Принцип работы генератора: Принцип работы генератора. Как работает генератор тока? Показываем подробно!

Содержание

Принцип работы генератора переменного и постоянного тока

Как известно, при прохождении тока через проводник (катушку) образуется магнитное поле. И, наоборот, при движении проводника вверх-вниз через линии магнитного поля возникает электродвижущая сила. Если движение проводника медленное, то соответственно возникающий электрический ток будет слабым. Значение тока прямо пропорционально напряженности магнитного поля, числу проводников, и соответственно скорости их движения.

Простейший генератор тока состоит из катушки, изготовленной в виде барабана, на которую намотана проволока. Катушка крепится на валу. Барабан с проволочной обмоткой еще называют якорем.

генератор тока

Для снятия тока с катушки, конец каждого провода припаивается к токособирающим щеткам. Эти щетки должны быть полностью изолированы друг от друга.

Электрический мотор

Генератор переменного тока

генератор переменного тока

При вращении якоря вокруг своей оси происходит изменение электродвижущей силы. Когда виток поворачивается на девяносто градусов сила тока максимальная. При следующем повороте падает к значению нуля.

генератор переменного тока

Полный оборот витка в генераторе тока создает период тока или, другими словами, переменный ток.

Генератор постоянного тока

Генератор постоянного тока

Для получения постоянного тока используется переключатель. Он представляет собой разрезанное кольцо на две части, каждая из которых присоединена к разным виткам якоря. При правильной установке половинок кольца и токособирающих щеток, за каждый период изменения силы тока в устройстве, во внешнюю среду будет поступать постоянный ток.

Генератор постоянного тока

Крупный промышленный генератор тока имеет неподвижный якорь, именуемый статором. Внутри статора вращается ротор, создающий магнитное поле.

Обязательно прочитайте статьи про автомобильные генераторы:

В любом автомобиле есть генератор тока, работающий при движении машины для питания электрической энергией аккумулятора, систем зажигания, фар, радиоприемника и т. д. Обмотка возбуждения ротора является источником магнитного поля. Для того чтобы магнитный поток обмотки возбуждения подводился без потерь к обмотке статора, катушки помещают в специальные пазы стальной конструкции.

автомобильный генератор тока

Таким образом, генератор тока является современным устройством, способный преобразовывать энергию механического движения в электрическую.

Оцените качество статьи:

Устройство и принцип работы генератора переменного тока — урок. Физика, 9 класс.

Проведём опыт по получению индукционного тока. Будем вдвигать и выдвигать постоянный магнит в катушку, соединённую с гальванометром.

 

 

Рисунок \(1\). Опыт по получению индукционного тока

 

Можно наблюдать отклонение гальванометра в одну и другую стороны. Это значит, что по катушке течёт индукционный ток, у которого изменяется как модуль, так и направление с течением времени. Такой ток называется переменным током.


Переменный ток создаётся и в замкнутом контуре изменяющимся магнитным потоком, пронизывающим его площадь. Изменение магнитного потока связано с изменением индукции магнитного поля. Величину магнитного потока можно изменить, поворачивая контур (или магнит), то есть меняя его ориентацию по отношению к линиям магнитной индукции.

 

 

Рисунок \(2\). Изменение магнитного потока при вращении постоянного магнита


Этот принцип получения переменного электрического тока используется в механических индукционных генераторах — устройствах, преобразующих механическую энергию в электрическую. Основные части: статор (неподвижная часть) и ротор (подвижная часть).

 

 

Рисунок \(3\). Схема генератора: \(1\) — корпус; \(2\) — статор; \(3\) — ротор; \(4\) — скользящие контакты (щётки, кольца)


В промышленном генераторе статором является цилиндр с прорезанными внутри него пазами, в которые уложен витками провод из меди с большой площадью поперечного сечения (аналогично рамке). Переменный магнитный поток в таких витках порождает переменный индукционный электрический ток.


Ротор — это постоянный магнит или электромагнит. Электромагнит представляет собой обмотку с железным сердечником внутри, по которому течёт постоянный электрический ток. Он подводится от внешнего источника тока через щётки и кольца.

 

Какая-либо механическая сила (паровая или водяная турбина) вращает ротор. Вращающееся одновременно с ним магнитное поле образует изменяющийся магнитный поток в статоре, в котором возникает переменный электрический ток.

 

 

Рисунок \(4\). Устройство гидрогенератора: \(1\) — статор; \(2\) — ротор; \(3\) — водяная турбина

Устройство и принцип работы дизельного генератора

Чтобы преобразовать механическую энергию (двигателя внутреннего сгорания, ветрового двигателя, турбины) в электрическую энергию (постоянного или переменного тока), необходим генератор. Основные части генератора – неподвижный якорь (статор) и приводимый во вращение первичным двигателем с высоким постоянством числа оборотов индуктор (ротор) с питаемой постоянным током обмоткой возбуждения.

Ротор электромашины переменного тока может вращаться с частотой магнитного поля или отставать от него (вращаться с меньшей скоростью). В первом случае машина относится к синхронным, во втором к асинхронным. Синхронная электрическая машина, работающая в генераторном режиме, называется синхронным генератором. Синхронный генератор обратим, т.е. при подключении якорной обмотки к трехфазной электросети он работает как электродвигатель.

Принцип работы синхронного генератора

При вращении ротора синхронного генератора (СГ) линии его магнитного поля пересекают обмотку статора. Магнитное поле ротора создается независимым возбудителем, в качестве которого может служить аккумулятор или дополнительный генератор постоянного тока с напряжением обычно не выше 150 В, а также ртутные, полупроводниковые (селеновые или германиевые) или механические выпрямители.

Возможно и обратное решение (применяемое обычно в малогабаритных передвижных установках переменного тока) – вращение ротора в неподвижном магнитном поле, при этом вырабатываемый в обмотках ротора переменный ток необходимо снимать с ротора через коллектор. Вырабатываемая СГ электродвижущая сила (ЭДС) пропорциональна магнитной индукции, длине паза статора, числу витков в обмотке статора, внутреннему диаметру статора и частоте вращения магнитного поля. Изменение ЭДС синхронного генератора возможно путем регулирования тока в обмотке возбудителя реостатом или системой автоматического регулирования.

Частота вращения магнитного поля равна скорости вращения ротора, а частота вырабатываемого переменного напряжения пропорциональна частоте вращения магнитного поля и количеству пар полюсов статора. В качестве примера, при заданной частоте СГ 50 Гц при числе пар полюсов 1 ротор должен вращаться со скоростью 3000 об/мин, а при числе пар 2 – со скоростью 1500 об/мин и т.д.

Для поддержания постоянства частоты вырабатываемого СГ переменного напряжения скорость вращения первичного двигателя поддерживается постоянной посредством автоматического регулятора скорости.


Обычно от СГ требуется выработка напряжения порядка 15-40 кВ, снять такое напряжение с вращающегося коллектора сложно, и обмотки якоря, с которого снимается вырабатываемая электрическая энергия, выгодно сделать неподвижными. Мощность же возбуждения СГ обычно составляет 1-3% и не превышает 5% мощности СГ; подать эту мощность на вращающийся ротор не составляет проблемы.

При мощности СГ до нескольких киловатт магнитное поле ротора может обеспечиваться постоянными магнитами (самыми современными, неодимовыми), что позволяет обойтись без коллектора и токосъемника. При этом, ввиду невозможности регулирования магнитного потока ротора, выходное напряжение СГ неизменно и не поддается регулированию, либо же с регулированием возникают сложности. Мощность современного синхронного генератора достигает нескольких Гвт и выше.

 

Виды синхронных генераторов


Генераторы разделяются по способу возбуждения. Самый простой способ, не требующий дополнительного источника питания для возбуждения статора – это использование самовозбуждения за счет остаточного намагничивания сердечника ротора даже при отсутствии в обмотках ротора тока возбуждения. При вращении ротора слабый остаточный магнитный поток ротора вызывает образование в обмотках ротора небольшой ЭДС, которая отбирается понижающим трансформатором, выпрямляется и через коллектор подается в обмотку возбуждения, что увеличивает магнитный поток, ЭДС генератора и дальнейшее развитие процесса самовозбуждения, вплоть до выхода на нормальный режим работы.

Подобная схема с самовозбуждением успешно применяется в автономных установках наземного, водного и воздушного транспорта.

Если применяется тиристорное устройство регулирования тока возбуждения, появляется возможность автоматического регулирования выходного напряжения СГ (поддержания его постоянства или изменения по определенному закону в зависимости от величины и характера нагрузки). Возможно также возбуждение ротора от дополнительного генератора (подвозбудителя), имеющего общий вал с основным генератором или соединенного с валом СГ посредством полумуфты.

 

Устройство синхронного генератора


Статор СГ по устройству схож с устройством статора асинхронного двигателя. Сердечник статора, в пазах которого размещается обмотка, собран из спрессованных в виде пакета пластин электротехнической стали толщиной 1-2 мм, разделенных изолирующей пленкой лака толщиной 0,08-0,1 мм.


Синхронный генератор может вырабатывать переменный ток однофазный или, чаще всего, трехфазный. К обмотке статора подключается нагрузка.

Конструктивно полюсы статора могут быть выступающими (как в тихоходных СГ со скоростью вращения не выше 1000 об/мин, вращаемых гидротурбинами), либо же не выражаться явно (как в скоростных машинах).


Синхронный генератор обратим – он может не только вырабатывать переменный ток (режим генератора), но и совершать механическую работу (режим двигателя).

Для охлаждения ротора в конструкции СГ предусмотрены крыльчатки на общем с ротором валу. Прежде чем поступить в СГ для охлаждения обмоток, воздух пропускается через фильтр, если же система охлаждения замкнута, он дополнительно охлаждается в теплообменнике. В качестве охлаждающего агента, помимо воздуха, применяется и водород ввиду своей легкости.

Концы обмоток СГ выводятся на контактную колодку, что позволяет соединить обмотки трехфазного СГ по схеме звезды или треугольника.

При необходимости получения синусоидального напряжения на выходе к форме явно выраженных полюсных наконечников предъявляются определенные требования, либо необходимо (при неявно выраженных полюсах) расположить витки роторной обмотки по особому закону.

 

Режимы работы синхронного генератора

Синхронный генератор может работать в режиме холостого хода, при отсутствии токов в обмотке якоря, и тогда вырабатываемое напряжение задается лишь током возбуждения.

При подключении к СГ потребителя через обмотку якоря начинают протекать токи, и создаваемое ими магнитное поле складывается с полем ротора. Ток в якорной обмотке при чисто активной нагрузке (нагревательные элементы, лампочки накаливания) совпадает по фазе с ЭДС, при индуктивной (асинхронные электродвигатели, дроссели, трансформаторы) отстает, а при емкостной (батареи конденсаторов, корректоры коэффициента мощности, высоковольтные ЛЭП) опережает. При активной нагрузке создаваемый в статоре дополнительный магнитный поток перпендикулярен потоку ротора, и ЭДС генератора, определяемая суммарным потоком, возрастает.

Реактивная нагрузка ведет к отклонению направлений потоков от перпендикулярности, вследствие несовпадения фаз тока якорной обмотки и ЭДС, и при емкостной нагрузке ЭДС генератора увеличивается еще выше, поскольку направление потоков начинает совпадать (вызывается продольно-намагничивающая реакция), а при индуктивной нагрузке к снижению ЭДС вследствие встречного направления потоков (вызывается продольно-размагничивающая реакция). Наиболее часто встречается смешанная активно-индуктивная нагрузка.

Чтобы устранить воздействие реакции якоря на ЭДС генератора, предусматривается регулирование возбуждения ротора с целью поддержания ЭДС на должном уровне с исключением ее зависимости от мощности и вида нагрузки. Также, для устранения колебаний при резкой смене режима работы СГ, помимо основной обмотки возбудителя, наматывается еще и демпферная (успокаивающая) катушка, особо полезная при совместной работе нескольких СГ на общую сеть. Поскольку нагрузка СГ не остается постоянной и время от времени меняется, существует необходимость постоянного регулирования тока возбуждения, что осуществляется автоматическими системами регулирования.

При нормальной работе СГ допустимы некоторые отклонения коэффициентов мощности нагрузки, напряжения и частоты в пределах нескольких процентов от номинальных значений. При нарушениях в линии нагрузки (коротких замыканиях, непостоянстве отбираемой мощности, неравномерном распределении нагрузки между фазами), возникает асимметрия выходного напряжения СГ, форма напряжения искажается и отклоняется от синусоидальной, что может приводить к перегреву обмоток и элементов конструкции генератора. Также, к искажениям формы ЭДС генератора ведет нелинейность нагрузки (подключенные к сети выпрямители, инверторы).

При работе СГ важно следить за расходом охлаждающей воды, автоматика должна предупреждать персонал при снижении расхода путем включения сигнализации, и при резком падении расхода приступить к разгрузке генератора с последующим отключением в течение нескольких минут.


Работа нескольких синхронных генераторов на общую сеть


Параллельная работа нескольких СГ необходима для полного использования их мощности, позволяет создавать мощные источники питания, а также периодически выводить на профилактику или в ремонт один из генераторов.


При параллельной работе нескольких СГ требуется строгое постоянство вырабатываемой каждым из них частоты, с высоким поддержанием постоянства скорости их вращения.

При включении в сеть еще одного СГ требуется равенство его напряжения напряжению сети с постоянством частоты, фазы и чередования фаз. Лишь при совпадении этих условий при включении СГ в сеть не будет толчков тока и опасных для обмоток уравнительных токов.

Синхронизация осуществляется посредством специальных устройств – синхроскопов, наиболее простыми из которых является ламповые, позволяющие по характеру свечения ламп синхроскопа определить с достаточной для практики точностью момент совпадения напряжения подключаемого генератора и сети по частоте, фазе и порядку чередования фаз.


 

 

устройство, принцип работы, подборка лучших в Москве

Люди все чаще задумываются о том, чтобы приобрести себе мини-электростанцию. Такие небольшие, компактные устройства способны обеспечить электричеством целый загородный дом или квартиру. Но, решая купить прибор, у многих возникает вопрос, какой именно агрегат выбрать. Ведь на рынке существует огромное количество оборудования, а хочется взять прибор и пользоваться им в свое удовольствие.

Трехфазный генератор занимает особое место среди разнообразия, его особенностью является возможность выдавать напряжение двух видов, а именно 220 В и 380 В. 

Такие устройства могут прекрасно работать на дизеле и бензине, но их самая маленькая мощность 5–6 кВт, ведь такие приборы больше относятся к профессиональным моделям. Правда, для бытового использования его тоже часто покупают, особенно, если в доме есть трехфазные потребители.

Данное устройство имеет неподвижный статор и ротор (вал), что вращается и создает в обмотках универсальное магнитное поле. В трехфазном агрегате обмотка размещается не на роторе, а на статоре. Только следует сказать, что подобных отмоток на статоре целых три, и они сдвинуты по отношению друг к другу. Когда ротор оборачивается, он начинает пересекаться с магнитным полем обмоток, в результате чего начинает вырабатываться электродвижущая сила. Благодаря тому, что эти обмотки размещаются на одинаковом расстоянии друг от друга, электродвижущая сила имеет одинаковую амплитуду.

Особенности трехфазных агрегатов

  1. Благодаря уникальному строению, есть возможность подключать к нему несколько приборов одновременно.
  2. Он работает по принципу распределения мощности напряжения. Это значит, что такой агрегат не сможет потянуть мощную технику. Ведь, если агрегат на 6 кВт, то это не значит, что к нему можно подключать технику такой мощности. Он просто не потянет, ведь прибор равномерно распределяет напряжение на три фазы. Поэтому максимальная мощность потребителя не должна быть 2 кВт. Зато таких однофазных приборов можно подсоединить сразу три штуки.
  3. Часто люди могут ошибочно рассчитывать необходимую мощность технику и приобретать трехфазный агрегат для однофазных потребителей. В таком случае вы сможете подключить один прибор на 2 кВт, а сама электростанция будет работать на всю мощность (6–8 кВт) и потреблять огромное количество топлива. Если у вас только однофазные потребители, то рациональнее будет приобрести однофазный агрегат такой же мощностью. Он стоит намного дешевле, и расход топлива будет в несколько раз меньше.
  4. Такие устройства достаточно капризны в подключении однофазных потребителей. Но это не единственная их особенность. Ведь эта проблема решаема, если подключать три прибора одновременно. Но вот проблема перекоса фаз, которая встречается при использовании модели в домашних условиях, более существенна. Если объяснить по-простому, то нельзя, чтобы хоть одна фаза имела порог мощности больше 25% по сравнению с другими. То есть, если вы подключили телевизор или холодильник на 0,7–0,8 кВт, то на другую фазу вы сможете включить прибор мощностью не больше 1 кВт (+25% к первому показателю). Если включить пылесос, который имеет 2–2,5 кВт, то произойдет перекос фаз и аппарат отключится.
  5. Каждый трехфазный образец имеет две розетки, одна с напряжением 220 Вольт, а другая 380 Вольт.

Такие устройства стоят намного дороже обычных однофазных моделей. При этом обычному человеку достаточно сложно понять схему подключения потребителей. А высокое потребление топлива делают их не выгодными для домашнего или бытового использования. 

Если в доме есть трехфазные приборы, которые требуют напряжение в 380 Вольт, лучше покупать трехфазный образец. При подключении таких потребителей перечисленных выше проблем не будет, генератор и техника прослужат вам длительное время.  

Устройство бензинового и дизельного генератора в Москве и его принцип действия

Электростанции – это специально изготовленные устройства, которые превращают механическую энергию в электрическую. Он используется для выработки электричества и снабжения электрической энергией всех потребителей, которые входят в так называемую систему электрооборудования. Кроме этого, его могут использовать в качестве зарядного устройства для автомобильного аккумулятора.

Рассматривая устройство и принцип работы, можно сказать, что это сложный механизм, что синхронно работает и приносит свои плоды. Разобравшись более подробно в принципе функционирования электростанции, вы поймете, как именно она работает.

По каким принципам происходит процесс функционирования генераторов

Все современные аппараты, что представлены на рынке, работают на принципе электромагнитной индукции. В этом случае, в проводнике, что двигается в магнитном поле и пересекает его силовые линии, образуется электродвижущая сила. Этот проводник и станет выступать в качестве источника электрической энергии.

Стоит заметить, что перемещение проводника происходит с помощью, так называемых вращательных движений. В состав любой такой установки обязательно должны входить:

  • несколько магнитов, чаще всего используются электромагниты;
  • конструкция из проводников, что будут пересекать магнитное поле;
  • специальная система для отвода напряжения.

Чтобы наглядно продемонстрировать принцип работы устройства, берется проводник, сгибающийся в виде петли. Потом ее ставят между двумя магнитами с разными полюсами. В том случае, если петлю вращать вокруг своей оси, то в ее сторонах, размещенных в направлении полюсов, начинает возникать электродвижущая сила. Чтобы увидеть работу конструкции, необходимо прикрепить к ней с помощью проводов обычную лампочку. Пока петля будет совершать вращательные движения, лампа будет светить, а когда петля остановится, то она соответственно потухнет. В данном случае, на конце петли будет скапливаться напряжение, а по самой спирали будет циркулировать самый настоящий электрический ток.

Этот пример идеально показывает работу самого простого устройства. Но в современных моделях используется усовершенствованная система магнитов, внутри которых находится целая катушка из медных проводков. Медь прекрасно переносит электрический ток и передает его на систему отвода напряжения. Главное, чтобы магнитное поле было замкнутым, тогда и результат будет положительным.

Все устройства можно разделить в зависимости от того, какой ток будет на выходе оборудования.

  • Установки постоянного тока, когда на выходе имеем постоянный и одинаковый ток.
  • Устройство с переменным током на выходе, которые могут быть однофазными и трехфазными.


Естественно, мы рассмотрели принцип действия генератора бензинового или дизельного на достаточно простом примере. Но если взять достаточно сложные приборы, принцип действия будет тот же. Единственное, что здесь поменяется – это количество используемых элементов.

Техническая информация о стартере и генераторе. О ремонте стартера и ремонте генератора.

Генератор предназначен для обеспечения питанием электропотребителей, входящих в систему электрооборудования, и зарядки аккумулятора при работающем двигателе автомобиля. Выходные параметры генератора должны быть таковы, чтобы в любых режимах движения автомобиля не происходил прогрессивный разряд аккумулятора. Кроме того, напряжение в бортовой сети автомобиля, питаемой генератором, должно быть стабильно в широком диапазоне частот вращения и нагрузок. Последнее требование вызвано тем, что аккумуляторная батарея весьма чувствительна к степени стабильности напряжения. Слишком низкое напряжение вызывает недозаряд батареи и, как следствие, затруднения с пуском двигателя, слишком высокое напряжение приводит к перезаряду батареи, и ее ускоренному выходу из строя. Не менее чувствительны к величине напряжения лампы освещения и сигнализация, акустическое оборудование.

Генератор – достаточно надежное устройство, способное выдержать повышенные вибрации двигателя, высокую подкапотную температуру, воздействие влажной среды, грязи и других факторов. Принцип работы электрогенератора и его принципиальное конструктивное устройство одинаковы у всех автомобильных генераторов, независимо от того, где они выпускаются.

Принцип действия генератора

В основе работы генератора лежит эффект электромагнитной индукции. Если катушку, например, из медного провода, пронизывает магнитный поток, то при его изменении на выводах катушки появляется переменное электрическое напряжение. И наоборот, для образования магнитного потока достаточно пропустить через катушку электрический ток. Таким образом, для получения переменного электрического тока требуются катушка, по которой протекает постоянный электрический ток, образуя магнитный поток, называемая обмоткой возбуждения и стальная полюсная система, назначение которой – подвести магнитный поток к катушкам, называемым обмоткой статора, в которых наводится переменное напряжение. Эти катушки помещены в пазы стальной конструкции, магнитопровода (пакета железа) статора. Обмотка статора с его магнитопроводом образует собственно статор генератора, его важнейшую неподвижную часть, в которой образуется электрический ток, а обмотка возбуждения с полюсной системой и некоторыми другими деталями (валом, контактными кольцами) ротор, его важнейшую вращающуюся часть. Питание обмотки возбуждения может осуществляться от самого генератора. В этом случае генератор работает на самовозбуждении. При этом остаточный магнитный поток в генераторе, т. е. поток, который образуют стальные части магнитопровода при отсутствии тока в обмотке возбуждения, невелик и обеспечивает самовозбуждение генератора только на слишком высоких частотах вращения. Поэтому в схему генератора, там где обмотки возбуждения не соединены с аккумуляторной батареей, вводят такое внешнее соединение (обычно через контрольную лампу  состояния генераторной установки). Ток, поступающий через эту лампу в обмотку возбуждения после включения выключателя зажигания и обеспечивает первоначальное возбуждение генератора. Сила этого тока не должна быть слишком большой, чтобы не разряжать аккумуляторную батарею, но и не слишком малой, т.к. в этом случае генератор возбуждается при слишком высоких частотах вращения, поэтому фирмы-изготовители оговаривают необходимую мощность контрольной лампы - обычно 2...3 Вт.

При вращении ротора напротив катушек обмотки статора появляются попеременно "северный", и "южный" полюсы ротора, т.е. направление магнитного потока, пронизывающего катушку, меняется, что и вызывает появление в ней переменного напряжения.

За редким исключением генераторы зарубежных фирм, также как и отечественные, имеют шесть "южных" и шесть "северных" полюсов в магнитной системе ротора. В этом случае частота f в 10 раз меньше частоты вращения  ротора генератора. Поскольку свое вращение ротор генератора получает от коленчатого вала двигателя, то по частоте переменного напряжения генератора можно измерять частоту вращения коленчатого вала двигателя. Для этого у генератора делается вывод обмотки статора, к которому и подключается тахометр. При этом напряжение на входе тахометра имеет пульсирующий характер, т.к. он оказывается включенным параллельно диоду силового выпрямителя генератора.

Обмотка статора генераторов зарубежных и отечественных фирм – трехфазная. Она состоит из трех 3 частей, называемых обмотками фаз или просто фазами, напряжение и токи в которых смещены друг относительно друга на треть периода, т.е. на 120 электрических градусов. Фазы могут соединяться в "звезду" или "треугольник". При этом различают фазные и линейные напряжения и токи. Фазные напряжения  действуют между концами обмоток фаз, а токи  протекают в этих обмотках, линейные же напряжения  действуют между проводами, соединяющими обмотку статора с выпрямителем. В этих проводах протекают линейные токи . Естественно, выпрямитель выпрямляет те величины, которые к нему подводятся, т. е. линейные. При соединении в "треугольник" фазные токи меньше линейных, в то время как у "звезды" линейные и фазные токи равны. Это значит, что при том же отдаваемом генератором токе, ток в обмотках фаз, при соединении в "треугольник", значительно меньше, чем у "звезды". Поэтому в генераторах большой мощности довольно часто применяют соединение в "треугольник", т.к. при меньших токах обмотки можно наматывать более тонким проводом, что технологичнее. Однако линейные напряжения у "звезды" больше фазного, в то время как у "треугольника" они равны и для получения такого же выходного напряжения, при тех же частотах вращения "треугольник" требует соответствующего увеличения числа витков его фаз по сравнению со "звездой".

Более тонкий провод можно применять и при соединении типа "звезда". В этом случае обмотку выполняют из двух параллельных обмоток, каждая из которых соединена в "звезду", т.е. получается "двойная звезда". Выпрямитель для трехфазной системы содержит шесть силовых полупроводниковых диодов, три из которых соединены с выводом "+" генератора, а другие три с выводом "—" ("массой"). При необходимости форсирования мощности генератора применяется дополнительное плечо выпрямителя. Такая схема выпрямителя может иметь место только при соединении обмоток статора в "звезду", т. к. дополнительное плечо запитывается от "нулевой" точки "звезды".

У многих  генераторов зарубежных фирм обмотка возбуждения подключается к собственному выпрямителю. Такое подключение обмотки возбуждения препятствует протеканию через нее тока разряда аккумуляторной батареи при неработающем двигателе автомобиля. Полупроводниковые диоды находятся в открытом состоянии и не оказывают существенного сопротивления прохождению тока при приложении к ним напряжения в прямом направлении и практически не пропускают ток при обратном напряжении.   Следует обратить внимание на то, что под термином "выпрямительный диод", не всегда скрывается привычная конструкция, имеющая корпус, выводы и т.д. Иногда это просто полупроводниковый кремниевый переход, герметизированный на теплоотводе

Применение в регуляторе напряжения электроники и особенно, микроэлектроники, т.е. применение полевых транзисторов или выполнение всей схемы регулятора напряжения на монокристалле кремния, потребовало введения в генератор элементов ее защиты от скачков высокого напряжения, возникающих, например, при внезапном отключении аккумуляторной батареи, сбросе нагрузки. Такая защита обеспечивается тем, что диоды силового моста заменены стабилитронами. Отличие стабилитрона от выпрямительного диода состоит в том, что при воздействии на него напряжения в обратном направлении, он не пропускает ток лишь до определенной величины этого напряжения (напряжением стабилизации).

Обычно в силовых стабилитронах напряжение стабилизации составляет 25... 30 В. При достижении этого напряжения стабилитроны "пробиваются ", т. е. начинают пропускать ток в обратном направлении, причем в определенных пределах изменения силы этого тока напряжение на стабилитроне, а, следовательно, и на выводе "+" генератора остается неизменным, не достигающем опасных для электронных узлов значений. Свойство стабилитрона поддерживать на своих выводах постоянство напряжения после "пробоя" используется и в регуляторах напряжения.

Принцип действия регулятора напряжения (реле регулятора)

В настоящее время все генераторы оснащаются полупроводниковыми электронными регуляторами напряжения, как правило, встроенными внутрь генератора. Схемы их исполнения и конструктивное оформление могут быть различны, но принцип работы у всех регуляторов одинаков. Напряжение генератора без регулятора зависит от частоты вращения его ротора, магнитного потока, создаваемого обмоткой возбуждения, а, следовательно, от силы тока в этой обмотке и величины тока, отдаваемого генератором потребителям. Чем больше частота вращения и сила тока возбуждения, тем больше напряжение генератора, чем больше сила тока его нагрузки – тем меньше это напряжение.

Функцией регулятора напряжения является стабилизация напряжения при изменении частоты вращения и нагрузки за счет воздействия на ток возбуждения. Конечно, можно изменять ток в цепи возбуждения введением в эту цепь дополнительного резистора, как это делалось в прежних вибрационных регуляторах напряжения, но этот способ связан с потерей мощности в этом резисторе и в электронных регуляторах не применяется. Электронные регуляторы изменяют ток возбуждения путем включения и отключения обмотки возбуждения от питающей сети, при этом меняется относительная продолжительность времени включения обмотки возбуждения.

Если для стабилизации напряжения требуется уменьшить силу тока возбуждения, время включения обмотки возбуждения уменьшается, если нужно увеличить – увеличивается.

Конструктивное исполнение генераторов

По своему конструктивному исполнению генераторные установки можно разделить на две группы – генераторы традиционной конструкции с вентилятором у приводного шкива и генераторы так называемой «компактной» конструкции с двумя вентиляторами во внутренней полости генератора. Обычно «компактные» генераторы оснащаются приводом с повышенным передаточным отношением через поликлиновый ремень и поэтому, по принятой у некоторых фирм терминологии, называются высокоскоростными генераторами. При этом внутри этих групп можно выделить генераторы, у которых щеточный узел расположен во внутренней полости генератора между полюсной системой ротора и задней крышкой (Mitsubishi, Hitachi), и генераторы, где контактные кольца и щетки расположены вне внутренней полости (Bosch, Valeo). В этом случае генератор имеет кожух, под которым располагается щеточный узел, выпрямитель и, как правило, регулятор напряжения.

Любой генератор содержит статор с обмоткой, зажатый между двумя крышками –передней, со стороны привода, и задней, со стороны контактных колец. Крышки, отлитые из алюминиевых сплавов, имеют вентиляционные окна, через которые воздух продувается вентилятором сквозь генератор.

Генераторы традиционной конструкции снабжены вентиляционными окнами только в торцевой части, генераторы «компактной» конструкции еще и на цилиндрической части –  над лобовыми сторонами обмотки статора. «Компактную» конструкцию отличает также сильно развитое оребрение, особенно в цилиндрической части крышек. На крышке со стороны контактных колец крепятся щеточный узел, который часто объединен с регулятором напряжения, и выпрямительный узел. Крышки обычно стянуты между собой тремя или четырьмя винтами, причем статор оказывается зажат между крышками, посадочные поверхности которых охватывают статор по наружной поверхности. Иногда статор полностью утоплен в передней крышке и не упирается в заднюю крышку (Denso). Существуют конструкции, у которых средние листы пакета статора выступают над остальными, и они являются посадочным местом для крышек. Крепежные лапы и натяжное ухо генератора отливаются заодно с крышками, причем, если крепление двухлапное, то лапы имеют обе крышки, если однолапное - только передняя. Впрочем, встречаются конструкции, у которых однолапное крепление осуществляется стыковкой приливов задней и передней крышек, а также двухлапные крепления, при котором одна из лап, выполненная штамповкой из стали, привертывается к задней крышке, как, например, у некоторых генераторов фирмы Paris-Rhone прежних выпусков. При двухлапном креплении в отверстии задней лапы обычно располагается дистанционная втулка, позволяющая при установке генератора выбирать зазор между кронштейном двигателя и посадочным местом лап. Отверстие в натяжном ухе может быть одно с резьбой или без, но встречается и несколько отверстий, чем достигается возможность установки этого генератора на разные марки двигателей. Для этой же цели применяют два натяжных уха на одном генераторе.

Особенностью автомобильных генераторов является вид полюсной системы ротора. Она содержит две полюсные половины с выступами – полюсами клювообразной формы по шесть на каждой половине. Полюсные половины выполняются штамповкой и могут иметь выступы - полувтулки. В случае отсутствия выступов при напрессовке на вал между полюсными половинами устанавливается втулка с обмоткой возбуждения, намотанной на каркас, при этом намотка осуществляется после установки втулки внутрь каркаса. Обмотка возбуждения в сборе с ротором пропитывается лаком. Клювы полюсов по краям обычно имеют скосы с одной или двух сторон для уменьшения магнитного шума генераторов. В некоторых конструкциях для той же цели под острыми конусами клювов размещается антишумовое немагнитное кольцо, расположенное над обмоткой возбуждения. Это кольцо предотвращает возможность колебания клювов при изменении магнитного потока и, следовательно, излучения ими магнитного шума. После сборки производится динамическая балансировка ротора, которая осуществляется высверливанием излишка материала у полюсных половин. На валу ротора располагаются также контактные кольца, выполняемые чаще всего из меди, с опрессовкой их пластмассой. К кольцам припаиваются или привариваются выводы обмотки возбуждения. Иногда кольца выполняются из латуни или нержавеющей стали, что снижает их износ и окисление, особенно при работе во влажной среде. Диаметр колец при расположении щеточно-контактного узла вне внутренней полости генератора не может превышать внутренний диаметр подшипника, устанавливаемого в крышку со стороны контактных колец, т.к. при сборке подшипник проходит над кольцами. Малый диаметр колец способствует кроме того уменьшению износа щеток. Именно по условиям монтажа некоторые фирмы применяют в качестве задней опоры ротора роликовые подшипники, т.к. шариковые того же диаметра имеют меньший ресурс.

Валы роторов выполняются, как правило, из мягкой автоматной стали, однако, при применении роликового подшипника, ролики которого работают непосредственно по концу вала со стороны контактных колец, вал выполняется из легированной стали, а цапфа вала цементируется и закаливается. На конце вала, снабженном резьбой, прорезается паз под шпонку для крепления шкива. Однако, во многих современных конструкциях шпонка отсутствует. В этом случае торцевая часть вала имеет углубление или выступ под ключ в виде шестигранника. Это позволяет удерживать вал от проворота при затяжке гайки крепления шкива, или при разборке, когда необходимо снять шкив и вентилятор.

Щеточный узел – это пластмассовая конструкция, в которой размещаются щетки т.е. скользящие контакты.

В автомобильных генераторах применяются щетки двух типов – меднографитные и электрографитные. Последние имеют повышенное падение напряжения в контакте с кольцом по сравнению с меднографитными, что неблагоприятно сказывается на выходных характеристиках генератора, однако они обеспечивают значительно меньший износ контактных колец. Щетки прижимаются к кольцам усилием пружин. Обычно щетки устанавливаются по радиусу контактных колец, но встречаются и так называемые реактивные щеткодержатели, где ось щеток образует угол с радиусом кольца в месте контакта щетки. Это уменьшает трение щетки в направляющих щеткодержателя, и тем обеспечивается более надежный контакт щетки с кольцом. Часто щеткодержатель и регулятор напряжения образуют неразборный единый узел.

Выпрямительные узлы применяются двух типов – либо это пластины-теплоотводы, в которые запрессовываются (или припаиваются) диоды силового выпрямителя или на которых распаиваются и герметизируются кремниевые переходы этих диодов, либо это конструкции с сильно развитым оребрением, в которых диоды, обычно таблеточного типа, припаиваются к теплоотводам. Диоды дополнительного выпрямителя имеют обычно пластмассовый корпус цилиндрической формы, либо в виде горошины или выполняются в виде отдельного герметизированного блока, включение в схему которого осуществляется шинками. Включение выпрямительных блоков в схему генератора осуществляется распайкой или сваркой выводов фаз на специальных монтажных площадках выпрямителя или винтами. Наиболее опасным для генератора и особенно для проводки автомобильной бортовой сети является перемыкание пластин-теплоотводов, соединенных с "массой" и выводом "+" генератора, случайно попавшими между ними металлическими предметами или проводящими мостиками, образованными загрязнением, т.к. при этом происходит короткое замыкание по цепи аккумуляторной батареи, что может привести к возгоранию. Во избежание этого пластины и другие части выпрямителя генераторов некоторых фирм частично или полностью покрывают изоляционным слоем. В монолитную конструкцию выпрямительного блока теплоотводы объединяются в основном монтажными платами из изоляционного материала, армированными соединительными шинками.

Подшипниковые узлы генераторов это, как правило, радиальные шариковые подшипники с одноразовой закладкой пластичной смазки на весь срок службы и одно или двухсторонними уплотнениями, встроенными в подшипник. Роликовые подшипники применяются только со стороны контактных колец и достаточно редко, в основном, американскими фирмами (Delco Remy, Motorcraft). Посадка шариковых подшипников на вал со стороны контактных колец обычно плотная, со стороны привода - скользящая, в посадочное место крышки наоборот - со стороны контактных колеи - скользящая, со стороны привода - плотная. Так как наружная обойма подшипника со стороны контактных колец имеет возможность проворачиваться в посадочном месте крышки, то подшипник и крышка могут вскоре выйти из строя, возникнет задевание ротора за статор. Для предотвращения проворачивания подшипника в посадочное место крышки помещают различные устройства - резиновые кольца, пластмассовые проставки, гофрированные стальные пружины и т.п. Конструкцию регуляторов напряжения в значительной мере определяет технология их изготовления. При изготовлении схемы на дискретных элементах, регулятор обычно имеет печатную плату, на которой располагаются эти элементы. При этом некоторые элементы, например, настроечные резисторы могут выполняться по толстопленочной технологии. Гибридная технология предполагает, что резисторы выполняются на керамической пластине и соединяются с полупроводниковыми элементами – диодами, стабилитронами, транзисторами, которые в бескорпусном или корпусном исполнении распаиваются на металлической подложке. В регуляторе, выполненном на монокристалле кремния, вся схема регулятора размещена в этом кристалле.

Охлаждение генератора осуществляется одним или двумя вентиляторами, закрепленными на его валу. При этом у традиционной конструкции генераторов (воздух засасывается центробежным вентилятором в крышку со стороны контактных колец.
У генераторов, имеющих щеточный узел, регулятор напряжения и выпрямитель вне внутренней полости и защищенных кожухом, воздух засасывается через прорези этого кожуха, направляющие воздух в наиболее нагретые места - к выпрямителю и регулятору напряжения. На автомобилях с плотной компоновкой подкапотного пространства, в котором температура воздуха слишком велика, применяют генераторы со специальным кожухом закрепленным на задней крышке и снабженным патрубком со шлангом, через который в генератор поступает холодный и чистый забортный воздух. Такие конструкции применяются, например, на автомобилях BMW. У генераторов «компактной» конструкции охлаждающий воздух забирается со стороны как задней, так и передней крышек.

Генераторы большой мощности, устанавливаемые на спецавтомобили, грузовики и автобусы имеют некоторые отличия. В частности, в них встречаются две полюсные системы ротора, насаженные на один вал и, следовательно, две обмотки возбуждения, 72 паза на статоре и т. п. Однако принципиальных отличий в конструктивном исполнении этих генераторов от рассмотренных конструкций нет.

Привод генераторов и крепление их на двигателе

Привод генераторов всех типов автомобилей осуществляется от коленчатого вала ременной или зубчатой передачей. При этом возможны два варианта - клиновым или поликлиновым ремнем. Приводной шкив генератора выполняется с одним или двумя ручьями для клинового ремня и с профилированной рабочей дорожкой для поликлинового. Вентилятор, выполненный, как правило, штамповкой из листовой стали, в традиционной конструкции генератора крепится на валу рядом со шкивом. Шкив может выполняться сборным из двух штампованных дисков, литым из чугуна или стали, а также полученным методом штамповки или точеным из стали.

Качество обеспечения питанием потребителей электроэнергии, в том числе зарядка аккумуляторной батареи, зависит от передаточного числа ременной передачи, равного отношению диаметров ручьев приводного шкива генератора к шкиву коленчатого вала. Для повышения качества питания электропотребителей это число должно быть как можно больше, т.к. при этом частота вращения генератора повышается, и он способен отдать потребителям больший ток. Однако при слишком больших передаточных числах происходит ускоренный износ приводного ремня, поэтому передаточные числа передачи двигатель-генератор для клиновых ремней лежат в пределах 1,8...2,5, для поликлиновых до 3. Более высокое передаточное число возможно потому, что поликлиновые ремни допускают применение на генераторах приводных шкивов малых диаметров и меньший угол охвата шкива ремнем. Наилучшей конструкцией для генератора является индивидуальный привод. При таком приводе подшипники генератора оказываются менее нагруженными, чем в «коллективном» приводе, при котором обычно генератор приводится во вращение одним ремнем с другими агрегатами, чаще всего водяным насосом, и где шкив генератора служит натяжным роликом. Поликлиновым ремнем обычно приводится во вращение сразу несколько агрегатов. Например, на автомобилях Mercedes один поликлиновой ремень приводит во вращение одновременно генератор, водяной насос, насос гидроусилителя руля, гидромуфту вентилятора и компрессор кондиционера. В этом случае натяжение ремня осуществляется и регулируется одним или несколькими натяжными роликами при фиксированном положении генератора. Крепление генераторов на двигателе выполнено на одной или двух крепежных лапах, сочленяемых с кронштейном двигателя. Натяжение ремня производится поворотом генератора на кронштейне, при этом натяжная планка, соединяющая двигатель с натяжным ухом, может быть выполнена в виде винта, по которому перемещается резьбовая муфта, сочленяемая с ухом.

Встречаются конструкции, у которых прорезь в натяжной планке имеет зубчатую нарезку, по которой перемещается натяжное устройство, соединенное с натяжным ухом. Такие конструкции позволяют обеспечивать натяжение ремня очень точно и надежно.

К сожалению, на данный момент не существует международных нормативных документов, определяющих габаритные и присоединительные размеры генераторов легковых автомобилей, поэтому генераторы различных фирм существенно отличаются друг от друга, разумеется, кроме изделий, специально предназначенных в качестве запчастей для замены генераторов других фирм.

Бесщеточные генераторы

Бесщеточные генераторы применяются там, где возникают требования повышенной надежности и долговечности, главным образом на магистральных тягачах, междугородных автобусах и т.п. Повышенная надежность этих генераторов обеспечивается тем, что у них отсутствует щеточно-контактный узел, подверженный износу и загрязнению, а обмотка возбуждения неподвижна. Недостатком генераторов этого типа являются увеличенные габариты и масса. Бесщеточные генераторы выполняются с максимальным использованием конструктивной преемственности со щеточными. На выпуске генераторов такого типа специализируется американская фирма Delco-Remy, являющаяся отделением General Motors. Отличие этой конструкции состоит в том, что одна клювообразная полюсная половина посажена на вал, как у обычного щеточного генератора, а другая в урезанном виде приваривается к ней по клювам немагнитным материалом.

Что представляет собой синхронный генератор

Задача генератора – преобразование механической вырабатываемой энергии в электрическую. Работа его двигателя основана на следующем принципе: топливо впрыскивается в цилиндр двигателя и, сгорая, трансформируется в газообразную смесь, которая расширяется и выталкивает поршень. Тот, в свою очередь, заставляет двигаться коленчатый вал, а он уже вращает ведущий. Чем больше поршней, тем быстрее скорость вращения вала. На этой стадии и происходит выработка механической энергии, преобразовываемой в электричество по закону Фарадея.

Устройство генератора

В основу любого генератора заложены два элемента:

  • статор – неподвижная деталь, состоящая из медных обмоток, уложенных в пазы вокруг сердечника, представляющего собой комплект пластин из мягкой стали. В однофазном генераторе – одна обмотка, в трехфазном − три;
  • ротор – вращающаяся часть, включает механизм образования магнитного поля. В бытовых генераторах обычно применяется двухполюсный ротор. Обмотка соединяется с питающим ее блоком управления (AVR) посредством двух щеточных узлов. Ротор в совокупности с обмоткой составляют индуктор.

В синхронном агрегате частота вращения, которую создает статор магнитного поля, совпадает с частотой роторного вращения.

Принцип работы

Синхронный генератор функционирует следующим образом: магнитное поле при вращении ротора пересекает статорные обмотки, чем возбуждает в них переменное напряжение. Когда подключается нагрузка в виде потребителей, в цепи появляется переменный ток. От скорости, с которой вращается ротор, непосредственно зависит напряжение, частота тока.

Электронагрузка на синхронный агрегат прямо пропорциональна нагрузке на вал двигателя, что способно повлечь изменение частоты вращения ротора, показателя напряжения. Избежать колебаний помогает блок управления, который в автоматическом режиме регулирует ток в обмотке ротора путем влияния на магнитное поле. В асинхронном генераторе электрическая связь с ротором отсутствует, поэтому параметры напряжения и тока искусственно не регулируются.

Преимущества синхронного генератора

Основным преимуществом является стабильность выходного напряжения. У асинхронных аппаратов данный показатель может существенно колебаться.

Синхронный генератор не боится повышенной нагрузки, создаваемой при подключении его во время работы энергоемкого потребителя (нагрузка переходного режима), поскольку сам является источником реактивной мощности. Асинхронные генераторы для этого снабжаются пусковыми конденсаторами.

Синхронный генератор не слишком восприимчив к перегрузкам в процессе работы благодаря системе авторегулирования.

Щеточные и бесщеточные

Щетки представляют собой скользящие контакты − токосъемы, которые прижаты к коллектору. От их качества напрямую зависит вырабатываемое напряжение. Длительная работа при больших перегрузках приводит к «выгоранию» щеток. После замены необходим небольшой период «обкатки», прежде чем подавать полную нагрузку на генератор. Наиболее долговечны и устойчивы к перегрузкам медно-графитовые щетки.

Синхронный генератор может быть бесщеточным при условии, что ток в роторе создается магнитным полем, исходящим от основной, а также от дополнительной статорной обмотки (либо только от дополнительной). То есть схема альтернатора более сложная, чем у щеточных. Преимуществом является отсутствие необходимости замены угольных компонентов (в некоторых моделях – каждые 100 часов работы), а также нет пыли от их износа, которая часто является причиной электрических пробоев.

Выбор в пользу синхронного генератора следует делать, если потребители требовательны к качеству выходного тока. Например, такой тип подойдет для обеспечения резервной электроэнергией загородного дома, где установлены различные типы чувствительных приборов.


Electric Generator: Основное введение в принцип работы генераторов, их особенности и применение

Как работают электрические генераторы?
Электрогенератор - это устройство, которое используется для производства электроэнергии, которая может храниться в батареях или может подаваться непосредственно в дома, магазины, офисы и т. Д. Электрогенераторы работают по принципу электромагнитной индукции. Катушка-проводник (медная катушка, плотно намотанная на металлический сердечник) быстро вращается между полюсами магнита подковообразного типа.Катушка проводника вместе с ее сердечником называется якорем. Якорь соединен с валом источника механической энергии, такого как двигатель, и вращается. Требуемая механическая энергия может быть обеспечена двигателями, работающими на таких видах топлива, как дизельное топливо, бензин, природный газ и т. Д., Или за счет возобновляемых источников энергии, таких как ветряная турбина, водяная турбина, турбина на солнечной энергии и т. Д. Когда змеевик вращается, он разрезает магнитное поле, которое лежит между двумя полюсами магнита. Магнитное поле будет мешать электронам в проводнике, вызывая в нем электрический ток.

Характеристики электрогенераторов

  • Мощность: Электрогенераторы с широким диапазоном выходной мощности легко доступны. Требования к низкой, а также высокой мощности могут быть легко удовлетворены путем выбора идеального электрического генератора с соответствующей выходной мощностью.
  • Топливо: Для электрогенераторов доступны различные варианты топлива, такие как дизельное топливо, бензин, природный газ, сжиженный нефтяной газ и т. Д.
  • Портативность: На рынке доступны генераторы, на которых установлены колеса или ручки, чтобы их можно было легко перемещать с одного места на другое.
  • Шум: Некоторые модели генераторов имеют технологию снижения шума, которая позволяет держать их в непосредственной близости без каких-либо проблем с шумовым загрязнением.

Применение электрогенераторов
  • Электрогенераторы полезны для домов, магазинов, офисов и т. Д., Которые часто сталкиваются с перебоями в подаче электроэнергии. Они действуют как резервные, чтобы гарантировать бесперебойное электропитание устройств.
  • В отдаленных районах, где нет доступа к электричеству из основной линии, электрические генераторы действуют как основной источник питания.
  • При работе на проектных площадках, где нет доступа к электричеству из сети, электрические генераторы могут использоваться для питания машин или инструментов.

Свяжитесь с ближайшими к вам ведущими дилерами генераторов и получите бесплатные расценки
(Единый пункт назначения для MSME, ET RISE предоставляет новости, обзоры и анализ по GST, экспорту, финансированию, политике и управлению малым бизнесом.)

Загрузите приложение The Economic Times News, чтобы получать ежедневные обновления рынка и новости бизнеса в реальном времени.

Электрический генератор: базовое введение в принцип работы генераторов, их особенности и применение

Как работают электрические генераторы?
Электрогенератор - это устройство, которое используется для производства электроэнергии, которая может храниться в батареях или может подаваться напрямую в дома, магазины, офисы и т. Д.Электрогенераторы работают по принципу электромагнитной индукции. Катушка-проводник (медная катушка, плотно намотанная на металлический сердечник) быстро вращается между полюсами магнита подковообразного типа. Катушка проводника вместе с ее сердечником называется якорем. Якорь соединен с валом источника механической энергии, такого как двигатель, и вращается. Требуемая механическая энергия может быть обеспечена двигателями, работающими на таких видах топлива, как дизельное топливо, бензин, природный газ и т. Д., Или с помощью возобновляемых источников энергии, таких как ветряная турбина, водяная турбина, турбина на солнечной энергии и т. Д.Когда катушка вращается, она разрезает магнитное поле, которое находится между двумя полюсами магнита. Магнитное поле будет мешать электронам в проводнике, вызывая в нем электрический ток.

Характеристики электрогенераторов

  • Мощность: Электрогенераторы с широким диапазоном выходной мощности легко доступны. Требования к низкой, а также высокой мощности могут быть легко удовлетворены путем выбора идеального электрического генератора с соответствующей выходной мощностью.
  • Топливо: Для электрогенераторов доступны различные варианты топлива, такие как дизельное топливо, бензин, природный газ, сжиженный нефтяной газ и т. Д.
  • Портативность: На рынке доступны генераторы, на которых установлены колеса или ручки, чтобы их можно было легко перемещать с одного места на другое.
  • Шум: Некоторые модели генераторов имеют технологию снижения шума, которая позволяет держать их в непосредственной близости без каких-либо проблем с шумовым загрязнением.

Применение электрогенераторов
  • Электрогенераторы полезны для домов, магазинов, офисов и т. Д., Которые часто сталкиваются с перебоями в подаче электроэнергии. Они действуют как резервные, чтобы гарантировать бесперебойное электропитание устройств.
  • В отдаленных районах, где нет доступа к электричеству из основной линии, электрические генераторы действуют как основной источник питания.
  • При работе на проектных площадках, где нет доступа к электричеству из сети, электрические генераторы могут использоваться для питания машин или инструментов.

Свяжитесь с ближайшими к вам ведущими дилерами генераторов и получите бесплатные расценки
(Единый пункт назначения для MSME, ET RISE предоставляет новости, обзоры и анализ по GST, экспорту, финансированию, политике и управлению малым бизнесом.)

Загрузите приложение The Economic Times News, чтобы получать ежедневные обновления рынка и новости бизнеса в реальном времени.

Что такое генератор? Принцип работы, типы и компоненты

- Реклама -

Что такое генератор? Для чего это используется? Как это работает? Есть ли у него разные типы? Если да, то какие? Каковы различные компоненты генератора и для чего они нужны? Это вопросы, на которые нужно ответить, прежде чем покупать генератор? Если вам нужен генератор и вы собираетесь его купить, у нас для вас хорошие новости, потому что мы собираемся ответить на все эти вопросы в этой статье исчерпывающе и творчески.

Чтобы точно знать, что такое генератор, вам необходимо знать, что он делает, где используется, каков его принцип работы, сколько типов он имеет и из каких компонентов состоит. Linquip собрал всю необходимую информацию, и в этой статье мы подробно рассмотрим каждую из этих тем. Поэтому прочтите следующие разделы, чтобы получить все ответы, которые вам нужно знать.

Что такое генератор?

Генераторы - это полезные устройства, которые обеспечивают подачу электроэнергии во время отключения электроэнергии и предотвращают прерывание дневных и ночных дел и действий или нарушение работы в различных условиях и местах.Все, что делает генератор, - это преобразование механической энергии, поступающей из внешнего источника, в электрическую, чтобы обеспечить достаточное количество энергии для других устройств. Он работает на основе закона электромагнитной индукции Фарадея.

Этот закон гласит, что везде, где проводник помещен в изменяющееся магнитное поле, индуцируется электромагнитный поток. Существуют различные электрические и физические конфигурации генераторов. Такое разнообразие конфигураций предназначено для использования в различных приложениях.В следующих разделах мы подробно рассмотрим, как работает генератор, какие у него разные типы и из каких частей состоит генератор. Читайте дальше, чтобы познакомиться с миром этого удивительного устройства.

Принцип работы генератора

Прежде всего, имейте в виду, что генератор - это не устройство, которое вырабатывает электричество. Генератор использует предоставленную механическую энергию и заставляет поток существующих электрических зарядов внутри провода своих обмоток.Этот поток электрических зарядов заставляет выходной электрический ток использоваться для различных целей.

Чтобы понять, что выдает генератор, лучше рассмотреть водяной насос. Водяной насос создает поток воды, но не создает воду, протекающую через него. Проще говоря, генераторы вырабатывают электрическую энергию, улавливая энергию движения и превращая ее в электричество, заставляя электроны внешних источников проходить через электрическую цепь. Генераторы аналогичны электродвигателям, но работают в обратном направлении.

Как упоминалось ранее, генератор работает на основе принципа электромагнитной индукции, введенного Майклом Фарадеем в 19 веке. Этот закон гласит, что, когда проводник движется внутри магнитного поля, создаются электрические заряды, и их можно заставить течь. Опять же, простыми словами, генератор - это просто пара вращающихся проводов рядом или внутри магнита или магнитного поля, которое вызывает электрический ток. Пример водяного насоса - лучший способ понять, что делает генератор.

Теперь, когда вы знаете, что делает генератор и как он работает, вы ближе к ответу на вопрос «что такое генератор». Чтобы завершить определение генератора, давайте посмотрим, сколько у него типов и насколько они разные. В следующем разделе мы поговорим о различных типах генераторов. Оставайтесь с нами.

Типы генераторов

Генераторы делятся на два различных основных класса или категории: генераторы переменного тока (переменного тока) и генераторы постоянного тока (постоянного тока).

  1. Генератор переменного тока

Генераторы переменного тока или, как их еще называют, генератор переменного тока, являются одними из наиболее важных устройств для обеспечения электроэнергией в различных условиях нашей жизни. AC работают по принципу электромагнитной индукции. Генераторы переменного тока подразделяются на две категории: индукционные генераторы и синхронные генераторы. Поскольку в генераторах этого типа нет щеток, обслуживание практически бесплатное. размер переменного тока меньше по сравнению с постоянным током.Итак, они используются чаще. И наконец, что делает этот тип более популярным, так это то, что потери переменного тока меньше, чем потери постоянного тока.

  1. Генератор постоянного тока

Этот тип генератора обычно используется в автономных приложениях. В зависимости от того, как их магнитное поле создается в статоре, DC классифицируются на три основные категории: генераторы на постоянных магнитах, генераторы с раздельным возбуждением и генераторы с самовозбуждением. Некоторые преимущества DC: они просты в дизайне.Обычно они используются для управления крупными двигателями и электрическими устройствами, требующими прямого управления. Постоянный ток уменьшает описываемые флуктуации, сглаживая выходное напряжение через регулярный набор катушек вокруг якоря для некоторых приложений в установившемся режиме.

Компоненты генераторов

Итак, мы ознакомились с принципом работы и различными типами генераторов и постепенно приближаемся к ответу на вопрос «что такое генератор?» В этом разделе мы познакомим вас с основными частями генератора.Помимо мэйнфрейма, генератор состоит из 6 основных компонентов: двигателя, топливной системы, генератора, системы охлаждения, выхлопа и смазки. Мы разбили эти 6 частей на 4 основные категории. Продолжайте читать, чтобы узнать больше об этих компонентах.

  1. Двигатель

Возможно, самая важная часть каждой машины - это двигатель. Обычно это часть всей системы, которая преобразует топливо в полезную энергию и помогает ему двигаться или выполнять свою механическую функцию.Таким образом, двигатель иногда называют первичным двигателем машины. В генераторе источником моторного топлива может быть бензин, дизельное топливо, природный газ, пропан, биодизель, вода, сточный газ или водород. Двигатель использует один из этих видов топлива для создания механической энергии, которую генератор преобразует в электричество. Некоторые двигатели, обычно используемые в конструкции генераторов, включают поршневые, паровые, турбинные и микротурбинные.

  1. Топливная система

Все генераторы, работающие на одном из различных типов топлива, упомянутых ранее, имеют систему, которая собирает и перекачивает топливо в двигатель.Топливная система содержит бак, в котором хранится достаточно топлива для работы генератора в течение эквивалентного количества часов. Также имеется труба, соединяющая бак, а затем и двигатель, а обратная труба соединяет двигатель с топливным баком для возврата топлива.

Есть топливный насос, который перекачивает топливо из бака через топливопровод, а затем в двигатель. Другая часть топливной системы - это топливный фильтр, задача которого - отфильтровать любой мусор из топлива, прежде чем он попадет в двигатель.Последний компонент топливной системы - топливная форсунка. Работа топливной форсунки состоит в том, чтобы распылять топливо, а затем впрыскивать топливо непосредственно в камеру сгорания двигателя.

  1. Генератор и регулятор напряжения

Возможно, мы можем сказать, что основная работа генератора - это генератор переменного тока. Этот компонент превращает механическую энергию, производимую двигателем, в электрический ток. Генератор представляет собой статор, неподвижную часть набора катушек, и ротор или якорь, которые создают вокруг статора стабильное вращающееся электромагнитное поле.В целом, генератор вырабатывает электрическое напряжение, которое необходимо регулировать для получения постоянного тока, подходящего для практического использования.

  1. Системы охлаждения, выпуска и смазки

Имеется система охлаждения для предотвращения перегрева и регулирования температуры компонентов генератора во время использования. В некоторых генераторах используется вентилятор, охлаждающая жидкость или и то, и другое, чтобы контролировать рабочую температуру генератора. Поскольку камера сгорания генератора преобразует топливо, генератор также будет создавать выхлоп.Вредные газы, выделяемые генератором во время использования, удаляются выхлопными системами. Последняя часть - это смазочная система. Поскольку генератор состоит из множества движущихся частей, и каждая из них требует смазки для плавного движения, должна быть система смазки, которая обеспечивает хорошее смазывание и плавность работы генератора.

Заключение

В этой статье мы попытались показать вам, что именно делает генератор. Чтобы ответить на вопрос «что такое генератор?» мы проанализировали принцип работы генератора и принцип его работы.Мы объяснили правила, которым следует генератор для превращения механической энергии в электрическую. После этого мы перешли к различным типам генераторов и поговорили о двух основных типах генераторов.

Мы обсудили различные основные части генератора. Если у вас есть опыт использования различных типов генераторов, мы будем очень рады услышать ваше мнение в комментариях. Кстати, если у вас есть какие-либо вопросы по этой теме, и если у вас все еще есть неясности в отношении генераторов, вы можете зарегистрироваться на нашем веб-сайте и дождаться, пока наши эксперты в Linquip ответят на ваши вопросы.Надеюсь, вам понравилась эта статья.

- Объявление -

Электрогенератор - Строительство, работа, типы и применение

Электрогенератор был изобретен до того, как была обнаружена корреляция между электричеством и магнетизмом. Эти генераторы используют электростатические принципы для работы с помощью пластин, движущихся лент, которые заряжаются электрически, а также дисков, переносящих заряд к электроду с высоким потенциалом.Генераторы используют два механизма для генерации заряда, такие как трибоэлектрический эффект, иначе электростатическая индукция. Таким образом, он генерирует низкий ток, а также очень высокое напряжение из-за сложности изолирующих машин, а также их неэффективности. Номинальная мощность электростатических генераторов низка, поэтому они никогда не использовались для выработки электроэнергии. На практике этот генератор используется для подачи питания на рентгеновские трубки, а также в ускорители атомных частиц.


Что такое электрический генератор?

Альтернативное название электрического генератора - динамо-машина для передачи, а также распределения энергии по линиям электропередач для различных приложений, таких как домашнее, промышленное, коммерческое и т. Д.Они также применимы в самолетах, автомобилях, поездах, кораблях для выработки электроэнергии. Для электрического генератора механическая мощность может быть получена через вращающийся вал, что эквивалентно крутящему моменту вала, который умножается с использованием угловой скорости или скорости вращения.

Механическая энергия может быть получена из различных источников, таких как гидравлические турбины на водопадах / плотинах; паровые турбины, газовые турбины и ветряные турбины, в которых пар может генерироваться за счет тепла от воспламенения ископаемого топлива, в противном случае - за счет ядерного деления.Газовые турбины могут сжигать газ непосредственно внутри турбины, в противном случае - дизельные двигатели и бензин. Конструкция генератора, а также его скорость могут изменяться в зависимости от характеристик механического первичного двигателя.

Генератор - это машина, преобразующая механическую энергию в электрическую. Он работает по принципу закона Фарадея электромагнитной индукции. Закон Фарадея гласит, что всякий раз, когда проводник помещается в переменное магнитное поле, индуцируется ЭДС, и эта индуцированная ЭДС равна скорости изменения потоковых связей.Эта ЭДС может возникать при изменении относительного пространства или относительного времени между проводником и магнитным полем. Итак, важными элементами генератора являются:

  • Магнитное поле
  • Движение проводника в магнитном поле
Характеристики

Основные характеристики электрогенераторов включают следующее.

Мощность

Выходная мощность электрогенератора находится в широком диапазоне.Выбрав идеальный генератор, можно легко удовлетворить требования высокой и низкой мощности за счет одинаковой выходной мощности.

Топливо

Для электрогенераторов доступны несколько вариантов топлива, таких как бензин, дизельное топливо, сжиженный нефтяной газ, природный газ.

Переносимость

Электрические генераторы портативны, потому что у них есть ручки и колеса. Таким образом, их можно легко перемещать из одного места в другое.

Шум

В некоторых генераторах используется технология шумоподавления, позволяющая снизить шумовое загрязнение.

Строительство электрогенератора

Электрогенератор может быть построен с использованием различных частей, таких как генератор переменного тока, топливная система, регулятор напряжения, система охлаждения и выхлопа, система смазки, зарядное устройство, панель управления, рама или основной узел.

Генератор

Преобразование энергии, происходящее в генераторе, называется генератором переменного тока. Это включает в себя как неподвижные, так и движущиеся части, которые работают вместе, чтобы генерировать электромагнитное поле, а также поток электронов для выработки электричества.

Топливная система

Топливная система в генераторе используется для выработки необходимой энергии. Эта система состоит из топливного насоса, топливного бака, возвратного патрубка и патрубка, который используется для соединения двигателя и бака. Топливный фильтр используется для удаления мусора до того, как он достигнет двигателя, а форсунка заставляет топливо течь в камеру сгорания.

Двигатель

Основная функция двигателя - подавать электроэнергию в генератор. Диапазон мощности, генерируемой генератором, может определяться мощностью двигателя.

Регулятор напряжения

Этот компонент используется для управления напряжением вырабатываемого электричества. При необходимости он также преобразует электричество переменного тока в постоянный.

Системы охлаждения и выхлопа

Как правило, генераторы выделяют много тепла, поэтому для уменьшения тепла от перегрева машины используется система охлаждения. Выхлопная система используется для устранения дыма во время ее работы.

Система смазки

В генераторе есть несколько небольших, а также движущихся частей, которые необходимы для их достаточной смазки с использованием моторного масла, чтобы можно было добиться плавной работы, а также для защиты от чрезмерного износа.Уровни смазки следует часто проверять каждые 8 ​​часов процесса.

Зарядное устройство

Батареи в основном используются для питания генератора. Это полностью автоматический компонент, используемый для обеспечения готовности батареи к работе в случае необходимости, обеспечивая ее стабильным низким напряжением.

Панель управления

Панель управления используется для управления всеми функциями генератора во время работы от начала до конца. Современные устройства способны определять, когда генератор автоматически включается / выключается.

Рама / основной узел

Рама - это корпус генератора, и это часть, в которой конструкция удерживает все это на месте.

Работа электрогенератора

Генераторы

в основном представляют собой катушки из электрических проводников, обычно из медной проволоки, которые плотно намотаны на металлический сердечник и установлены с возможностью поворота внутри экспоната из больших магнитов. Электрический проводник движется через магнитное поле, магнетизм будет взаимодействовать с электронами в проводнике, чтобы вызвать поток электрического тока внутри него.

Электрический генератор

Проводящая катушка и ее сердечник называются якорем, соединяя якорь с валом механического источника энергии, например двигателя, медный проводник может вращаться с исключительно повышенной скоростью по магнитному полю.

Точка, когда якорь генератора сначала начинает вращаться, а затем в железных полюсных наконечниках возникает слабое магнитное поле. Когда якорь вращается, он начинает повышать напряжение. Часть этого напряжения поступает на обмотки возбуждения через регулятор генератора.Это впечатляющее напряжение создает более сильный ток обмотки, увеличивает силу магнитного поля.

Расширенное поле создает большее напряжение в якоре. Это, в свою очередь, увеличивает ток в обмотках возбуждения, что приводит к более высокому напряжению якоря. В это время признаки обуви зависели от направления протекания тока в обмотке возбуждения. Противоположные знаки заставят ток течь в неправильном направлении.

Как электрический генератор вырабатывает электричество?

На самом деле электрические генераторы не производят электричество; вместо того, чтобы создавать, они меняют энергию с механической на электрическую или с химической на электрическую.Это преобразование энергии может быть выполнено путем захвата энергии движения и преобразования ее в электрическую форму путем выталкивания электронов из внешнего источника с помощью электрической цепи. Электрогенератор в основном работает в обратном направлении по отношению к двигателю.

Некоторые генераторы, которые используются на плотине Гувера, будут обеспечивать огромное количество энергии за счет передачи энергии, создаваемой турбинами. Генераторы, которые используются как в коммерческих, так и в жилых помещениях, очень малы по размеру, но для выработки механической энергии они зависят от различных источников топлива, таких как газ, дизельное топливо, а также пропан.

Эту мощность можно использовать в цепи для наведения тока.
После того, как этот ток был создан, он направляется с помощью медных проводов для питания внешних устройств, в противном случае - машин целых электрических систем.

Современные генераторы используют принцип электромагнитной индукции Майкла Фарадея, потому что он обнаружил, что когда проводник вращается в магнитном поле, могут образовываться электрические заряды для создания тока. Электрический генератор связан с тем, как водяной насос нагнетает воду с помощью трубы.

Типы электрогенераторов

Генераторы классифицируются по типам.

  • Генераторы переменного тока
  • Генераторы постоянного тока
Генераторы переменного тока

Их также называют генераторами переменного тока. Это наиболее важный способ производства электроэнергии во многих местах, поскольку в настоящее время все потребители используют переменный ток. Он работает по принципу электромагнитной индукции. Они бывают двух типов: индукционный и синхронный.

Индукционный генератор не требует отдельного возбуждения постоянного тока, регуляторов, регуляторов частоты или регулятора. Эта концепция имеет место, когда катушки проводника вращаются в магнитном поле, вызывая ток и напряжение. Генераторы должны работать с постоянной скоростью, чтобы обеспечить стабильное напряжение переменного тока даже при отсутствии нагрузки.

Генератор переменного тока

Синхронные генераторы - это генераторы большого размера, которые в основном используются на электростанциях. Они могут быть с вращающимся полем или с вращающимся якорем.У вращающегося якоря якорь находится у ротора, а поле у ​​статора. Ток якоря ротора снимается через контактные кольца и щетки. Они ограничены из-за высоких ветровых потерь. Они используются для приложений с низкой выходной мощностью. Генератор переменного тока с вращающимся полем широко используется из-за его высокой мощности выработки и отсутствия контактных колец и щеток.

Это могут быть как трехфазные, так и двухфазные генераторы. Двухфазный генератор вырабатывает два совершенно разных напряжения.Каждое напряжение можно рассматривать как однофазное напряжение. Каждый из них генерирует напряжение, полностью независимое от другого. Трехфазный генератор переменного тока имеет три однофазные обмотки, разнесенные таким образом, что индуцированное напряжение в любой одной фазе смещается на 120º относительно двух других.

Они могут быть подключены как треугольником, так и звездой. В Delta Connection каждый конец катушки соединен вместе, образуя замкнутый контур. Соединение "Дельта" выглядит как греческая буква "Дельта" (Δ). В соединении звездой один конец каждой катушки соединен вместе, а другой конец каждой катушки оставлен открытым для внешних соединений.Соединение "звезда" обозначается буквой Y.

.

Эти генераторы комплектуются двигателем или турбиной для использования в качестве мотор-генераторной установки и используются в таких приложениях, как военно-морской флот, добыча нефти и газа, горнодобывающая техника, ветряные электростанции и т. Д.

Преимущества

К преимуществам генераторов переменного тока можно отнести следующее.

  • Эти генераторы обычно не требуют обслуживания из-за отсутствия щеток.
  • Легко повышайте и понижайте через трансформаторы.
  • Размер линии передачи может быть меньше из-за функции повышения
  • Размер генератора относительно меньше, чем у машины постоянного тока
  • Потери относительно меньше, чем у машины постоянного тока
  • Эти выключатели генератора относительно меньше выключателей постоянного тока

Генераторы постоянного тока

Генератор постоянного тока

обычно используется в автономных приложениях. Эти генераторы обеспечивают бесперебойную подачу питания непосредственно в накопители электроэнергии и электрические сети постоянного тока без использования нового оборудования.Сохраненная мощность передается нагрузкам через преобразователи постоянного тока в переменный. Генераторами постоянного тока можно было управлять обратно на неподвижную скорость, так как батареи, как правило, стимулируют регенерацию значительно большего количества топлива.

Генератор постоянного тока
Классификация генераторов постоянного тока
Генераторы

D.C классифицируются в зависимости от того, как их магнитное поле создается в статоре машины.

  • Генераторы постоянного тока на постоянных магнитах
  • Генераторы постоянного тока с раздельным возбуждением и
  • Генераторы постоянного тока с самовозбуждением.

Генераторы постоянного тока с постоянными магнитами не требуют возбуждения внешнего поля, поскольку они имеют постоянные магниты для создания магнитного потока. Они используются для приложений с низким энергопотреблением, таких как динамо-машины. Генераторы постоянного тока с раздельным возбуждением требуют возбуждения внешнего поля для создания магнитного потока. Мы также можем варьировать возбуждение, чтобы получить переменную выходную мощность.

Они используются в гальванических и электролитических процессах. Из-за остаточного магнетизма, присутствующего в полюсах статора, генераторы постоянного тока с самовозбуждением могут создавать собственное магнитное поле после запуска.Они просты по конструкции и не нуждаются во внешней цепи для изменения возбуждения поля. Опять же, эти генераторы постоянного тока с самовозбуждением подразделяются на шунтовые, последовательные и составные генераторы.

Они используются в таких приложениях, как зарядка аккумуляторов, сварка, обычное освещение и т. Д.

Преимущества

К преимуществам генератора постоянного тока можно отнести следующее.

  • В основном машины постоянного тока имеют широкий спектр рабочих характеристик, которые могут быть получены путем выбора метода возбуждения обмоток возбуждения.
  • Выходное напряжение можно сгладить, регулярно располагая катушки вокруг якоря. Это приводит к меньшему количеству колебаний, что желательно для некоторых приложений в установившемся режиме.
  • Нет необходимости в экранировании излучения, поэтому стоимость кабеля будет меньше по сравнению с кабелем переменного тока.

Электрогенераторы прочие

Генераторы

подразделяются на разные типы, такие как портативные, резервные и инверторные.

Переносной генератор

Они чрезвычайно используются в различных приложениях и доступны в различных конфигурациях с изменением мощности.Они полезны при обычных бедствиях после выхода из строя электросети. Они используются в жилых, небольших коммерческих учреждениях, таких как магазины, торговые точки, на стройплощадке, чтобы обеспечивать электроэнергией небольшие инструменты, свадьбы на открытом воздухе, кемпинг, мероприятия на открытом воздухе и обеспечивать питание сельскохозяйственных устройств, таких как скважины, в противном случае системы капельного орошения.

Генераторы этого типа работают на дизельном топливе, в противном случае - на газе, чтобы обеспечивать кратковременную электроэнергию. Основные характеристики переносного генератора

  • Проводит электричество с помощью двигателя внутреннего сгорания.
  • Может подключаться к разным инструментам или приборам через розетки.
  • Может быть подключен к субпанелям.
  • Используется в отдаленных районах.
  • Он потребляет меньше энергии для работы морозильной камеры, телевизора и холодильника.
  • Скорость двигателя должна быть 3600 об / мин, чтобы выдавать типичный ток с частотой 60 Гц.
  • Обороты двигателя можно регулировать с помощью оператора
  • Обеспечивает питание осветительных приборов и инструментов
Инвертор-генератор

В генераторе этого типа используется двигатель, подключенный к генератору переменного тока для выработки энергии переменного тока, а также используется выпрямитель для преобразования переменного тока в постоянный.Они используются в холодильниках, кондиционерах, автомобилях-лодках, которые требуют значений определенной частоты, а также напряжения. Они доступны в менее тяжелых и твердых. Характеристики этого генератора в основном включают следующее.

  • Это зависит от современных магнитов.
  • Использует более высокие электронные схемы.
  • Он использует 3 фазы для выработки электроэнергии.
  • Обеспечивает стабильную подачу тока на устройство.
  • Он энергоэффективен, поскольку скорость двигателя регулируется в зависимости от требуемой мощности.
  • Когда он используется с подходящим устройством, его переменный ток может быть установлен на любое напряжение и частоту.
  • Они легкие и используются в автомобиле, лодке и т. Д.
Резервный генератор

Это одна из разновидностей электрической системы, которая используется для работы через автоматический переключатель резерва, который дает сигнал для включения устройства при потере мощности. К лучшим характеристикам резервного генератора можно отнести следующее.

  • Операция может выполняться автоматически
  • Используется в системах безопасности для резервного освещения, лифтов, оборудования жизнеобеспечения, медицинских и противопожарных систем.
  • Обеспечивает стабильную защиту питания
  • Постоянно контролирует энергоснабжение сети
  • Он автоматически выполняет самотестирование каждую неделю, чтобы проверить, правильно ли он реагирует на потерю питания.
  • Состоит из двух компонентов, таких как автоматический переключатель резерва и резервный генератор.
  • Обнаруживает потерю мощности за секунды и увеличивает электроэнергию
  • Работает на природном газе или жидком пропане.
  • Внутри используется двигатель внутреннего сгорания.
Промышленные генераторы

Промышленные генераторы отличаются от коммерческих и жилых помещений. Они прочные и прочные, которые работают в суровых условиях. Характеристики источника питания будут варьироваться от 20 кВт до 2500 кВт, 120-48 В и от 1-фазного до 3-фазного источника питания.

Обычно они более индивидуализированы по сравнению с другими типами. Классификация этих генераторов может быть сделана на основе топлива, используемого для работы двигателя, чтобы можно было вырабатывать электроэнергию.Топливо: природный газ, дизельное топливо, бензин, пропан и керосин,

Индукционные генераторы

Эти генераторы бывают двух типов: с самовозбуждением и с внешним возбуждением. Самовозбуждающиеся используются в ветряных мельницах, где ветер используется как нетрадиционный источник энергии, преобразующийся в электрическую энергию. Внешнее возбуждение используется в приложениях рекуперативного торможения, таких как краны, подъемники, электровозы и лифты.

Техническое обслуживание электрогенератора

Техническое обслуживание электрогенераторов во многом схоже со всеми типами двигателей.Для каждого производителя очень важно знать, как обслуживаются все генераторы. Нормальное техническое обслуживание - это общий осмотр, такой как проверка на утечки, уровни охлаждающей жидкости, проверка шлангов и ремней, кабелей и клемм аккумулятора. Важно проверять масло, чтобы его часто менять. Частота замены масла в основном зависит от производителя, от того, как часто оно используется. Если в генераторе используется дизельное топливо, необходимо заменить масло на 100 часов работы.

Раз в год фильтрация и очистка топлива очень быстро ухудшают качество дизельного топлива.После нескольких дней эксплуатации это топливо может разлагаться из-за загрязнения воды и микробов, что приводит к закупорке топливопроводов, а также фильтров. При очистке топлива используются биоциды в год во всех типах генераторов, кроме резервного генератора, где он будет притягивать сырость.

Систему охлаждения следует обслуживать, поскольку она требует проверки уровня охлаждающей жидкости через доступные интервалы во время простоя.

Заряд батареи необходимо проверить, поскольку проблемы с батареей могут вызвать сбои.Регулярное тестирование необходимо для определения текущего состояния батареи. Он включает в себя проверку уровней электролита, а также точную плотность электрических батарей.

Также очень важно отключать генератор на 30 минут еженедельно под нагрузкой. Удалите излишки влаги, смажьте двигатель и отфильтруйте топливо, а также фольгу. Как только любые подвижные части, найденные где-либо на генераторе, должны быть стабильно расположены внутри.

Для дальнейшего осмотра необходимо вести записи, чтобы знать состояние вашего генератора.

Приложения

К применениям электрогенераторов относятся следующие.

  • В разных городах генераторы обеспечивают питание большинства электросетей
  • Используются на транспорте
  • Малые генераторы являются отличным резервом для домашних нужд в электроснабжении, в противном случае для малых предприятий
  • Применяются для привода электродвигателей
  • Используются перед подачей электроэнергии на строительных площадках.
  • Используются в лабораториях для определения диапазона напряжений
  • Энергоэффективность, например, использование топлива, можно значительно сократить
Недостатки

Основным недостатком является то, что они не могут остановить сильные колебания напряжения, по этой причине генераторы обычного типа не подходят для работы с потребителями, чувствительными к напряжению, такими как ПК. ноутбуки, телевизоры или музыкальные системы, потому что они могут повредить их в плохом случае.

Итак, это все об электрическом генераторе.Электрогенератор работает по принципу электромагнитной индукции. Этот принцип был открыт Майклом Фарадеем. В основном генераторы представляют собой катушки с электрическими проводниками или, как правило, медную проволоку. Этот провод плотно намотан на металлический сердечник и помещен примерно так, чтобы вращаться в экспонате из больших магнитов.

Электрический проводник вращается в магнитном поле, и магнетизм соединяется через электроны внутри проводника, вызывая в нем ток. Здесь катушка проводника, а также ее сердечник называются якорем.Он подключен к валу источника питания. Теперь вы четко разобрались в принципах работы и типах генераторов. Кроме того, любые дополнительные вопросы по этой теме или по электрическим и электронным проектам оставляйте комментарии ниже.

Электрогенератор Источник изображения: альтернативный вариант

Эксплуатация генераторов

Генератор - это устройство, преобразующее механическую энергию в электрическую.

Строительство

Чтобы понять работу простого генератора, рассмотрим прямоугольную катушку ABCD, помещенную в магнитное поле, как показано на рисунке.Два конца катушки соединены с двумя медными полукольцами (или разрезными кольцами) R 1 и R 2 , называемыми коммутатором. Есть две угольные щетки B 1 и B 2 , которые слегка прижимаются к двум полукольцам.

Принцип действия

Генератор работает по принципу электромагнитной индукции, предложенному законом Фарадея.

Согласно этому принципу, «ЭДС индуцируется в проводнике всякий раз, когда есть относительное движение между проводником и магнитным полем».

Предположим, что катушка генератора ABCD изначально находится в горизонтальном положении. Поскольку катушка вращается против часовой стрелки между полюсами N и S магнита, сторона AB катушки движется вниз, разрезая магнитные силовые линии около N-полюса магнита, а сторона DC движется вверх, разрезая силовые линии. возле S-полюса магнита. Из-за этого на сторонах AB и DC катушки возникает наведенный ток. Применяя правило правой руки Флеминга к сторонам AB и DC катушки, мы обнаруживаем, что токи в них направлены в направлениях B к A и D к C соответственно.Таким образом, индуцированные токи на двух сторонах катушки имеют одинаковое направление, и мы получаем эффективный индуцированный ток в направлении BADC. Благодаря этому щетка B 1 становится положительным полюсом, а щетка B 2 становится отрицательным полюсом генератора.

После половины оборота стороны AB и DC катушки поменяются местами. Сторона AB перейдет с правой стороны и начнет движение вверх, тогда как сторона DC перейдет с левой стороны и начнет движение вниз.Но когда стороны катушки меняются местами, то два полукольца коммутатора R 1 и R 2 автоматически меняют свои контакты с одной угольной щетки на другую. Из-за этого изменения ток продолжает течь в том же направлении. Таким образом, генератор постоянного тока подает ток только в одном направлении.

Как работают генераторы | Электрогенераторы

Какие части электрического генератора?

Генератор состоит из девяти частей, и все они играют роль в передаче энергии туда, где она больше всего нужна.Составные части генератора:

  1. Двигатель. Двигатель подает энергию на генератор. Мощность двигателя определяет, сколько электроэнергии может обеспечить генератор.
  1. Генератор . Здесь происходит преобразование механической энергии в электрическую. Генератор, также называемый «genhead», содержит как движущиеся, так и неподвижные части, которые работают вместе, создавая электромагнитное поле и движение электронов, которые генерируют электричество.
  1. Топливная система . Топливная система позволяет генератору производить необходимую энергию. Система включает топливный бак, топливный насос, трубопровод, соединяющий бак с двигателем, и возвратный трубопровод. Топливный фильтр удаляет мусор до того, как он попадет в двигатель, а форсунка нагнетает топливо в камеру сгорания.
  1. Регулятор напряжения . Этот компонент помогает контролировать напряжение вырабатываемой электроэнергии.Это также помогает преобразовать электричество из переменного тока в постоянный, если это необходимо.
  1. Системы охлаждения и выхлопа . Генераторы выделяют много тепла. Система охлаждения предотвращает перегрев машины. Выхлопная система направляет и удаляет дымовую форму во время работы.
  1. Система смазки . Внутри генератора много маленьких движущихся частей. Очень важно смазать их соответствующим образом моторным маслом, чтобы обеспечить бесперебойную работу и защитить их от чрезмерного износа.Уровни смазки следует проверять регулярно, каждые 8 ​​часов работы.
  1. Зарядное устройство . Батареи используются для запуска генератора. Зарядное устройство для батареи - это полностью автоматический компонент, который обеспечивает готовность батареи к работе в случае необходимости, подавая на нее постоянное низкое напряжение.
  1. Панель управления . Панель управления контролирует все аспекты работы генератора от скорости запуска и работы до выходов.Современные устройства даже способны определять падение или отключение электроэнергии и могут автоматически запускать или выключать генератор.
  1. Основной узел / рама . Это корпус генератора. Это та часть, которую мы видим; структура, которая держит все это на месте.

Какое топливо нужно для электрогенераторов?

Современные электрические генераторы доступны во многих вариантах заправки топливом. Дизель-генераторы - самые популярные промышленные генераторы на рынке.К бытовым генераторам чаще всего относятся: генераторы природного газа или генераторы пропана, в то время как портативные генераторы меньшего размера обычно работают на бензине, дизельном топливе или пропане. Некоторые генераторы могут работать на двух видах топлива и работают как на бензине, так и на дизельном топливе.

Топливные баки генератора

Топливная система обеспечивает генератор необходимым сырьем для выработки электроэнергии, инициируя процесс внутреннего сгорания. Без топлива не может происходить горение, и генератор не может преобразовывать механическую энергию в электрическую.Топливо для генератора необходимо хранить на месте, чтобы генератор можно было сразу же запустить в работу, когда это необходимо.

В зависимости от типа генератора и его применения топливные баки могут быть установлены на раме генератора или могут быть внешними баками, расположенными далеко от самого генератора. Как правило, чем больше генератор и чем дольше он должен работать, тем больше топливный бак. Топливо для генератора хранится в баках разной емкости, в зависимости от предполагаемого использования генератора и требуемой мощности.Танки можно размещать над землей, под землей или под базой. Резервуары вспомогательной базы предназначены для хранения менее 1000 галлонов топлива и расположены над землей, но ниже основания генераторной установки.

Наземные и подземные резервуары для хранения топлива генератора - лучший выбор для нужд большой емкости. Подземные резервуары для хранения более дороги в установке, но они, как правило, служат дольше, поскольку защищены от непогоды. У обоих типов резервуаров для хранения топлива есть свои плюсы и минусы, но вы не будете одиноки в принятии решения.Топливные баки генераторов и топливные системы генераторов должны соответствовать нескольким требованиям и допускам, прежде чем их можно будет установить, независимо от того, предназначена ли установка для жилого или коммерческого использования.

Основной кодекс, регулирующий топливные баки генератора в Соединенных Штатах, - это Кодексы и стандарты Национальной ассоциации противопожарной защиты (NFPA), в частности разделы NFPA 30 и NFPA 37. Таким образом, все запросы на топливный бак генератора должны подаваться в Государственную пожарную службу. Маршалла для утверждения.

Чтобы определить минимальную требуемую емкость топливного бака, вам нужно подумать о том, как вы собираетесь использовать генератор.Для кратковременных или редких отключений электроэнергии может быть приемлемым резервный генератор с меньшим резервуаром для хранения, однако вам нужно будет наполнять резервуар чаще, чем вам нужно будет пополнять резервуары большего размера. Резервуары большего размера могут потребоваться, если вы планируете снабжать энергией крупный коммерческий объект основным генератором или если вы подвержены длительным и частым перебоям в подаче электроэнергии.

Ваш поставщик генератора может помочь вам определить оптимальный размер топливного бака, чтобы у вас было достаточно топлива, когда оно вам понадобится.Еще одна вещь, о которой следует помнить как при покупке генератора, так и при выборе топливного бака для генератора, - это стоимость и доступность топлива в вашем регионе. Перед покупкой генератора рекомендуется поговорить с местными поставщиками топлива, чтобы лучше понять стоимость и логистику, связанные с приобретением топлива для генератора.

Выхлопные системы и средства контроля выбросов генератора

Поскольку машины, работающие на ископаемом топливе и работающие непрерывно, даже если это время работы нестабильно, генераторы должны быть оснащены компонентами для их охлаждения и фильтрации выбросов.Системы охлаждения и вентиляции генераторов снижают и отводят тепло различными способами:

  • Вода. Для охлаждения компонентов генератора можно использовать воду. Этот тип системы охлаждения обычно ограничен конкретными ситуациями или очень большими установками мощностью 2250 кВт и выше.
  • Водород. Водород - очень эффективный хладагент, который используется для поглощения тепла, выделяемого работающим генератором. Тепло передается теплообменнику и вторичному охлаждающему контуру, которые часто расположены в больших местных градирнях.
  • Радиаторы и вентиляторы. Генераторы меньшего размера охлаждаются за счет комбинации стандартного радиатора и вентилятора.

Дымовые газы, выделяемые генераторами, аналогичны выхлопным газам других бензиновых или дизельных двигателей. В их состав входят токсичные химические вещества, такие как углекислый газ, который необходимо отфильтровать и удалить из выбросов. Выхлопная система генератора справляется с этой задачей.

Выхлопные трубы подсоединены к двигателю, где они направляют дым вверх, наружу и от генератора и установки.Труба выходит за пределы здания, в котором находится генератор, и должна заканчиваться далеко от дверей, окон и других зон забора воздуха.

Помимо выхлопных систем, некоторые генераторы подлежат федеральному контролю за выбросами. Контролируемые выбросы генератора: оксид азота (NOx), углеводороды, оксид углерода (CO) и твердые частицы.

В целом аварийные генераторы и генераторы, которые работают менее 100 часов в год, не подпадают под федеральные требования по выбросам от генераторов, однако постоянно установленные основные генераторы и резервные генераторы подчиняются федеральным требованиям по выбросам в соответствии с тремя правилами EPA:

  • Национальный стандарт по выбросам опасных загрязнителей воздуха (NESHAP) - для поршневых двигателей внутреннего сгорания (RICE). 40 Свод федеральных правил, часть 63, подраздел ZZZZ. Также известно как правило RICE.
  • New Source Performance Standards (NSPS) - Стандарты производительности для стационарных двигателей с искровым зажиганием . 40 CFR, часть 60, подраздел JJJJ. Также известно как правило NSPS с искровым зажиганием.
  • Стандарты характеристик стационарных двигателей внутреннего сгорания с воспламенением от сжатия . 40 Свода федеральных правил, часть 60, подраздел IIII. Также известно как правило сжатия зажигания NSPS.

Хорошая новость заключается в том, что многие новые генераторы уже соответствуют стандартам выбросов от генераторов благодаря производственным усовершенствованиям. Старые генераторы могут быть заменены на устаревшие, что делает их освобожденными от федеральных правил и подчиняется только государственным и местным стандартам выбросов. Требования к контролю выбросов различаются в зависимости от производителя, размера генератора и даты производства, поэтому лучший способ определить ваши требования к выбросам - поговорить с продавцом или производителем генератора.

Для более глубокого изучения нормативов выбросов см. Этот официальный документ Cummins «Влияние нормативов выбросов Уровня 4 на энергетическую отрасль».

Панель управления генератора и автоматический переключатель резерва (АВР)

Одним из важнейших компонентов современных генераторов является панель управления генератором. Панель управления - это мозг генератора, а также пользовательский интерфейс генератора; точка, в которой вы будете получать доступ и управлять работой генератора.

Многие панели управления оснащены автоматическим переключателем резерва (АВР), который постоянно контролирует поступающую мощность. Когда уровень мощности падает или полностью отключается, ATS сигнализирует панели управления о запуске генератора.Аналогичным образом, когда поступающее питание восстанавливается, ATS сигнализирует панели управления о необходимости выключить генератор и повторно подключается к электросети.

В дополнение к круглосуточному мониторингу панель управления генератором предоставляет менеджерам сайта обширную информацию:

  • Манометры двигателя предоставляют важную информацию об уровнях масла и жидкости, напряжении аккумуляторной батареи, частоте вращения двигателя и часах работы. Во многих генераторах панель даже автоматически отключает двигатель, когда обнаруживает проблему с уровнями жидкости или другими аспектами работы генератора.
  • Манометры генератора предоставляют ценную информацию о выходном токе, напряжении и рабочей частоте.

Какой вид обслуживания требует генератор?

Генераторы

представляют собой двигатели и требуют регулярного технического обслуживания двигателя для обеспечения надлежащей работы. Поскольку многие генераторы используются для обеспечения резервного питания в случае аварийных ситуаций, операторам крайне важно проводить регулярные проверки и проверки своих генераторов, чтобы гарантировать, что машина будет работать по мере необходимости, когда это необходимо.

Лучшая программа обслуживания генератора - та, которую рекомендует производитель, но, как минимум, все планы обслуживания генератора должны включать регулярное и текущее:

  • Осмотр и снятие изношенных деталей.
  • Проверка уровней жидкости, включая охлаждающую жидкость и топливо.
  • Осмотр и чистка аккумуляторной батареи.
  • Проведение теста банка нагрузки на генераторе и автоматическом переключателе.
  • Проверка панели управления на точность показаний и индикаторов.
  • Замена воздушного и топливного фильтров.
  • Осмотр системы охлаждения.
  • Смазка деталей по мере необходимости.

Обязательно ведите журнал обслуживания для ведения записей. Включите все показания, уровни жидкости и т. Д., А также дату и показания счетчика моточасов генератора. Эти записи можно сравнить с будущими записями и использовать для помощи в обнаружении отклонений или изменений в работе, которые могут указать вам на скрытые проблемы, которые могут стать серьезными проблемами, если их не проверить.

Генераторы

могут прослужить десятилетия при правильном обслуживании. Эти простые небольшие вложения со временем обязательно окупятся за счет экономии на дорогостоящем ремонте или даже полной замене генератора. Если техническое обслуживание генератора - это не то, чем вы можете управлять самостоятельно, многие дилеры генераторов предлагают контракты на техническое обслуживание или могут порекомендовать квалифицированных специалистов по техническому обслуживанию, которые помогут вам поддерживать генератор в отличном состоянии год за годом. Это время и деньги, потраченные не зря, если они могут поддерживать ваш бизнес в рабочем состоянии при отключении электроэнергии.

Генераторы | HowStuffWorks

Если вы когда-либо перемещали скрепки с помощью магнита или убивали время, укладывая металлическую стружку в бороду на игрушке «Шерстяной Вилли», то вы баловались основными принципами, лежащими в основе даже самых сложных электрических генераторов. Магнитное поле, отвечающее за выстраивание всех этих маленьких кусочков металла в правильную стрижку ирокез, связано с движением электронов. Подвиньте магнит к скрепке, и вы заставите электроны в скрепке двигаться.Точно так же, если вы позволите электронам перемещаться по металлической проволоке, вокруг нее образуется магнитное поле.

Благодаря Вули Вилли мы видим определенную связь между явлениями электричества и магнетизма. Генератор - это просто устройство, которое перемещает магнит рядом с проводом для создания постоянного потока электронов. Действие, которое заставляет это движение, сильно варьируется, от ручных кривошипов и паровых двигателей до ядерного деления, но принцип остается тем же.

Один из простых способов представить генератор - это представить, что он действует как насос, проталкивающий воду по трубе. Только вместо того, чтобы толкать воду, генератор использует магнит, чтобы толкать электроны. Это небольшое упрощение, но оно дает полезную картину свойств, работающих в генераторе. Водяной насос перемещает определенное количество молекул воды и оказывает на них определенное давление. Таким же образом магнит в генераторе толкает определенное количество электронов и оказывает на них определенное «давление».

В электрической цепи количество движущихся электронов называется силой тока или силой тока , и оно измеряется в амперах . «Давление», толкающее электроны, называется напряжением и измеряется в вольтах . Например, генератор, вращающийся со скоростью 1000 оборотов в минуту, может выдавать 1 ампер при 6 вольт. 1 ампер - это количество движущихся электронов (1 ампер физически означает, что 6,24 x 10 18 электронов перемещаются по проводу каждую секунду), а напряжение - это величина давления за этими электронами.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *