный / многоточечный впрыск и прямой впрыск.

Системы одинарного / многоточечного впрыска подают газ во впускной коллектор вашего автомобиля, который затем подает топливо в двигатель.Там двигатель всасывает газ в свои цилиндры. С другой стороны, прямой впрыск распыляет поток топлива под высоким давлением непосредственно в камеру сгорания каждого цилиндра двигателя.

Плюсы и минусы прямого впрыска

Новая технология прямого впрыска была создана для более эффективного использования топлива. Поскольку прямой впрыск обеспечивает концентрированное количество газа, расходуется меньше топлива, что экономит деньги на насосе и благоприятно сказывается на окружающей среде. Но есть и обратная сторона.Побочным эффектом этого потока топлива под высоким давлением является чрезмерное разбрызгивание на впускной клапан и порты. Как только этот избыточный спрей нагреется, он станет густым и липким. Это накопление становится более выраженным с каждой милей, которую вы проезжаете. Подобно тому, как налет может накапливаться в ваших артериях, уменьшать приток крови к вашему сердцу и приводить к сердечному приступу, накопление углерода на впускных клапанах вашего автомобиля снижает подачу топлива в двигатель и может привести к отказу. Самый большой недостаток прямого впрыска топлива — это то, что DI может привести к засорению топливных систем и увеличению количества углерода в двигателе.

К сожалению, присадки к топливу не помогают

В то время как в вашем местном магазине автозапчастей продаются присадки к топливу, которые обещают очистить детали двигателя, эти присадки неэффективны для очистки от нагара, образовавшегося в результате прямого впрыска. Причина проста: мусор, оставшийся от прямого впрыска, находится на ваших впускных клапанах. Топливные присадки не попадают во впускной клапан.

Регулярное обслуживание крайне важно, чтобы избежать дорогостоящего ремонта топливной системы

Что вы можете сделать, чтобы защитить свой двигатель, если у вас есть система DI? Единственное решение — поручить профессиональному специалисту удалить нагар, прежде чем он станет причиной дорогостоящих повреждений.Это не то, что вы можете сделать дома, потому что это требует разборки двигателя вашего автомобиля и тщательной очистки остатков абразивным чистящим материалом. Если вы не знаете, какой тип системы впрыска установлен в вашем автомобиле, или если вам необходимо произвести чистку, свяжитесь с нами в отделе продаж и обслуживания автомобилей Deboer. Не упускайте из виду эту потенциальную проблему. Со временем приведет к засорению топливной системы, остановке двигателя, потере мощности и необходимости дорогостоящего ремонта. Именно поэтому обслуживание топливной системы так важно, .

Что такое GDI / FSI / CGI / SIDI / Direct Injection? — AutoPortal

В технологии впрыска топлива и системы подачи топлива автомобилей произошло много инноваций. В дизелях системы непосредственного впрыска используются издавна, а в бензиновых — только сейчас. Вы не найдете сейчас машину с карбюратором, так что же в ней? Он использует систему прямого впрыска, как у дизеля. Так что же такое система прямого впрыска? Подробнее об этом мы поговорим в этой статье.

Что такое GDI по сути?

Еще несколько лет назад в бензиновых двигателях для распыления топлива использовался карбюратор. Он работал хорошо до того, как были введены строгие стандарты выбросов, и двигатель обычно работал на богатой смеси и не имел большой экономии топлива. В случае GDI топливо впрыскивается непосредственно в цилиндр, и его можно точно контролировать в зависимости от качества воздуха, нагрузки двигателя и других параметров, это обеспечивает лучший контроль над загрязнителями и лучшую экономию топлива. Итак, по сути GDI — это способ доставки топлива.

Что означает аббревиатура GDI / FSI / SIDI?

GDI — Прямой впрыск бензина

FSI — Послойный впрыск топлива

SIDI — Прямой впрыск с искровым зажиганием

CGI — Впрыск бензина с наддувом

Прямой впрыск такой же, как у MPFI (Multi- пункт Топливный впрыск)? №

Нет. MPFI можно считать технологией последнего поколения, предлагающей довольно точный контроль над впрыском топлива, но не такой, как в случае GDI.В случае системы MPFI топливо впрыскивается во впускной коллектор под низким давлением. В то время как в случае GDI топливо впрыскивается непосредственно в камеру сгорания и под гораздо более высоким давлением.

GDI работают точно так же, как MPFI, с той разницей, что топливо впрыскивается во время впуска воздуха прямо в цилиндр. Смесь подготавливается в цилиндре и зажигается свечой зажигания после такта сжатия. В системе GDI используются сильные форсунки, которые могут впрыскивать при гораздо более высоком давлении, но они могут делать это только во время такта впуска, в отличие от системы MPFI, которая может делать это даже во время такта сжатия на задней части впускного клапана, это становится все более важным, поскольку увеличиваются обороты двигателя.Форсунки, используемые в случае GDI, в наши дни очень эффективны и могут без проблем впрыскивать с высокой точностью даже на высоких скоростях в течение всего такта впуска.

В отличие от бензинового двигателя с системой MPFI, в которой скорость регулируется с помощью корпуса дроссельной заслонки с дроссельной заслонкой, в случае GDI скорость двигателя регулируется с помощью впрыска топлива и момента зажигания, который контролируется ЭБУ. Это помогает снизить насосные потери.

Как GDI / FSI влияет на характеристики автомобиля?

Прямым преимуществом прямого впрыска бензина является резкий скачок в показателях эффективности использования топлива.Другой — снижение уровня загрязнителей. Это не сильно влияет на цифры 0-100, но поскольку двигатель может работать в трех разных режимах благодаря точной настройке, это делает его очень динамичным. При низких нагрузках двигатель может работать на обедненной смеси (стратифицированный заряд), а в случае умеренных нагрузок он может использовать стехиометрическую смесь. В сложных ситуациях, таких как подъем на холм и ускорение, он может сжигать даже богатую смесь. Самым большим преимуществом GDI является то, что топливо можно впрыскивать несколько раз в течение одного цикла.

Какие производители используют эти технологии?

MPFI по-прежнему остается популярным выбором среди производителей, поскольку предлагает хороший контроль над впрыском топлива. Однако многие производители также используют технологию прямого впрыска под разными названиями.

GDI — Mitsubishi, Honda, Hyundai

CGI — Mercedes-Benz

FSI — Volkswagen, AUDI

SIDI — General Motors

Прочтите статьи, нажав здесь!

Что такое многоточечная система впрыска топлива (MPFI)?

В то время как большинство автомобилей до середины 90-х годов имели карбюратор, каждый автомобиль, который продается сегодня, независимо от его цены, оснащен системой многоточечного впрыска топлива (MPFI).

Многоточечный впрыск топлива или система MPFI не является новой технологией даже по стандартам индийского рынка.Именно в конце 90-х годов здесь поступили в продажу первые автомобили MPFI для массового рынка, и со временем, когда нормы выбросов стали более строгими, и автопроизводители начали уделять больше внимания повышению эффективности своих автомобилей, каждый автомобиль, доступный в рынок начал приходить с этой системой.

Также прочтите: Как избежать появления слепых пятен и несчастных случаев со слепыми пятнами?

Система многоточечного впрыска топлива — это способ впрыска топлива в двигатель внутреннего сгорания через несколько портов, расположенных на впускном клапане каждого цилиндра двигателя.Эти порты работают вместе, чтобы подавать оптимальное количество топлива в каждый цилиндр в нужное время. Всего существует три разновидности модулей MPFI — пакетный, одновременный и последовательный.

В первом типе системы многоточечного впрыска топливо подается в цилиндры портами порциями без совмещения их хода впуска. В системах одновременного MPFI топливо выпускается во все цилиндры двигателя одновременно, в то время как в последовательном типе выпуск топлива происходит одновременно с тактом впуска для каждого цилиндра двигателя.

Также читайте: покупка автомобиля в Интернете по сравнению с дилерским центром

Любая система многоточечного впрыска топлива состоит из одного и того же набора основных компонентов, который включает регулятор давления топлива, топливные форсунки, нажимную пружину и регулирующую диафрагму. Как мы уже говорили, система впрыска использует несколько форсунок для подачи топлива в каждый цилиндр. Это делается через впускной канал, расположенный к северу от впускного клапана. Регулятор давления топлива системы MPFI работает в тандеме с топливной рампой через впуск и выпуск.Его задача — управлять потоком топлива, в то время как регулирующая диафрагма и нажимная пружина регулируют открытие выпускного клапана и даже количество топлива, которое может быть возвращено. Давление во впускном коллекторе двигателя значительно меняется в зависимости от скорости и нагрузки двигателя.

Также читайте: Как продлить срок службы автомобиля — Советы по увеличению срока службы автомобиля

Преимущества системы MPFI

Многоточечная система впрыска топлива дает много преимуществ перед карбюраторной.То же самое было указано ниже —

Повышение эффективности использования топлива — Эти системы используют несколько топливных форсунок для каждого цилиндра, которые выпускают топливо в отмеренных количествах, тем самым снижая потери топлива. Это, в свою очередь, увеличивает топливную эффективность и помогает владельцу автомобиля за счет снижения затрат на техническое обслуживание.

Низкие выбросы углерода — Поскольку автомобили с системами MPFI извлекают выгоду из оптимального выброса и сжигания топлива, они имеют более низкий уровень выбросов углерода, чем аналогичные автомобили с карбюраторной установкой.Это в огромной степени снижает загрязнение, вызываемое выхлопными газами транспортных средств, что, в свою очередь, имеет огромные преимущества для человечества.

Также читайте: Как выбрать лучшее моторное масло для автомобиля?

Улучшение характеристик двигателя — Система MPFI обеспечивает улучшенную производительность двигателя, поскольку она подает точно необходимое количество топлива, что приводит к оптимальному соотношению воздух-топливо и эффективному сгоранию. Это достигается за счет улучшения распределения топлива между цилиндрами.Точное распределение топлива по каждому цилиндру также помогает улучшить реакцию двигателя на резкие нажатия на педаль газа.

Улучшение усовершенствования двигателя — Система MPFI также приводит к улучшению уровней детализации, предлагаемых двигателем, поскольку системы многоточечного впрыска топлива, как правило, имеют меньшие вибрации, и у них даже меньше проблем с холодным запуском благодаря улучшенному сгоранию. Более эффективное сгорание также приводит к повышению надежности двигателя.

Планируете приобрести подержанный автомобиль? В таком случае мы в CARS24 можем не только предоставить вам широкий выбор подержанных автомобилей Ford на выбор, но и разобраться со всей документацией, включая передачу RC, совершенно бесплатно. Более того, вы также можете использовать наш бесплатный калькулятор стоимости подержанного автомобиля, чтобы узнать точную стоимость любого автомобиля, выставленного на продажу в стране.

Многоточечный впрыск топлива или система MPFI — рабочая, преимущества

В этой статье мы увидим работу многоточечной системы впрыска топлива (MPFI), использование, преимущества и недостатки | pdf, ppt, отчет семинара по системе MPFI.

Введение:

Несмотря на быстрое развитие карбюраторов, которые являются дешевыми и эффективными, автомобильная промышленность предпочитает использовать систему впрыска бензина с искровым зажиганием (двигатели S I). Кроме того, у системы впрыска бензина должны быть некоторые преимущества перед карбюраторной системой, которые мы увидим в конце этой статьи.

В двигателях S I используются различные типы систем впрыска бензина, и одна из них — многоточечная система впрыска топлива или система MPFI.В этой статье мы узнаем о компонентах, использовании и работе системы многоточечного впрыска топлива.

Подробнее о работе простого карбюратора

Если вы сравните систему MPFI / двигатель MPFI с одноточечным впрыском топлива, одноточечный впрыск топлива имеет только одну расположенную в центре топливную форсунку, которая подает топливо во все цилиндры, но в системе многоточечного впрыска топлива каждый цилиндр имеет отдельное топливо инжектор, подающий топливо из топливного бака в цилиндры.

Схема системы MPFI

Схема многоточечной системы впрыска топлива (MPFI)

Почему многоточечная система впрыска топлива (MPFI):

Многоточечная система впрыска топлива, также известная как система MPFI, изначально разрабатывалась только для двигателей самолетов. В настоящее время он широко используется в легких коммерческих автомобилях. Система MPFI — самая передовая система впрыска бензина, имеющаяся в автомобильной промышленности.

Система

MPFI не является отдельной механической системой.Это идеальное сочетание электроники, механики, компьютеров и электротехники, делающих эту систему более совершенной.

Студенты университетов широко выбирают эту тему для проведения семинаров в своих колледжах. Эта статья обязательно поможет им подготовить отчет о семинаре по многоточечной системе впрыска топлива (MPFI).

Прочтите о работе системы CRDI

Компоненты многоточечной системы впрыска топлива (MPFI):

В системе MPFI используются следующие компоненты:

  1. Механический соленоид форсунки
  2. Электронный блок управления (ЭБУ) — контролирует угол опережения зажигания и качество топлива.
  3. Электронные датчики для контроля различных выходных данных, таких как температура выхлопных газов, температура охлаждающей жидкости, скорость и положение дроссельной заслонки.
  4. Воздушные фильтры для удаления твердых частиц из атмосферного воздуха.

Работа системы MPFI:

  1. В системе MPFI топливный насос, приводимый в действие электродвигателем, используется для распыления топлива во впускной коллектор двигателя.
  2. Этот метод помогает обеспечить точное соотношение воздух-топливо во всех рабочих условиях.
  3. Давление всасывания двигателя используется для распыления топлива в цилиндры (в карбюраторах вакуум используется для подачи топлива).
  4. Как показано на рисунке, вы можете видеть, что одна форсунка расположена на впускном отверстии разных цилиндров.
  5. С помощью электрического топливного насоса топливо из топливного бака подается в каждую топливную форсунку в равной степени.
  6. Процесс впрыска топлива происходит одновременно в каждую форсунку один раз за каждый оборот.

Классификация системы MPFI:

Система

MPFI подразделяется на системы следующим образом:

1.Система D-MPFI:
D-MPFI — это коллекторная система впрыска топлива.

2. Система L-MPFI:
L-MPFI — это система впрыска топлива через порт.

Преимущества системы MPFI:

  • Мощность, вырабатываемая двигателем, превышает мощность системы карбюратора.
  • Из-за точной смеси воздух-топливо, подаваемой в каждый цилиндр, разница между мощностью, генерируемой в каждом цилиндре, незначительна.
  • Вибрация двигателя у двигателей, оборудованных MPFI, очень меньше, следовательно, срок службы двигателей, оборудованных системой MPFI, высок.
  • Эта система очень быстро реагирует на резкое ускорение или замедление.
  • Снижение расхода топлива ведет к увеличению пробега.
  • Объемный КПД MPFI высокий.

Прочтите о тесте на дистилляцию ASTM

Недостатки системы MPFI:

  • Система сложная, следовательно, дорогостоящая.
  • Требуется больше места.

Система многоточечного впрыска топлива (MPFI) используется в большинстве современных легковых автомобилей, доступных на рынке.Первым автомобилем, оснащенным двигателем MPFI, является Daewoo Matiz.

Схема Daewoo Matiz MPFI

Out Загрузки:

Загрузите ppt системы MPFI отсюда.

Загрузите pdf-файл системы MPFI отсюда.

Если у вас есть какие-либо вопросы или предложения относительно этой статьи о системе MPFI, не стесняйтесь помещать их в поле для комментариев ниже.

видов впрыска топлива | 1A Auto

Сравнение впрыска корпуса дроссельной заслонки и многопортового впрыскаПрямой впрыск

Проще говоря, ваш двигатель сжигает смесь топлива и воздуха внутри своих цилиндров, чтобы перемещать поршни, которые создают движение вперед или назад, которое в конечном итоге передается на колеса. Как топливо попадает в цилиндры, когда оно попадает и как топливо используется, — вот некоторые из наиболее важных факторов, определяющих мощность и эффективность вашего двигателя.

В более старых двигателях для дозирования топлива в двигатель использовался карбюратор. В карбюраторных двигателях поступающий во впускной патрубок воздух будет создавать вакуум, который вытягивает топливо из трубки в карбюраторе, называемой трубкой Вентури.Эта система была относительно простой и удобной в работе, и она была успешной в течение многих лет. В конце концов, впрыск топлива оказался более эффективным. Двигатели с впрыском топлива могут производить больше мощности, потреблять меньше топлива и легче соответствовать все более строгим стандартам выбросов. Сегодня во всех новых автомобилях используется система впрыска топлива.

Со временем были разработаны различные методы впрыска топлива в двигатель. Их можно разделить на категории в зависимости от места добавления топлива.Со временем точка впрыска сдвигалась все ближе и ближе к самим цилиндрам. Три основных типа впрыска топлива известны как впрыск дроссельной заслонки, многоточечный впрыск и прямой впрыск. Мы проведем вас по трем типам, объясним, как работает каждый, и опишем преимущества и недостатки каждого типа.

Система впрыска дроссельной заслонки

Впрыск дроссельной заслонки (TBI), также называемый одноточечным впрыском, был первым типом впрыска топлива, широко использовавшимся в автомобилях.Он работал очень похоже на карбюратор в том смысле, что дозировал топливо в переднюю часть впускного коллектора за корпусом дроссельной заслонки. Топливо и воздух смешиваются во впускном коллекторе и втягиваются в цилиндры за счет всасывания, производимого во время такта впуска каждого цилиндра.

Впрыск дроссельной заслонки был большим улучшением по сравнению с карбюратором. Бортовой компьютер транспортного средства, блок управления двигателем (ЭБУ), мог контролировать количество дозированного топлива и время подачи топлива.Это делает TBI более эффективным, чем карбюрация, в более широком диапазоне рабочих условий.

Однако у TBI были определенные общие проблемы с карбюрацией. Во-первых, поскольку топливо должно проходить относительно большое расстояние к цилиндрам, оно может конденсироваться и скапливаться во впускном коллекторе. Цилиндры, расположенные ближе к корпусу дроссельной заслонки, также могут получать более богатую смесь топлива и воздуха по сравнению с цилиндрами, находящимися дальше, которые получают более бедную смесь.

Хотя у TBI было то преимущество, что он был простым, имея только один, а иногда и два инжектора, в конечном итоге от него отказались в пользу многопортового впрыска.


Многопортовый впрыск

Многоточечный впрыск (иногда называемый многоточечным впрыском) использует отдельные форсунки для распыления топлива в каждый цилиндр. Форсунки устанавливаются во впускные каналы, сразу за впускным клапаном каждого цилиндра. Используются два типа впрыска через центральный порт и последовательный многопортовый впрыск.

При впрыске через центральный канал центральный топливный блок направляет топливо по ряду ветвей, которые заканчиваются тарельчатыми клапанами.Внешний вид этого типа инжектора побудил некоторых людей называть его инжектором-пауком. Все клапаны выпускают топливо одновременно, что означает, что часть топлива остается в ожидании следующего такта впуска. Это дает топливу возможность конденсироваться, а значит, оно не так легко воспламеняется.

Последовательный впрыск топлива решает эту проблему, поскольку каждый клапан форсунки открывается одновременно с соответствующим впускным клапаном. ЭБУ управляет синхронизацией форсунок так же, как и моментом зажигания.

Впрыск через центральный порт более эффективен, чем TBI, и последовательный многопортовый впрыск также более эффективен. Каждая из этих систем, хотя и более сложная, с большим количеством движущихся частей, что усложняет работу над ними и увеличивает их стоимость. При этом последовательный многоточечный впрыск является сегодня наиболее распространенной системой дозирования топлива в автомобилях с бензиновым двигателем.

Прямой впрыск

В системах с прямым впрыском топливо впрыскивается непосредственно в цилиндр.Это обеспечивает наилучшее сочетание топлива и воздуха. Прямой впрыск использовался в дизельных двигателях с 1920-х годов и в бензиновых авиационных двигателях примерно со времен Второй мировой войны, но в последнее время он широко применяется только в автомобилях с бензиновым двигателем. Производители автомобилей с высокими характеристиками, такие как Audi и BMW, обнаружили, что более эффективное сгорание при непосредственном впрыске бензина (GDI) помогает производить более мощные двигатели. Некоторые автопроизводители также начали использовать GDI, чтобы двигатели использовали меньше газа. В двигателях GM Ecotec и Ford Ecoboost используется GDI.

Двигатели GDI могут использовать очень бедную топливно-воздушную смесь, когда двигатель находится под небольшой нагрузкой. Это помогает экономить газ, но создает выбросы закиси азота. Двигатели GDI полагаются на рециркуляцию выхлопных газов и специально разработанные каталитические нейтрализаторы для очистки этих выбросов. Системам GDI также нужны более прочные форсунки. Форсунки подвергаются воздействию тепла и давления камеры сгорания, и форсунка должна распыляться против высокого давления камеры сгорания. В то время как обычные топливные форсунки распыляют бензин со скоростью от 40 до 60 фунтов на квадратный дюйм, прямые форсунки должны распылять топливо под давлением в тысячи фунтов на квадратный дюйм.

Таким образом, хотя прямой впрыск является лучшим вариантом с точки зрения мощности и эффективности, это также самая сложная и дорогая система.

По мере развития технологий производство двигателей с прямым впрыском может упроститься, но на данный момент последовательный многоточечный впрыск остается наиболее распространенной системой впрыска топлива в автомобилях. Он обеспечивает оптимальное сочетание эффективности и доступности для большинства приложений.


Система многоточечного впрыска топлива (MPFI)

Что такое система многоточечного впрыска топлива (MPFI)?

Многоточечный впрыск топлива (MPFI) — это метод впрыска топлива в бензиновых (или бензиновых) двигателях.

Примечание: Бензиновые (или бензиновые) двигатели иногда также называют двигателями с искровым зажиганием (SI).

Обычно бензиновый двигатель использует карбюратор для смешивания воздуха и топлива, но он плохо реагирует на ускорение и замедление. Еще одна большая проблема карбюратора — повышенные выбросы.

В MPFI топливо впрыскивается непосредственно в цилиндр с помощью нескольких топливных форсунок. Эти топливные форсунки помогают впрыскивать точное количество топлива в камеру сгорания.

Эти топливные форсунки также обеспечивают лучшее распыление и завихрение топлива в камере сгорания.

Типы систем многоточечного впрыска топлива (MPFI)

Существует три основных типа систем MPFI.

  1. Система последовательного многоточечного впрыска топлива

  2. Система одновременного многоточечного впрыска топлива

  3. Система периодического многоточечного впрыска топлива

В последовательной системе MPFI впрыск синхронизируется с тактом впуска каждого цилиндра.

В системе одновременного MPFI топливо подается во все цилиндры одновременно.

В дозированной системе MPFI топливо впрыскивается в цилиндры без совмещения их хода впуска.

Преимущества системы многоточечного впрыска топлива (MPFI)
  • Повышает топливную экономичность двигателя
  • Автомобиль с системой MPFI имеет меньше выбросов
  • Лучшее распыление топлива
  • Он способствует лучшему использованию и распределению топлива в двигателе
  • Плавная работа двигателя
  • Уменьшает разницу в мощности, производимой каждым цилиндром
  • Лучшее ускорение и замедление двигателя
  • В повышает долговечность и функциональность двигателя
  • Надежно
  • Улучшает характеристики холодного пуска двигателя
  • Снижает вибрацию двигателя

Недостатки системы многоточечного впрыска топлива (MPFI)
  • Иногда возможны пропуски зажигания
  • Требуется регулярный осмотр топливных форсунок
  • Дороже по сравнению с обычными системами

Ниже приведены некоторые часто задаваемые вопросы, касающиеся систем многоточечного впрыска топлива (MPFI).

Где используется MPFI?

Системы многоточечного впрыска топлива (MPFI) используются в бензиновых (или бензиновых) двигателях для впрыска топлива.

Какова функция MPFI?

Функция системы многоточечного впрыска топлива (MPFI) заключается в впрыске топлива внутрь цилиндра из разных точек для лучшего распыления.

Что означает MPFI?

MPFI — это краткая форма многоточечного впрыска топлива.

Также читайте:

Каковы области применения дизельных двигателей?

Какие недостатки у двухтактных двигателей?

Каковы области применения двигателей внутреннего сгорания?

Какие бывают системы охлаждения двигателя?

Атрибуция избранного изображения: Атрибуция изображения: Автор: Flickr user storem — https://www.flickr.com/photos/storem/205955486/in/photostream, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=6724795

Артикул:

Типы систем MPFI: https://www.cartrade.com/blog/2015/car-automobile-technology/multi-point-fuel-injection-mpfi-1317.html

Что означает «стиль впрыска»?


Корпус дроссельной заслонки в сравнении с многопортовым и прямым впрыском

Каждая система впрыска топлива будет иметь дроссельную заслонку с дроссельной заслонкой. Это контролирует воздушный поток.У них также будет одна или несколько топливных форсунок для подачи топлива. Что отличает их:

  • Где расположены топливные форсунки.
  • Как зажигаются топливные форсунки.

Система впрыска дроссельной заслонки (TBI)

Throttle Body Injection выглядит как карбюратор. Обычно бывает от одной до четырех форсунок. Некоторые настройки производительности могут иметь до восьми. TBI — самый экономичный способ перейти на систему впрыска топлива.

  • Топливные форсунки установлены в корпусе дроссельной заслонки.
  • Форсунки запускаются быстрыми импульсами, которые меняются в зависимости от числа оборотов двигателя.

Как и карбюратор, в цилиндры, наиболее удаленные от центра впускного коллектора, будет поступать немного меньше топлива. Охлаждающий эффект воздушно-топливной смеси, проходящей через впускное отверстие, может вызвать скопление топлива в коллекторе.

Многопортовый впрыск (MPI)

При многопортовом впрыске через корпус дроссельной заслонки проходит только воздух. Обычно на каждый цилиндр приходится по одной форсунке.В некоторых установках производительности будет два инжектора на цилиндр.

  • Топливные форсунки находятся во впускном коллекторе рядом с впускными отверстиями.
  • Форсунки срабатывают одновременно во время такта впуска. Это называется «групповым огнем».

С MPI каждый цилиндр получает одинаковое количество топлива. Лужа топлива в коллекторе устранена.

Последовательный многопортовый впрыск

Последовательный многопортовый впрыск — это модернизация многопортового впрыска.Как и в случае с многоточечным впрыском, на цилиндр приходится одна или две форсунки, и только воздух проходит через корпус дроссельной заслонки. Он немного более эффективен и еще больше снижает выбросы.

  • Топливные форсунки находятся во впускном коллекторе рядом с впускными отверстиями.
  • Каждая топливная форсунка запускается сразу после открытия впускного клапана (последовательно).

Последовательный впрыск в основном дает преимущества при работе на низких оборотах. По мере увеличения числа оборотов разница между последовательным и групповым многопортовым впрыском практически не меняется.

Прямой впрыск

Прямой впрыск работает как последовательный многоточечный впрыск, за исключением того, что топливо впрыскивается непосредственно в цилиндр. Он дает огромный выигрыш в сочетании с регулируемыми фазами газораспределения и принудительной индукцией. Из-за стоимости и сложности его обычно можно найти только в качестве оригинального оборудования.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *