Рабочий ход двигателя: Двигатель внутреннего сгорания — урок. Физика, 8 класс.

Рабочий ход поршня и холостой ход двигателя

Двигатель внутреннего сгорания и по сей день является самым популярным изобретением. Он предназначен для приведения в действие самые различные механизмы. Вокруг этого изобретения крутится довольно серьезная терминология, которая понятна не всем водителям. Сегодня вы узнаете, что такое рабочий ход двигателя (рабочий ход поршня) и режим холостого хода.

Рабочий ход поршня ДВС

Чтобы узнать, что это такое, необходимо понимать принцип действия двигателя внутреннего сгорания. Рабочим ходом называется такое движение поршня, при котором мотор совершает полезную, а именно – преобразует тепловую энергию во вращающий момент.

 

Для начала разберем все такты работы двигателя и дойдет до того момента, когда поршень будет совершать эту самую полезную работу. Первым делом идет такт впуска. В это время поршень движется вниз, а клапан, обеспечивающий впуск топливовоздушной смеси, открывается. Она подается в определенном соотношении и полностью заполняет камеру сгорания. Это продолжается до тех пор, пока поршень не достигнет нижней мертвой точки.

Как только поршень пойдет вверх, клапана будут закрыты, в этот момент смесь сжимается и давление внутри камеры повышается. Как только поршень достигнет верхней мертвой точки, наступает момент рабочего хода поршня. На электродах свечи зажигания появится искра, которая воспламенит смесь и станет причиной небольшого взрыва, который заставит поршень пойти вниз. Пока поршень направляется в самую нижнюю точку цилиндра – этот отрезок будет считаться его рабочим ходом. Далее весь цикл повторяется за счет инерции коленчатого вала.

Стоит отметить, что именно рабочий ход является главным показателем эффективности работы двигателя, а значит, целиком определяем его коэффициент полезного действия.

В этом время, вся остальная работа, затрачиваемая на инерцию: сжатие смеси и ее подача – это все создает лишнюю нагрузку на коленвал, тем не менее, без этого работа двигателя невозможна. Многие автомастера увеличивают рабочий ход поршня и увеличивают объем цилиндра, чтобы добиться наибольшей эффктивности за счет увеличения рабочего хода и объема смеси подлежащего сгоранию.

Работа двигателя на холостом ходу

Холостым ходом любого двигателя внутреннего сгорания называют такой режим работы, при котором отсутствует передача вращающего момента на требуемый механизм. Данный режим характерен не только для ДВС, он также активно применяется и для многих других видов силовых установок, однако большее распространение получил именно в таких типах двигателей.

Данный режим обеспечивается за счет сцепления, которое может «разрывать» передачу вращающего момент от маховика к первичному валу, а также нейтральное положение рукоятки коробки передач, при котором отсутвует передача момента на приводной или карданный вал.

Работа двигателя на холостом ходу позволяет поддерживать его обороты на требуемом уровне без остановки. Дело в том, что при наличии нагрузки на коленчатом валу, ДВС всегда стремится остановиться, так кислород в этом случае потребляется в малом количестве. Такой режим также позволяет выполнить прогрев мотора, а на инжекторных двигателях создает работу, при которой содержание вредных веществ в выхлопном дыме сводится к минимуму.

 

Вокруг холостого режима ходит большое количество «легенд». Так, например, многие водители считают режим работы на холостом ходу самым экономичным. Однако это не так, скорее наоборот, холостой ход становится причиной самого максимального потребления топлива. Дело в том, что при полностью закрытой дроссельной заслонке, чтобы двигатель не остановился, система подачи топлива обеспечивает увеличение содержание бензина в камере сгорания, а при открытии дросселя, уровень бензина в смеси снижается, так как потребление кислорода увеличивается. В этом режиме двигатель скорее работает за счет вознкающей инерции после полезного хода поршня. Принято считать, что самым экономичным режимом работы ДВС является тот момент, когда обороты находятся на отметке в 3000 об/мин. В этот момент дроссельная заслонка открывается полностью, а уровень топлива в камере сгорания составляет минимум.

Устойчивость оборотов холостого хода поддерживает система подачи топлива. Именно от нее зависит то, как мотор будет работать себя, когда нагрузка на валу отсутствует, а дроссельная заслонка, при этом, закрыта.

Вот и все, что нужно знать о самых запутанных терминах теории двигателя внутреннего сгорания. Все это относится не только в автомобильным двигателям, ведь такой мотор устанавливается и на мотоциклы, бензопилы, лодки и даже самолеты. 

Рабочий цикл четырехтактного дизельного двигателя

Рабочий цикл авто с дизельным двигателем отличается тем, что при такте впуска в цилиндр двигателя поступает очищенный  воздух, а не горючая смесь, как в карбюраторном двигателе.

Первый такт — впуск.

Устройство современного двигателя

Устройство двигателя современного

автомобиля, устройство систем и механизмов

двигателя автомобиля

Поршень перемещается от ВМТ к НМТ, через открытый впускной клапан в цилиндр поступает очищенный воздух (из-за разрежения, создаваемого поршнем). Воздух перемешивается с небольшим количеством оставшихся от предыдущего цикла отработавших газов, температура повышается и в конце такта впуска достигает 300—320 К, а давление  0.08—0.09 МПа. Коэффициент наполнения цилиндра 0,9 и выше, т. е. больше, чем у карбюраторного двигателя.

Работа четырехтактного одноцилиндрового дизельного  двигателя:

а — впуск воздуха; б — сжатие; в — рабочий ход; г — выпуск отработавших газов; 1— цилиндр; 2 — топливный насос, 3 — поршень: 4 — форсунка, 5 — впускной клапан, 6 — выпускной клапан

Второй такт — сжатие.

Как работает двигатель?

Как устроен простейший двигатель?

Устройство двигателя для детей

Поршень движется от НМТ к ВМТ, впускной и выпускной клапаны закрыты. Давление и температура воздуха увеличиваются и в конце такта составляют соответственно 3—5 МПа и 800—900 К. Степень сжатия регламентируется исправностью деталей КШМ и равна 17—21.

Третий такт — рабочий ход.

В конце такта сжатия (20—30 градусов угла поворота коленчатого вала ло прихода поршня в ВМТ) с помощью насоса через форсунку в цилиндр под высоким давлением (15—20 МПа) в мелкораспыленном виде впрыскивается порция топлива. Топливо от соприкосновения с нагретым воздухом испаряется, его пары перемешиваются с нагретым воздухом и воспламеняются. При сгорании топлива, вследствие подвода большого количества теплоты, резко увеличиваются лишение и температура образовавшихся газов. В начале такта расширения давление газов составляет 7—8 МПа. а температура 2100—2300 К. Под действием давления поршень перемешается от ВМТ к НМТ, совершая полезную работу. Объем цилиндра увеличивается, давление и температура газов снижаются и при подходе поршня к НМТ составляют 0,2-0,4 МПа .

Четвертый такт — выпуск.

Поршень перемещается от НМТ к ВМТ. Через открытый выпускной клапан отработавшие газы выталкиваются через выпускной трубопровод в окружающую среду. В конце такта выпуска давление газов равно 0,11 -0,12 МПа, температура 850—1200.  После этого рабочий цикл дизеля повторяется.

В двухтактных двигателях время, отводимое на рабочий цикл, используется более полно, так как процессы выпуска и впуска совмещены по времени с процессами сжатия и рабочего хода. Рабочий цикл происходит за 360 градусов (один оборот коленчатого вала).

При движении поршня от ВМТ к НМТ одновременно происходят процессы расширения и выпуска с продувкой цилиндра, а при обратном движении от НМТ к ВМ1 впуск и сжатие. Изменения параметров цикла (давление и температура) соответствуют изменениям параметров четырехтактного двигателя.
Сравнение рабочих циклов четырех- , двухтактных двигателей показывает, что при одинаковых размерах цилиндра и частоте вращения коленчатого вала мощность двухтактных двигателей выше в 1.5—1,7 раза. Он проще по конструкции и компактнее.


К недостаткам двухтактного двигателя следует отнести ограниченное время газообмена, что ухудшает очистку цилиндра от отработавших газов, увеличивает потери части свежею заряда, снижает экономичность.

Работа дизельного двигателя, подробнее

Цикл четырехтактного двигателя

Большинство двигателей внутреннего сгорания работают по одному из двух принципов работы: двухтактный цикл или четырехтактный цикл. Четырехтактные двигатели являются преобладающим типом в авиации общего назначения и составляют тему этого поста.

Содержание

Циклы поршневого двигателя

Поршневые двигатели классифицируются в соответствии с количеством отдельных шагов, которые двигатель выполняет за один полный цикл двигателя. Двухтактные двигатели совершают цикл за один оборот коленчатого вала двумя движениями; ход поршня вверх и вниз, который включает в себя впуск, сжатие, сгорание и выпуск. Двухтактные двигатели распространены на сверхлегких и некоторых небольших сверхлегких самолетах, поскольку эти двигатели имеют меньшее количество деталей, что делает их более простыми в эксплуатации и более дешевыми в приобретении и обслуживании.

Четырехтактные двигатели являются наиболее распространенным типом двигателей, используемых в авиации общего назначения, и именно этот тип двигателя мы будем изучать далее. Четырехтактному двигателю требуется два оборота коленчатого вала для завершения одного цикла двигателя, при этом поршень перемещается на 180 ° для завершения каждого шага цикла. Четырехтактный цикл включает этапы впуска и сжатия (один оборот коленчатого вала) и этап мощности и выпуска (один оборот коленчатого вала).

Номенклатура циклов

Существует ряд определений, которые следует хорошо понять, прежде чем переходить к подробностям четырехтактного цикла. См. изображение ниже и определения под изображением.

Рисунок 1: Диаметр отверстия и ход поршня, движущегося в цилиндре

Верхняя мертвая точка (ВМТ) – относится к положению поршня, когда он находится в верхней мертвой точке. Поршень расположен в верхней части головки цилиндров, а шатунная шейка находится в самом верхнем положении.

Нижняя мертвая точка (НМТ) – это точка в цикле, когда поршень находится в нижней точке своего хода, а шатунная шейка находится в самом нижнем положении.

Ход – ход двигателя – это возвратно-поступательное расстояние, которое поршень перемещает в цилиндре от НМТ до ВМТ.

Отверстие – относится к внутреннему диаметру цилиндра.

Степень сжатия – объем пространства в цилиндре можно определить при положении поршня в НМТ и в ВМТ. Соотношение между ними дает степень сжатия. Например, двигатель со степенью сжатия, равной 9, имеет объем в цилиндре в девять раз больше, когда поршень находится в НМТ, чем в ВМТ. 92}{4}\times Ход
$$
Где:
\( D: \) Диаметр цилиндра
\( S.V.: \) Рабочий объем

Четырехтактный цикл

Пока двигатель работает, он продолжайте непрерывно повторять четыре шага четырехтактного цикла. Каждый шаг в цикле представляет собой перемещение поршня на 180°, что соответствует половине оборота коленчатого вала. Поскольку для завершения одного четырехтактного цикла требуется два оборота коленчатого вала, полный цикл будет завершен на половине оборотов двигателя, например, двигатель, работающий на 3000 об/мин, совершит 1500 полных циклов за одну минуту.

Двигатель всегда завершает цикл в одном и том же порядке:

Рисунок 2: Элементы четырехтактного цикла

Впуск или впуск

Целью впуска или такта впуска является всасывание смеси воздуха и топлива в цилиндр . Этот ход происходит при движении поршня вниз от ВМТ к НМТ. Впускной клапан должен быть открыт, чтобы топливовоздушная смесь могла попасть в цилиндр, в то время как выпускной клапан остается закрытым. Движение поршня вниз приводит к падению давления в цилиндре, в результате чего смесь всасывается в полость, оставшуюся после движения поршня.

Рисунок 3: Такт впуска или такта впуска

Сжатие

Как следует из названия, целью такта сжатия является сжатие топливно-воздушной смеси, которая всасывается в головку блока цилиндров до того, как произойдет воспламенение. Это достигается за счет движения поршня вверх от НМТ к ВМТ. Движение поршня уменьшает объем, занимаемый смесью, вызывая повышение давления и температуры внутри цилиндра. Впускной и выпускной клапаны остаются закрытыми на протяжении большей части хода (впускной клапан остается открытым примерно на 50° после НМТ, чтобы обеспечить поступление в цилиндр оптимального количества смеси). Когда поршень приближается к ВМТ, срабатывает свеча зажигания, воспламеняющая смесь. Искра синхронизирована таким образом, что инерция поршня, движущегося вверх, не задерживается зажиганием, а продолжается до ВМТ, где заканчивается ход поршня.

Рисунок 4: Такт сжатия

Мощность

Быстро расширяющийся газ, воспламеняемый свечой зажигания, вызывает скачок давления внутри цилиндра, заставляя поршень вернуться из ВМТ в НМТ. По мере движения поршня вниз увеличивающийся объем вызывает снижение давления и температуры в цилиндре. Именно этот рабочий ход заставляет вращаться коленчатый вал, который в конечном итоге приводит в движение воздушный винт и создает тягу. Впускной и выпускной клапаны остаются закрытыми большую часть рабочего хода, а выпускной клапан открывается непосредственно перед тем, как поршень достигает НМТ. Время открытия клапана установлено таким образом, чтобы обеспечить выработку максимальной мощности и в то же время обеспечить наиболее эффективный выброс сгоревших газов во время такта выпуска.

Рисунок 5: Рабочий ход

Выпуск

Выпускной клапан открывается непосредственно перед завершением рабочего такта и остается открытым во время движения поршня от НМТ к ВМТ. Движение поршня выталкивает выхлопные газы через открытый выпускной клапан, очищая цилиндр до начала такта впуска. Это завершает цикл, и поршень снова начинает двигаться вниз по мере повторения шага индукции.

Рисунок 6: Такт выпуска

Полный четырехтактный цикл

Полный цикл показан на изображении ниже.

Рисунок 7: Полный четырехтактный цикл

Работа клапана

Одним из фундаментальных свойств всей материи является то, что она обладает массой и, следовательно, инерцией. Это означает, что топливно-воздушная смесь, как и твердое тело, подчиняется законам Ньютона и требует силы, чтобы преодолеть ее инерцию и ускориться в цилиндре. Эта сила возникает из-за падения давления в цилиндре при движении поршня вниз, но движение газа не является мгновенным. Следовательно, открытие впускного и выпускного клапанов в ВМТ и НМТ соответственно не приведет к максимальной мощности, вырабатываемой двигателем из-за инерции газа. В результате впускной и выпускной клапаны открываются и закрываются не в ВМТ или НМТ, а по обе стороны от этих положений для обеспечения оптимальной производительности. Важно помнить, что поршни движутся с очень высокими оборотами во время нормальной работы двигателя, из-за чего газу очень трудно успевать за движением поршня.

Привод клапана — клапан открывается преждевременно (до ВМТ или НМТ) для оптимальной работы двигателя.

Запаздывание клапана – закрытие клапана задерживается (после ВМТ или НМТ) для улучшения работы двигателя.

Провод клапана Задержка клапана
Впускной клапан Впускной клапан открывается до достижения ВМТ во время такта выпуска, чтобы подготовить цилиндр к приему топливно-воздушной смеси в начале такта впуска. Впускной клапан не закрывается при достижении НМТ во время такта впуска, а с задержкой до тех пор, пока поршень не пройдет НМТ и не начнет такт сжатия.
Выпускной клапан Выпускной клапан открывается в конце рабочего такта непосредственно перед достижением НМТ. Это позволяет наиболее эффективно выпускать газ во время такта выпуска. Выпускной клапан немного закрыт после ВМТ, как только начинается такт впуска. Это помогает удалить весь выхлопной газ, поскольку свежая смесь, поступающая в цилиндр, вытесняет последний оставшийся газ.

Опережение и запаздывание клапана приводит к периоду вокруг ВМТ и НМТ, когда впускной и выпускной клапаны открыты одновременно. Этот период определяется как перекрытие клапана . На изображении ниже представлено графическое представление цикла четырехтактного двигателя, где периоды перекрытия клапанов можно увидеть по перекрытию двух цветных дуг.

Рисунок 8: Области перекрытия клапанов в цикле четырехтактного двигателя

Цикл Отто

Описанный выше четырехтактный цикл приводит к изменению давления и объема газа внутри цилиндра, когда поршень перемещается вверх и вниз через различные ходы цикл. Термодинамическое представление этого цикла называется циклом Отто, названным в честь немецкого инженера 9.0018 Николаус Отто ; первый человек, построивший работающий четырехтактный двигатель в 1860-х гг.

Цикл Отто может быть представлен на графике с Объемом по оси X и Давлением по оси Y, и описывает четырехтактный цикл следующим образом:

Рисунок 9: Цикл Отто

Процесс 0–1: газообразная топливно-воздушная смесь (заряд) фиксированной массы втягивается в блок цилиндров при постоянном давлении (такт впуска).

Процесс 1–2: заряд адиабатически сжимается (при условии отсутствия потерь тепла в окружающую среду) по мере того, как поршень движется от НМТ к ВМТ (такт сжатия).

Процесс 2–3: заряд воспламеняется свечой зажигания, что приводит к быстрому увеличению давления в цилиндре. Это происходит при постоянном объеме и представляет собой момент, когда поршень находится в ВМТ, прежде чем двигаться вниз для завершения рабочего такта.

Процесс 3–4: Воспламененный заряд заставляет поршень двигаться вниз, что приводит к адиабатическому (изоэнтропическому) расширению газа (рабочий ход).

Процесс 4–1: Вся энергия (тепло), выделяемая при сгорании заряда, преобразуется в движение цилиндра вниз, и тепло рассеивается в процессе с постоянным объемом, пока поршень находится в НМТ.

Процесс 1–0: масса воздуха и любого остаточного топлива, которое остается после сгорания, выбрасывается в атмосферу через открытый выпускной клапан в процессе постоянного давления (такт выпуска).

Нумерация цилиндров и порядок включения

Важно понимать, что не все цилиндры в любом двигателе выполняют одну и ту же часть цикла в одно и то же время; скорее, каждый из них срабатывает в определенной последовательности, предназначенной для обеспечения бесперебойной работы двигателя и непрерывной подачи мощности на винт. Производители авиационных двигателей всегда маркируют каждый цилиндр двигателя и публикуют порядок работы двигателя.

Порядок зажигания разработан для максимально возможной балансировки двигателя за счет обеспечения (в случае горизонтально расположенного двигателя) движения противоположных поршней в одном направлении. В четырехтактном четырехцилиндровом двигателе каждый цилиндр должен выполнять один из четырех тактов в любой момент времени.

Преждевременное зажигание и детонация

Преждевременное зажигание и детонация — это два отдельных, но похожих явления, которые приводят к преждевременному воспламенению топливно-воздушного заряда, что приводит к повреждению поршней и потере мощности.

Преждевременное зажигание: относится к воспламенению топливно-воздушной смеси до зажигания свечи зажигания и вызывается любым источником в цилиндре, достаточно горячим, чтобы спровоцировать воспламенение. Распространенными причинами преждевременного зажигания являются горячие точки в камере сгорания, горячий выпускной клапан, перегретая свеча зажигания или тлеющие частицы углерода, отложившиеся в цилиндре. Преждевременное зажигание обычно происходит в одном цилиндре (самом горячем цилиндре), тогда как детонация происходит во всех цилиндрах одновременно.

Детонация (детонация): во время такта сжатия топливно-воздушный заряд подвергается быстрому увеличению давления и температуры по мере уменьшения объема. Чем выше степень сжатия двигателя, тем горячее становится заряд. При очень высоких степенях сжатия может возникнуть ситуация, когда заряд мгновенно воспламенится (взорвется) до назначенного момента сгорания. Это известно как детонация и вызывает молотообразный удар по поршню вместо контролируемого плавного толчка во время рабочего такта. Детонация может произойти при использовании топлива с неправильным октановым числом. Топливо с более высоким октановым числом способно выдерживать большее сжатие перед воспламенением; поэтому крайне важно использовать топливо с правильным октановым числом для конкретного двигателя. Если рекомендуемое топливо с октановым числом недоступно, следует использовать следующее топливо с самым высоким октановым числом. Использование топлива с октановым числом ниже рекомендуемого может привести к детонации.

Детонация может произойти даже при использовании топлива с правильным октановым числом. Следующие факторы также могут вызвать детонацию, если их не устранить во время полета:

  • Полеты с более высоким давлением во впускном коллекторе, чем рекомендуется – это приведет к повышению температуры и давления в головке цилиндров выше нормальных рабочих пределов.
  • Полеты на слишком бедной смеси – более бедные смеси повышают температуру головки блока цилиндров. Детонация может произойти при добавлении мощности, но без обогащения смеси перед этим.
  • Повышение температуры головки блока цилиндров сверх нормальных рабочих пределов из-за отсутствия аэродинамического охлаждения. Авиационные двигатели с воздушным охлаждением могут перегреваться при наборе высоты, если за ними не следить. Может оказаться необходимым уменьшить скорость набора высоты или выполнить ступенчатый набор высоты в тех случаях, когда температура головки блока цилиндров приближается к предельным значениям.

На этом мы подошли к концу нашего обсуждения цикла четырехтактного двигателя внутреннего сгорания. В следующем посте мы перейдем к более практическим аспектам эксплуатации поршневого самолета. Мы начнем с кабины и обсудим приборы двигателя, общие для большинства легких самолетов, прежде чем перейти к некоторым общим проблемам двигателя; как их диагностировать и что делать, если вы увидели их во время полета.

Вам понравился этот пост? Почему бы не продолжить чтение этой серии статей об авиационных поршневых двигателях и их системах?

Пред. : Знакомство с двигателями внутреннего сгорания

След.: Эксплуатация поршневого двигателя

Объяснение двухтактного двигателя — saVRee

Введение

Двухтактные двигатели внутреннего сгорания (ВС) нашли широкое применение во всем мире. , требуется надежный двигатель с очень высоким отношением мощности к массе. Этот тип двигателя обычно бензин/бензин (двигатель с искровым зажиганием ) и используется для небольших приложений, например. газонокосилки, мотоциклы, воздуходувки и т. д. Двухтактные двигатели  требуют только два такта за цикл сгорания, тогда как четырехтактные двигатели  требуют четыре такта за цикл сгорания.

Малый двухтактный двигатель

Компоненты двухтактного двигателя

Двухтактный двигатель состоит из следующих частей:

  • Всасывающий патрубок топливовоздушной смеси – топливно-воздушная смесь всасывается в картер через всасывающий патрубок. Пластинчатый клапан , установленный во всасывающем отверстии, действует как обратный клапан (односторонний клапан ) для управления потоком воздушно-топливной смеси.
  • Перепускное отверстие  – топливная смесь со сжатым воздухом подается из картера в камеру сгорания через перепускное отверстие.
  • Отверстие для отработавших газов  – отвод отработавших газов из камеры сгорания осуществляется через отверстие для отработавших газов.

Компоненты двухтактного двигателя

  • Картер  – содержит внутренние детали двигателя. Воздушно-топливная смесь сжимается внутри картера перед тем, как попасть в перепускное отверстие .
  • Поршень — перемещается между верхней мертвой точкой (ВМТ) и нижняя мертвая точка (НМТ) линейно (по прямой). Тонкая масляная пленка между поршневыми кольцами и гильзой цилиндра отделяет камеру сгорания от картера.

ВМТ и НМТ показаны

  • Гильза цилиндра  – где происходит сгорание. Гильза цилиндра также известна как камера сгорания .

Гильза цилиндра четырехтактного двигателя

  • Свеча зажигания — используется для воспламенения воздушно-топливной смеси. Бензиновые/бензиновые двигатели используют свечи зажигания и известны как двигатели с искровым зажиганием . В дизельных двигателях не используются свечи зажигания, и они известны как двигатели с воспламенением от сжатия .

Свеча зажигания

  • Коленчатый вал — вал, используемый для преобразования линейного возвратно-поступательного движения поршня во вращательное движение.

Коленчатый вал с этикетками

  • Шестерня кривошипа – используется для накопления энергии и снижения вибрации двигателя.
  • Шатун  – соединяет поршень с коленчатым валом. В частности, между шатуном и коленчатым валом нет связи, потому что металлические подшипники скольжения и смазочное масло разделяют два компонента. Шатун также известен как шатун .

Смазка коленчатого вала и шатуна

  • Поршневой палец  – соединяет шатун с поршнем. Поршневой палец также известен как поршневой палец .

Как работают двигатели внутреннего сгорания (ДВС)

Четырехтактные и двухтактные двигатели являются типами двигателей внутреннего сгорания (ДВС) . Все двигатели внутреннего сгорания должен завершить четыре основных этапа  для завершения одного полного цикла сгорания . Эти этапы:

  1. Всасывание
  2. Сжатие
  3. Зажигание (питание)
  4. Выхлоп

Вышеупомянутые этапы также иногда называют:

  1. Всасывание
  2. Сожмите
  3. Взрыв
  4. Продувка

Для четырехтактных двигателей требуется один полный ход (полное движение от ВМТ до НМТ или от НМТ до ВМТ) на ступень. Двухтактные двигатели совершают несколько стадий за такт.

Как работают двухтактные двигатели

Приведенное ниже видео является выдержкой из нашего онлайн-видеокурса по основам работы с двигателями внутреннего сгорания .

 

Всасывающая ступень

Когда поршень приближается к нижней мертвой точке (НМТ), он сжимает воздушно-топливную смесь внутри картера, и перепускное отверстие открывается. Как только перепускное отверстие открывается, топливная смесь сжатого воздуха поступает из картера в камеру сгорания.

Затем поршень начинает движение к верхней мертвой точке (ВМТ) и закрывает раздаточный порт, открывая при этом впускной канал картера; Затем воздушно-топливная смесь начинает течь из открытого впускного отверстия в картер.

Ступень всасывания двухтактного двигателя

Ступень сжатия

Поршень продолжает двигаться к ВМТ и закрывает выпускное отверстие. Топливно-воздушная смесь в камере сгорания сжимается поршнем по мере его движения к ВМТ. На этой стадии значительно увеличиваются как температура, так и давление в камере сгорания.

Ступень сжатия двухтактного двигателя

Ступень зажигания

Незадолго до ВМТ искра от свечи зажигания воспламеняет воздушно-топливную смесь. Происходит воспламенение, и быстрое повышение давления и температуры заставляет поршень вернуться к НМТ.

Ступень зажигания двухтактного двигателя

Ступень выпуска

Когда поршень движется к НМТ, происходят две вещи. Во-первых, выхлопное отверстие открывается, и выхлопной газ выпускается из камеры сгорания. Во-вторых, движение поршня к НМТ сжимает топливно-воздушную смесь внутри картера.

Поршень приближается к НМТ, и перепускное отверстие открыто; топливная смесь со сжатым воздухом поступает в камеру сгорания, и цикл начинается снова.

Ступень выхлопа двухтактного двигателя

На видео ниже подробно показан двухтактный цикл сгорания:

  • Мотоциклы
  • Газонокосилки
  • Подвесные лодочные моторы
  • Воздуходувки

Хотя двухтактные двигатели в основном используются для небольших двигателей, стоит отметить, что двухтактные двигатели также являются самыми большими двигателями в мире . Эти большие двухтактные двигатели используются на судах торгового флота и могут весить несколько тысяч тонн.

Большой двухтактный двигатель (поршень подвешен к крану)

Преимущества двухтактного двигателя
  • В двухтактном двигателе значительно меньше деталей ( На 25-50% меньше деталей, ), чем в четырехтактном двигателе.
  • Уменьшение количества деталей делает двигатель более простой по конструкции, чем четырехтактный двигатель.
  • Вес двухтактного двигателя намного меньше веса четырехтактного двигателя.
  • Из-за снижения веса двухтактный двигатель имеет более высокое отношение мощности к массе , чем четырехтактный двигатель.

Недостатки двухтактного двигателя
  • Более простая конструкция двигателя также приводит к снижению КПД по сравнению с четырехтактным двигателем.
  • Двухтактные двигатели обычно шумнее/громче , чем четырехтактные двигатели.

Почему двухтактные двигатели легче четырехтактных?

Картер заполнен бензином, воздухом и маслом, поэтому нет необходимости в дополнительных масляных насосах, трубопроводах или фильтрах. Также нет необходимости в насосах охлаждающей воды, поскольку в головке блока цилиндров нет каналов для охлаждающей жидкости (отсутствует система охлаждающей воды). Конструкция двухтактного двигателя также не требует толкателей, выпускных клапанов и т. д. Все это приводит к значительному снижению веса по сравнению с четырехтактным двигателем.

Почему двухтактные двигатели менее эффективны, чем четырехтактные?

Четырехтактные двигатели имеют больше деталей двигателя и могут лучше контролировать, когда впускных клапанов и выпускных клапанов открываются и закрываются. Управление фазами газораспределения позволяет извлекать максимальное количество энергии из силового каскада до того, как произойдет выпускной каскад; это дает общее увеличение эффективности двигателя.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *