Технологического процесса: Технологический процесс | это… Что такое Технологический процесс?

Содержание

Виды технологических процессов 2021 new — Вика Николаева на DTF

Технологические процессы по уровню обобщения делятся на два вида: единичный и типовой.

1011 просмотров

Единичный технологический процесс применим только для изготовления одного конкретного изделия, а типовой технологический процесс — для изготовления группы схожих изделий.

Единичный технологический процесс — это процесс изготовления или ремонта изделия одного наименования, типоразмера и исполнения, независимо от типа производства.

К преимуществам единичного технологического процесса относятся: с одной стороны, возможность учета всех особенностей данного изделия, а с другой стороны — наиболее эффективного изготовления изделия за счет учета конкретных производственных условий (имеющегося технологического оборудования, приспособлений, инструментальной оснастки, квалификации рабочих и т.п.).

Наряду с преимуществами единичный технологический процесс имеет и недостатки. Для его разработки требуются большие затраты времени и труда.

Затраты времени на разработку технологического процесса могут во много раз превышать затраты времени на его осуществление. Если изготавливается большое число изделий, то доля затрат времени на разработку технологического процесса, приходящаяся на одно изделие, будет незначительной, но при небольшом выпуске изделий эта доля резко возрастет. В этом случае разрабатывают укрупненный технологический процесс, например создают лишь маршрутное описание технологического процесса, в которое включают последовательность операций и оборудование, но без указаний переходов и режимов процесса. Все остальное предоставляется решать непосредственно рабочему, который должен иметь соответствующую квалификацию. По мере роста объема выпускаемой продукции разработку технологического процесса проводят более подробно.

В единичном производстве высокая продолжительность разработки технологического процесса нередко входит в противоречие с продолжительностью самого процесса. Чем тщательней и подробней разрабатывается единичный технологический процесс, тем больше времени требуется для его разработки и тем выше должна быть квалификация технолога.

Однако в определенных условиях затраты времени на разработку процесса становятся значительно больше затрат времени на его осуществление. Иллюстрацией такого положения может служить технологический процесс изготовления деталей на станке с ЧПУ, где его разработка отличается большой тщательностью и подробностью. Так, к примеру, документация технологического процесса изготовления детали на станке с ЧПУ содержит карту наладки, операционно-техническую карту, схему движения инструментов, операционную расчетно-техническую карту, карту программирования, чертежи специального инструмента и оснастки. Все это приводит к росту трудоемкости разработки операции; например, только разработка управляющей программы и ее отладка для деталей высокой сложности требует нескольких рабочих дней технолога-про- граммиста, в то время как обработка небольшой партии таких деталей может уложиться в одну рабочую смену.

Проектирование единичного технологического процесса отличается большим числом возможных решений по каждому изделию, подлежащему изготовлению. Поэтому в условиях единичного производства при сравнительно малом времени, отводимом на разработку процесса, возможность подкрепления принимаемых решений объективными технико-экономическими расчетами очень ограничена.

В массовом производстве высокая трудоемкость тщательной разработки единичного технологического процесса оказывается оправданной, так как ее величина несопоставимо мала по сравнению с трудоемкостью изготовления всего объема изделий данного наименования. Оправдывает себя в массовом производстве и применение специального оборудования, оснастки, отличающихся высокопроизводительными рабочими процессами.

Недостатки единичной технологии в массовом производстве проявляются в большой длительности технологической подготовки производства, обусловленной необходимостью создания специальных технологических средств.

Широкое применение единичной технологии в масштабе всего машиностроительного производства страны приводит к большим потерям. Дело в том, что в среднем изготавливаемые изделия состоят примерно на 70% из общемашиностроительных узлов и деталей, близких по своему конструктивному строению. Но на тысячах машиностроительных предприятий их изготавливают по единичным технологическим процессам, мало отличающимся по эффективности друг от друга, но зачастую использующим оригинальную оснастку, а в крупносерийном и массовом производстве — и оригинальное технологическое оборудование. При этом прогрессивные высокоэффективные решения, разработанные на каком-либо одном предприятии и потребовавшие больших затрат труда, теряются в огромном разнообразии разработок и практически не находят применения на других предприятиях.

Все перечисленные негативные стороны единичной технологии послужили причиной поиска нового вида технологии, свободной от этих недостатков. Первым шагом в этом направлении явилась разработка типовой технологии, когда в 30-е гг. XX в. проф. А.П. Соколовский [11] высказал идею типизации технологических процессов.

Типовой технологический процесс характеризуется единством содержания и последовательности большинства технологических операций для группы изделий с общими конструктивными признаками.

В основе типовой технологии лежит классификация изделий на классы — подклассы — группы — подгруппы — типы. Тип представляет собой группу схожих изделий, среди которых выбирается типовой представитель, обладающий наибольшей совокупностью свойств изделий, вошедших в эту группу. На типовой представитель разрабатывается типовой технологический процесс, по которому осуществляется изготовление всех изделий этого типа. В случае отсутствия в конкретном изделии той или иной характеристики (например, какой-то поверхности) при разработке рабочего процесса соответствующая операция из типового процесса исключается.

Тем самым типовой процесс в определенной степени разрешает противоречие между большими затратами времени на разработку процесса и малыми сроками на изготовление изделия, так как затраты времени на разработку рабочего технологического процесса для изготовления конкретного изделия резко сокращаются. Разрабатывая на группу деталей, близких по своему конструктивному оформлению, один типовой процесс, можно разработать более совершенный процесс, так как на его проектирование можно затратить больше времени и средств.

Пользуясь типовым процессом, рабочий технологический процесс на деталь из группы будет разработан достаточно быстро и качественно.

Типовые процессы позволяют избегать повторных и новых разработок при проектировании рабочих технологических процессов, вследствие чего облегчается труд технолога и сокращаются затраты времени на разработку.

Важное обстоятельство: типовой технологический процесс, приобретая универсальность, одновременно теряет черты индивидуальности. Действительно, типовой технологический процесс изготовления деталей разрабатывается под группу конструктивно схожих деталей, вошедших в один тип. По этому типовому процессу изготавливаются все детали группы, несмотря на то что они чем-то отличаются друг от друга. В этом и заключается универсальность типового технологического процесса.

Потеря индивидуальности типового процесса заключается в том, что он не учитывает отмеченные выше различия, специфику изделий, вошедших в один тип. Как известно, в каждом типе из группы деталей выбирают типовую деталь, которая отличается наиболее часто встречающимися конструктивными формами, размерами, требованиями к точности и другими показателями качества.

Типовая деталь, как правило, наиболее сложная из всех деталей, вошедших в данный тип. Поэтому если бы для каждой детали из этой группы разработать единичный технологический процесс, то он был бы более эффективным, чем типовой процесс, так как он учитывает все особенности детали (иными словами, потеря индивидуальности не позволяет типовому процессу стать оптимальным для каждой детали данной группы).

Чем больше изделия в группе отличаются по своему конструктивному оформлению и требованиям к качеству, тем сильнее отличается типовой процесс от оптимального. Это является одним из ограничений расширения группы изделий под один типовой технологический процесс. В результате изготавливаемые изделия приходится делить на большее число типов, что приводит к росту числа типовых процессов и снижает эффективность типизации.

В целом типовая технология способствует:

  • 1) сокращению разнообразия технологических процессов и внесению однообразия в изготовление сходных изделий;
  • 2) внедрению и распространению передового опыта и достижений науки и техники;
  • 3) упрощению разработки рабочих технологических процессов и сокращению затрат времени на их разработку;
  • 4) сокращению разнообразия средств технологического оснащения технологических процессов;
  • 5) разработке новых высокоэффективных технологических процессов.

Эффективность единичной и типовой технологий будет разной в зависимости от типа производства. В массовом производстве эффективнее применять единичный технологический процесс, так как он позволяет создать оптимальный технологический процесс, дающий в итоге высокий суммарный экономический эффект.

По мере роста разнообразия выпускаемых изделий, снижения серийности их выпуска, величин партий увеличиваются потери времени, связанные с частыми переналадками технологического оборудования и оснастки. В итоге снижается эффективность производства, повышается себестоимость изготовления изделий. И чем шире выпускаемая номенклатура изделий и меньше их серийность, тем ниже эффективность производства.

В этих условиях возникла задача группирования изделий, отличающихся однородностью технологии изготовления, что позволяет снизить число переналадок оборудования и увеличить размеры партий, поступающих на обработку.

В результате решения этой задачи появился новый вид технологии — групповая технология, основоположником которой является проф.

С.П. Митрофанов.

Если типовая технология направлена на сокращение трудоемкости технологической подготовки производства, повышение эффективности технологических процессов и распространение прогрессивных решений, то групповая технология предназначена для повышения эффективности производственного процесса.

Групповой технологический процесс — это процесс изготовления группы изделий с разными конструктивными, но общими технологическими признаками.

Групповой процесс нашел применение в мелкосерийном и серийном производстве. Принципиальная сущность групповой технологии заключается прежде всего в группировании изделий в технологические группы по технологическому подобию.

Групповой технологический процесс разрабатывают на комплексное изделие. В отличие от типового изделия комплексное изделие является «собирательным», часто не существующим в действительности, объединяющим в себе черты большинства изделий, вошедших в группу. Для комплексного изделия разрабатывается технологический процесс, и все изделия этой группы, будучи, как правило, проще комплексного изделия, изготовляют по данному технологическому процессу, пропуская отдельные технологические переходы. Все изделия, закрепленные за этим технологическим процессом, изготовляют партиями.

В качестве комплексного изделия технологической группы служит какое-то изделие из группы или искусственно созданное изделие. Например, комплексная деталь формируется следующим образом: берется наиболее сложная деталь, которая включает все поверхности других деталей, и если она не содержит всех поверхностей, содержащихся в других деталях группы, то к ней искусственно добавляют недостающие поверхности.

Различают групповую операцию и групповой технологический процесс. Групповая технологическая операция разрабатывается для выполнения технологически однородных работ при изготовлении группы изделий на специализированном рабочем месте при условии возможности частичной подналадки технологической системы. Групповой технологический процесс представляет собой комплекс групповых технологических операций, выполняемых на специализированных рабочих местах в последовательности технологического маршрута группы изделий, элементов.

Применение групповой технологии особенно эффективно тогда, когда на ее основе в серийном и мелкосерийном производствах удается создать групповые поточные или даже автоматические линии изготовления изделий или деталей отдельных групп. Создание подобных линий обычно основано на сочетании принципов типизации технологических процессов и групповой обработки, т.е. когда применяется типовой маршрут (например, при обработке заготовок по отдельным групповым операциям, выполняемым на станках с групповыми настройками, и при широком использовании групповых переналаживаемых приспособлений).

Применение групповой технологии тем эффективней, чем больше технологическая группа.

При внедрении групповой технологии возникают трудности, связанные с организацией больших технологических групп, не только в связи со сложностью в построении групповых наладок и приспособлений, но и из-за необходимости учета календарного планирования по выпуску изделий.

Изделия, изготавливаемые по групповой технологии, хотя и похожи, но имеют и различия, поэтому за редким исключением избавиться полностью от переналадки оборудования не удается.

По мере расширения номенклатуры деталей в группе при разработке групповой наладки возрастают ее сложность, количество позиций и время простоя инструментальных позиций. Это ограничивает номенклатуру деталей в группе, приводит к росту числа групп и, следовательно, увеличению числа групповых технологических процессов (операций).

Групповая технология оправдывает себя при условии многократного повторения выпуска данной технологической группы изделий. Если повторяемость отсутствует или незначительна, то дополнительные затраты на технологическую подготовку, которые значительно выше по сравнению с единичной технологией, себя не окупают (примером эффективного применения групповой технологии может служит авиационная промышленность, где имеет место высокая повторяемость групп).

Практика внедрения типовых и групповых технологических процессов показывает, что, несмотря на очевидные преимущества, доля их внедрения невысока и до сих пор доминирует единичная технология. Одной из главных причин этого является недостаток классификации изделий на типы, группы, которыми пользуются при разработке типовых и групповых процессов. Анализ этих классификаций показывает, что в обоих случаях в явном или неявном виде в качестве отличительных признаков выступают не конструктивные, а технологические характеристики. Это приводит к тому, что на предприятиях, различающихся составом технологических средств и квалификацией работников, одна и та же номенклатура изделий будет разбита на разные группы. С другой стороны, стоит изменить на предприятии применяемую технологию и оборудование, как придется изменять типы и группы. Чтобы свести к минимуму эти недостатки, надо классифицировать изделия на группы не по технологическим, а конструктивным признакам, что позволит сократить разнообразие типовых и групповых процессов и расширить область их применения. Подводя итог анализу различных видов технологического процесса, можно отметить следующее:

  • • применение единичного процесса позволяет разрабатывать оптимальные процессы, но это приводит к большим затратам времени на их разработку;
  • • применение типового технологического процесса снижает объем и сроки технологической подготовки производства, но не обеспечивает оптимального процесса для каждой детали одного типа;
  • • применение группового технологического процесса хотя и увеличивает размер партии, но требует повторяемости выпуска изделий, что существенно снижает область его эффективного применения.

Все три вида технологии не обладают гибкостью, так как не позволяют изменять в случае надобности маршрут.

Одной из главных причин недостатков всех видов технологических процессов является описание изделия на геометрическом уровне, когда деталь представляется совокупностью элементарных геометрических поверхностей, а сборочная единица — совокупностью деталей как геометрических тел.

Это приводит к тому, что технолог, разрабатывая технологический процесс, стремится изготавливать на операциях такие совокупности поверхностей, которые позволяют достичь наибольшей производительности. Однако при этом часто нарушаются связи между поверхностями, обусловленные совместным выполнением функций детали. В результате, во-первых, появляется многовариантность технологического процесса из-за большого числа комбинаций поверхностей, изготавливаемых на операциях, а во-вторых, из-за изготовления функционально связанных поверхностей на разных операциях возникают сложные технологические размерные связи, приводящие к необходимости введения дополнительных операций.

Все это приводит к необоснованному разнообразию технологических процессов, повышению трудоемкости их разработки, вызывают трудности в типизации технологических процессов и в группировании деталей при разработке групповых процессов.

Если же деталь описывать функциональными блоками в виде модулей поверхностей, объединенных совместным выполнением служебных функций, то геометрический признак становится вторичным, а элементарные поверхности входят в состав модулей поверхностей и не являются самостоятельными объектами при разработке технологических процессов.

Учитывая ограниченную номенклатуру МП и их высокую повторяемость, можно существенно снизить разнообразие технологических операций по составу изготавливаемых МП. В итоге упростятся разработка технологических процессов, их типизация и группирование деталей при использовании групповых процессов.

Все изложенное справедливо и для сборочных технологических процессов, если сборочную единицу рассматривать как совокупность модулей соединения.

С целью реализации изложенных преимуществ описания изделия как совокупности МП и МС, следует рассматривать построение технологического процесса как компоновку из модулей изготовления МП (МС), входящих в состав детали (сборочной единицы).

В связи с этим процесс получил название модульного технологического процесса, соответственно он может быть единичным, типовым, групповым процессом и представляет собой результат дальнейшего совершенствования методики разработки технологических процессов, начиная с описания изделия.

Модульный технологический процесс — это технологический процесс, построенный из модулей процессов изготовления МП или МС, входящих в состав изготавливаемого изделия. В основе модульного технологического процесса лежит объективное существование МП и МС, являющихся конструктивными элементами изделий. Узкая номенклатура и ограниченное число описывающих их характеристик открывает путь к типизации конструктивных решений МП, МС, унификации их характеристик и на этой основе разработке модулей технологического обеспечения изготовления МП и получения МС.

В состав модулей технологического обеспечения входят модули технологического процесса (МТИ) изготовления МП и сборочного процесса (МТС) получения МС, модули технологического оборудования (МО), инструментальной наладки (МИ), технологических баз (МТБ), приспособления (МПр) и контрольно-измерительного устройства (МКИ).

Поскольку модульное технологическое обеспечение разрабатывается под типовые МП и МС с унифицированными характеристиками, то оно отличается высоким уровнем обобщения, следовательно, широкой областью применения.

Имея технологическое обеспечение на модульном уровне, модульный технологический процесс изготовления, например, детали, строится следующим образом. Сначала определяется последовательность формирования из заготовки всех МП детали, затем из банка данных вызываются МТИ, МТБ, МО, МИ, МПр, МКИ, необходимые для изготовления каждого МП, затем МТИ объединяются в операции.

Модульный технологический процесс объединяет в себе преимущества единичного, типового и группового технологических процессов. Действительно, модульный технологический процесс разрабатывается так же, как и единичный технологический, учитывающий все особенности изделия. Однако в отличие от единичного процесса трудоемкость его разработки невысока, так как он строится методом компоновки из имеющихся модулей технологического обеспечения.

Идея типизации в модульном технологическом процессе реализуется на уровне модулей технологического обеспечения, при этом типизация осуществляется более эффективно, так как модули МП и МС в отличие от изделий описываются небольшим числом характеристик.

Например, даже сравнительно простая деталь содержит десятка два поверхностей и имеет большое разнообразие вариантов конструктивного решения. При этом требования к точности и качеству поверхностного слоя у поверхностей такой детали может быть различным, что еще больше увеличивает ее разнообразие. В итоге для изготовления такого множества деталей потребуется большое число типовых технологических процессов.

В отличие от детали МП одного наименования имеет меньшее число вариантов конструктивного решения, содержит, за редким исключением, не более трех поверхностей, что существенно снижает разнообразие МП и уменьшает число типовых модулей технологического процесса.

Идея групповой технологии, заключающаяся в организации технологических групп из разных изделий, в условиях модульной технологии решается наилучшим образом. Дело в том, что в силу ограниченной номенклатуры МП и МС сравнительно просто формировать технологические группы даже в условиях единичного производства, т.е. не требуется повторяемость выпускаемых изделий.

И в заключение отметим, что модульный технологический процесс приобретает некоторую гибкость, позволяя в ограниченных пределах изменять последовательность операций. Это объясняется тем, что в традиционных технологических процессах функционально связанные поверхности детали могут изготавливаться на разных операциях. Например, такие поверхности детали, как торец, отверстие и шпоночный паз, образующие комплект баз (МПБ311), могут изготавливаться на разных операциях. В результате между операциями возникают сложные размерные связи, которые нарушаются при изменении последовательности операции, что может привести к браку. Поэтому изменение разработанного маршрутного процесса недопустимо. В модульном же технологическом процессе функционально связанные поверхности детали всегда объединены соответствующим модулем и изготавливаются на одной операции. Это существенно упрощает размерные связи технологического процесса, делает их прозрачными, что позволяет сравнительно просто определять возможность изменения маршрута обработки.

Принципы построения модульных технологических процессов позволяют по-новому строить машиностроительное производство, в основе которого лежит сквозное применение модульного принципа по всей производственной цепочке: изделие — технологические процессы — технологические системы — организация производственного процесса.

Принципы построения технологического процесса

Продолжаем публикацию материалов из Справочника фрезеровщика под редакцией В.Ф. Безъязычного. На этот раз разберем принципы построения технологического процесса.

Одним из основных принципов построения технологического процесса является принцип совмещения технических, экономических и организационных задач, решаемых в данных производственных условиях. Технологический процесс должен безусловно обеспечить выполнение всех требований к точности и качеству деталей и изделия в целом, предусмотренных чертежами и техническими условиями, при наименьших затратах труда и минимальной себестоимости. Существует несколько вариантов обработки деталей, одинаково удовлетворяющих требованиям чертежа и техническим условиям, однако предполагающих различную стоимость обработки. Для заданных условий и масштаба производства следует выбрать тот вариант, который наилучшим образом удовлетворяет указанным выше требованиям. Выбор оптимального варианта технологического процесса требует в ряде случаев расчета экономической эффективности и сравнения себестоимости вариантов обработки.

При проектировании технологических процессов механической обработки исходными являются следующие данные: программное задание; чертежи и технические условия на изготовление и приемку изделия; вид заготовки, зависящий от размера партии, материала, геометрической формы и размера детали, и др.

В общем случае разработка технологических процессов ведется по следующему алгоритму:

    1. Изучение чертежей деталей и технических условий на их изготовление.

    2. Выбор способа получения заготовки для деталей в зависимости от размера партии и материала; определение размеров припусков на обработку.

    3. Определение по чертежам деталей базирующих поверхностей (черновых и чистовых). Назначение первой исходной операции на основе правила черновых баз.

    4. Определение последовательности и характера операции в соответствии с конфигурацией, точностью и шероховатостью обрабатываемых поверхностей, заданных по чертежу детали.

    В большинстве случаев обработку заготовки целесообразно производить в следующей последовательности:

    а) черновая обработка, при которой снимают основную часть общего припуска;

    б) получистовая и чистовая обработка, при которой обеспечивается в основном заданная точность;

    в) отделочная обработка, при которой достигается требуемая шероховатость поверхности, точность формы и размеров детали.

      5. Выбор для каждой операции станка, приспособлений, режущего, вспомогательного и измерительного инструмента, способов закрепления с учетом количества одновременно обрабатываемых заготовок.

      6. Определение для каждого перехода расчетных размеров обрабатываемых поверхностей, числа проходов и режима резания.

      7. Нормирование для каждого перехода основного технологического (машинного) и вспомогательного времени.

        Разработка технологических процессов механической обработки для массового и крупносерийного производства ведется двумя методами: концентрацией и дифференциацией операций.

        Концентрацией операций называется соединение нескольких операций в одну, более сложную, а дифференциацией – расчленение операций на несколько более простых.

        Обработка заготовок набором фрез, обработка на многошпиндельных станках, токарных автоматах и полуавтоматах, агрегатных станках выполняется по методу концентрации операций.

        На основанные детали рекомендуется разработать 2–3 варианта технологического процесса, чтобы определить наиболее экономичный при заданных условиях обработки.

        Технологические изменения — Наш мир в данных

        Примечание: Это только предварительная коллекция соответствующих материалов

        Данные и исследования, представленные в настоящее время здесь, являются предварительными коллекциями или соответствующими материалами. Мы продолжим нашу работу по этой теме в будущем (чтобы осветить ее так же подробно, как, например, в нашей статье о приросте населения мира).

        Если у вас есть опыт в этой области и вы хотели бы внести свой вклад, подайте заявку здесь, чтобы присоединиться к нам в качестве исследователя.

        Мы — вид, способный производить технологии: мы способны понимать наш мир и использовать эти знания в практических целях.

        Список технологий, на которые мы полагаемся каждый день, очень длинный: он включает в себя транспортные средства, которые нас перевозят, дома, в которых мы спим, лекарства, которые лечат и защищают нас, оборудование, которое мы используем для производства, инструменты для создания музыки и искусства. , и гаджеты, которые мы используем для общения друг с другом.

        Многие из разработок, на которых мы сосредоточены в «Нашем мире данных», обусловлены технологическими достижениями. Технологические изменения необходимы для удвоения продолжительности жизни во всем мире. И именно это делает возможным экономический рост и, следовательно, сокращение бедности. В этом смысле многое из того, о чем мы здесь пишем, в основном касается технологий.

        На этой странице мы сосредоточимся на некоторых фундаментальных показателях технического прогресса, особенно в технологиях, которые были разработаны совсем недавно и в которых инновации происходят особенно быстро.

        Очевидно, что технологические изменения не обязательно положительны. Некоторые из самых больших рисков, с которыми сталкивается человечество, связаны с технологическими инновациями.

        Достижения в области вычислительной техники

        Закон Мура: экспоненциальное увеличение числа транзисторов в интегральных схемах

        Закон Мура — это наблюдение, согласно которому количество транзисторов в интегральных схемах удваивается примерно каждые два года.

        Эта регулярность технологических изменений важна, поскольку возможности многих цифровых электронных устройств тесно связаны с количеством транзисторов. На этой странице вы найдете доказательства того, что различные технологические показатели — скорость обработки, цена продукта, объем памяти и даже количество и размер пикселей в цифровых камерах — также развиваются экспоненциально.

        Закон уже был описан в 1965 году соучредителем Intel Гордоном Э. Муром, в честь которого он назван. 1 Ниже вы найдете знаменитый небольшой график, опубликованный Муром в 1965 году. Как видите, Мур провел всего семь наблюдений с 1959 по 1965 год, но он предсказал продолжение роста, заявив: «Нет причин полагать, что он не останется почти постоянным не менее 10 лет». 2

        Исходный график Мура 1965 г.: «Количество компонентов на интегрированную функцию» 3

        Как показывает наш большой обновленный график, он был прав не только насчет следующих десяти лет. Удивительно, но обнаруженная им закономерность сохраняется уже более полувека.

        Обратите внимание на логарифмическую вертикальную ось, выбранную для отображения линейности скорости роста. Линия соответствует экспоненциальному росту с удвоением количества транзисторов каждые два года.

        Вычислительная мощность: Экспоненциальный рост FLOPS и операций в секунду

        Само по себе удвоение количества транзисторов каждые два года не имеет прямого значения в нашей жизни. На нашу жизнь влияет не структура этих компьютеров, а их мощность.

        Эта диаграмма показывает, что вычислительная мощность компьютеров увеличилась в геометрической прогрессии. Время удвоения вычислительной мощности персональных компьютеров составило 1,5 года в период с 1975 по 2009 год.

        На интерактивной диаграмме показаны более свежие данные. Здесь рост мощности суперкомпьютера измеряется количеством операций с плавающей запятой, выполняемых в секунду (FLOPS) самым большим суперкомпьютером в любой данный год.

        Экспоненциальное увеличение вычислительной мощности с течением времени (вычислений в секунду) — Куми, Берард, Санчес и Вонг (2011)
        4

        Экспоненциальный прогресс в эффективности вычислений

        Стоимость поддержания работы машины также имеет значение. Эффективность вычислений измеряет вычислительную мощность на единицу энергии.

        Прогресс в этом отношении был очень существенным: исследователи обнаружили, что за последние шесть десятилетий потребность в энергии для фиксированной вычислительной нагрузки уменьшалась вдвое каждые 18 месяцев. 5

        На этой диаграмме мы видим вычислительную эффективность различных процессоров с течением времени. Здесь эффективность вычислений измеряется как количество ватт (мера электрической мощности), необходимых для выполнения миллиона инструкций в секунду (Ватт на MIPS).

        Это повышение эффективности также важно с точки зрения воздействия компьютеров на окружающую среду.

        Экспоненциальный прогресс компьютерной памяти и хранения данных

        Нелинейный технологический прогресс

        Известные примеры технологических изменений, такие как закон Мура, описывают прогресс, который происходит с удивительной непрерывностью.

        Однако временами технологические изменения характеризуются очень внезапными, нелинейными изменениями. Эта нелинейность наиболее отчетливо проявляется в примерах, демонстрирующих быструю эволюцию после важных инноваций. Ниже мы включили два примера таких тенденций: начало полета человека и секвенирование генома человека.

        Нелинейные технологические изменения: история полета человека

        На этой диаграмме показан глобальный рекорд расстояния, установленный некоммерческими рейсами с 1800 года. Этот рекорд представляет собой максимальное расстояние, пройденное некоммерческим самолетом без дозаправки. До 20-го века люди еще не разработали технологии, необходимые для полета с двигателем. Затем, в 1903 году, братьям Райт удалось разработать первую механизированную летательную технику. Это первоначальное нововведение вызвало непрерывный и быстрый прогресс в современной авиации, при этом рекордное расстояние увеличилось почти в 150 000 раз с 0,28 км за 19 лет.03 до почти 41 500 километров в 2006 году.

        Это один из примеров нелинейных технологических изменений. Человечество совершило прорыв, и в последующие десятилетия последовал стремительный прогресс.

        Такие нелинейные прорывы могут произойти очень быстро и удивить даже тех, кто внимательно следит за развитием событий. История полетов тяжелее воздуха — яркий тому пример. Уилбур Райт сказал: «Я признаюсь, что в 1901 году я сказал своему брату Орвиллу, что человек не будет летать в течение 50 лет». Через два года братья добились успеха.

        Нелинейные технологические изменения: секвенирование ДНК генома человека

        Другим примером нелинейного технического прогресса является секвенирование генома.

        Проект генома человека (HGP), целью которого было картирование полного набора пар нуклеотидов, составляющих ДНК человека (всего более трех миллиардов), длился 13 лет с 1990 по 2003 год. Это первоначальное открытие и определение последовательности генома человека стало решающим моментом в области секвенирования ДНК.

        Диаграмма показывает, насколько быстро эта технология развивалась с тех пор. Здесь это измеряется стоимостью применения этой технологии.

        Прочие данные о технологических изменениях

        Искусственный интеллект

        Технологические изменения и цены

        Декларация об использовании научно-технического прогресса в интересах мира и на благо человечества

        1

        Генеральная Ассамблея

        Отмечая, что научно-технический прогресс стал одним из важнейших факторов развития человеческого общества,

        Принимая во внимание, что, хотя научно-технические разработки предоставляют все больше возможностей для улучшения условий жизни людей и наций, в ряде случаев они могут порождать социальные проблемы, а также угрожать правам человека и основным свободам личности,

        с обеспокоенностью отмечая, что достижения науки и техники могут быть использованы для интенсификации гонки вооружений, подавления национально-освободительного движения и лишения отдельных лиц и народов их прав человека и основных свобод,

        Также с озабоченностью отмечая, что научно-технические достижения могут повлечь за собой опасность для гражданских и политических прав человека или группы и человеческого достоинства, человека и нейтрализовать настоящие и возможные в будущем вредные последствия отдельных достижений науки и техники,

        Признавая большое значение научно-технического прогресса в ускорении социально-экономического развития развивающихся стран,

        Сознавая, что передача науки и техники является одним из основных путей ускорения экономического развития развивающихся стран,

        Подтверждая право народов на самоопределение и необходимость уважения прав и свобод человека и достоинства человека в условиях научно-технического прогресса,

        Желая содействовать реализации принципов, лежащих в основе Устава Организации Объединенных Наций, Всеобщей декларации прав человека, Международных пактов о правах человека, Декларации о Предоставление независимости колониальным странам и народам, Декларация о принципах международного права, касающихся дружественных отношений и сотрудничества между государствами в соответствии с Уставом Организации Объединенных Наций, Декларация о социальном прогрессе и развитии и Хартия экономических прав и обязанности государств;

        Торжественно провозглашает, что:

        1. Все государства должны содействовать международному сотрудничеству для обеспечения того, чтобы результаты научно-технических разработок использовались в интересах укрепления международного мира и безопасности, свободы и независимости, а также в целях экономическое и социальное развитие народов и реализацию прав и свобод человека в соответствии с Уставом Организации Объединенных Наций.

        2. Все государства принимают надлежащие меры для предотвращения использования достижений науки и техники, особенно государственными органами, для ограничения или вмешательства в осуществление прав человека и основных свобод человека, закрепленных во Всеобщей декларации Права человека, Международные пакты о правах человека и другие соответствующие международные документы.

        3. Все государства принимают меры к тому, чтобы достижения науки и техники удовлетворяли материальные и духовные потребности всех слоев населения.

        4. Все государства воздерживаются от любых действий, связанных с использованием достижений науки и техники в целях нарушения суверенитета и территориальной целостности других государств, вмешательства в их внутренние дела, ведения агрессивных войн, подавления национально-освободительного движения или преследования политика расовой дискриминации. Такие акты являются не только вопиющим нарушением Устава Организации Объединенных Наций и принципов международного права, но и представляют собой недопустимое искажение целей, которыми должны руководствоваться научно-технические разработки на благо человечества.

        5. Все государства сотрудничают в создании, укреплении и развитии научно-технического потенциала развивающихся стран с целью ускорения реализации социальных и экономических прав народов этих стран.

        6. Все государства принимают меры для распространения благ науки и техники на все слои населения и их защиты как в социальном, так и в материальном отношении от возможных вредных последствий неправомерного использования научно-технических достижений, в том числе их неправомерного использования для нарушать права человека или группы, особенно в отношении уважения частной жизни и защиты человеческой личности и ее физической и интеллектуальной неприкосновенности.

        7. Все государства принимают необходимые меры, в том числе законодательные, для обеспечения того, чтобы использование достижений науки и техники способствовало наиболее полной реализации прав человека и основных свобод без какой бы то ни было дискриминации по признаку расы, пола, языка или религии.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *