Схема автоматического зарядного устройства для автомобильных аккумуляторов: Схема автоматического отключения зарядного устройства для аккумуляторов. Интеллектуальные ЗУ для автоаккумуляторов — современная система по обслуживанию АКБ любого типа. Простейшее зарядное устройство

Полностью автоматическое зарядное устройство для аккумуляторов

Опубликовано:

Привет всем, в этой статье я расскажу, как можно сделать простой импульсный стабилизатор, который может быть использован в качестве автомобильной зарядки, источника питания или лабораторного блока питания.Эта схема отлично заточена под зарядку автомобильных аккумуляторов с напряжением 12 вольт, но стабилизатор универсальный, поэтому им можно заряжать любые типы аккумуляторов, как автомобильных, так и всяких других, даже литий-ионных, если они снабжены платой балансировки.Схема зарядного устройства состоит из 2-х частей, блока питания и стабилизатора, начнём пожалуй со стабилизатора.Стабилизатор построен на популярного шим-контроллера TL494, позволит получить выходное напряжение от 2-х до 20 вольт, с возможностью ограничения выходного тока от 1 до 6 ампер, при желании ток можно поднять до 10 ампер.Процесс заряда будет осуществляться методом стабильного тока и напряжения, это наилучший способ для качественной и безопасной зарядки аккумуляторов. По мере заряда аккумулятора ток в цепи будет падать и в конце процесса будет равен 0, следовательно нет опасности перегрева аккумулятора или зарядного устройства, так что процесс не требует человеческого вмешательства.Возможно также использования этого стабилизатора в качестве лабораторного источника питания.

Теперь несколько о самой схеме

Это импульсный стабилизатор с шим-управлением, то есть КПД куда больше, чем у обычных линейных схем. Транзистор работает в ключевом режиме управляясь шим-сигналом, это снижает нагрев силового ключа. Основной транзистор управляется маломощным ключом, такое включение обеспечивает большое усиление по току и разгружает микросхему ШИМ.По сути это аналог составного транзистора. Транзистор нужен с током на менее 10 ампер, возможно также использование составных транзисторов прямой проводимости. Регулировка выходного напряжения осуществляется с помощью переменного резистора R9, для наиболее точной настройки желательно использовать многооборотный резистор, притом очень советую использовать резистор с мощностью 0. 5 ватт.Нижним резистором можно установить верхнюю границу выходного напряжения, Нижним резистором можно установить верхнюю границу выходного напряжения, а подбором соотношения резисторов R1, R3, устанавливается нижняя граница выходного напряжения.Для более быстрой и точной подстройки этот делитель может быть заменён на многооборотный подстроечный резистор сопротивлением от 10 до 20 ком.Для более быстрой и точной подстройки этот делитель может быть заменён на многооборотный подстроечный резистор сопротивлением от 10 до 20 ком. За ограничение тока отвечает переменный резистор R6, верхнюю границу выходного тока можно изменить подбором резистора R4.

Обратите внимание на чёткое срабатывание функции ограничения, даже при коротком замыкании, ток не более 6.5 ампер. Регулируется довольно плавно, если использовать многооборотный резистор.

Токовый шунт или датчик тока…, тут хотел бы обратить ваше внимание на то, что входные и выходные земли разделяются шунтом, обратите на это внимание при сборке. В качестве шунта можно использовать отрезок нихромовый проволоки с нужным сопротивлением. В моём же варианте было использование snd-шунты, которые можно найти на платах защиты аккумуляторов от ноутбука. Номинальное сопротивление шунта 0.5 ом +- 50%. При токе в 6 ампер такой шунт справляется очень даже не плохо.Силовой дроссель…  Сердечник взят из выходного дросселя групповой стабилизации компьютерного блока питания, обмотка состоит из 30 витков, намотана двойным проводом, диаметр каждого составляет 1 мм. Тут важен один момент, количество нужно будет подобрать в зависимости от рабочей частоты генератора и материалов магнитопровода. Не верно подобранный дроссель приведёт к сильному нагреву силового ключа при больших токах, это легко понять по характерному свисту при токах в 2-3 ампера, если свист присутствует, то нужно увеличить рабочую частоту генератора.Для этих целей сопротивление резистора R2 снижается до 1 ком и последовательно ему подключается многооборотный подстроечный резистор на 10 ком, таким образом частоту генератора можно менять в пределах от 50 до 550 кГц.

Введите электронную почту и получайте письма с новыми поделками.

После настройки на нужную частоту, подстроечный резистор выпаивается, измеряется его сопротивление, прибавляется к полученному числу сопротивление дополнительного резистора в 1 ком и сборка заменяется одним постоянным резистором близкого сопротивления. Этим настройка завершена…

Силовой диод VD1 очень советую — шотки, с напряжение не менее 60 вольт и током от 10 ампер. При токах в 3-4 ампера тепловыделения почти не наблюдается, если же собираетесь гонять схему на больших токах, то нужен радиатор. Возможно и применение обычных импульсных диодов с нужным током.В качестве источника питания может быть задействован либо импульсный блок питания, либо сетевой трансформатор дополненный диодным выпрямителем и сглаживающим конденсатором. В обоих случаях постоянное напряжение с источника питания должно быть не менее 16\17 вольт и ток до 10 ампер.

Я использовал обыкновенный трансформатор с диодным мостом. Ну вот вроде и всё, всем спасибо за внимание, печатка находиться в архиве. Архив к статье; скачать…

Автор; АКА Касьян

Как вам статья?

Простое автоматическое зарядное устройство для автомобильного аккумулятора

Главная » Авто » Простое автоматическое зарядное устройство для автомобильного аккумулятора

в Авто, Источники питания 0 1,655 Просмотров

В данной статье представлена схема зарядного устройств для автомобильного аккумулятора, которое может действовать как стандартное зарядное устройство с функцией автоматической подзарядки.

Портативный паяльник TS80P

TS80P- это обновленная версия паяльника TS80 Smart, работающий от USB…

Подробнее

Вы можете оставить его постоянно подключенным без малейшего риска для вашего аккумулятора или опасения чрезмерной зарядки. Более того, в данном зарядном устройстве нет никаких «экзотических» компонентов и стоит оно смехотворно дешево.

Давайте посмотрим на принципиальную схему. Напряжение, подаваемое со вторичной обмотки сетевого трансформатора нашего зарядного устройства, выпрямляется диодами D1 и D2, но не сглаживается конденсаторами.

Как ни странно, это жизненно важно для правильной работы данного зарядного устройства, потому что в результате выпрямления напряжение состоит из последовательности синусоидальных полупериодов и, следовательно, падает до нуля 100 раз в секунду.

Когда тиристор THY2 проводит ток, автомобильная батарея эффективно заряжается, причем зарядный ток ограничен только резистором R6, сопротивление которого должно быть рассчитано соответственным образом. Этот тиристор открывается через резистор R4 при каждом полупериоде, за исключением тех моментов, когда открыт тиристор THY1. В этом случае THY2 выключается при первом падении напряжение питания до нуля и заряд аккумулятора прекращается.

Напряжение на клеммах батареи через резистор R5 и сглаживающий конденсатор C1 влияет на включение / отключение тиристора THY1 через переменный резистор P1 и стабилитрон D3.

Паяльный фен YIHUA 8858

Обновленная версия, мощность: 600 Вт, расход воздуха: 240 л/час…

Подробнее

До тех пор, пока это напряжение будет ниже определенного порога, определяемого сопротивлением переменного резистора P1 и фактическим напряжением аккумулятора, который еще не полностью заряжен, тиристор THY1 будет закрыт, а тиристор THY2 будет работать во всех полупериодах сети.   Когда напряжение на клеммах батареи возрастет, откроется THY1, остановив работу THY2.

На самом деле этот процесс не так однозначен, как мы только что описали. Все происходит постепенно, так что по мере приближения к полной зарядке средний ток заряда батареи неуклонно уменьшается, и в конечном итоге полностью прекратиться при достижении полного заряда аккумулятора.

Светодиод LED1 действует как индикатор зарядки, в то время как светодиод LED2 светит сильнее, когда тиристор THY1 срабатывает чаще, тем самым действуя как индикатор степени заряда.

Три компонента данной схемы должны быть выбраны в соответствии с желаемыми характеристиками вашего зарядного устройства:

  • Резистор R6
  • Тиристор THY2
  • Тиристор TR1

Сопротивление резистора R6 должно быть рассчитано в соответствии с необходимым максимальным зарядным током:

R6 = 16 / I (А)

Внимание! Учитывая значение других элементов схемы (D1, D2, TR1 и предохранитель), не превышайте зарядный ток более чем 5 А.

Рассеиваемая мощность R6 может быть вычислена следующим образом:

 PR6 (Вт) = 36 / R6 (Ом)

THY2 должен быть на напряжение 100 В (или более), рассчитанный на ток в 2 раза превышающий желаемый максимальный зарядный ток.

И, наконец, трансформатор, который должен иметь мощность:

 P (Вт) = 18 × 1,2 × I (А)

Единственная настройка, которая должна быть сделана, касается переменного резистора P1 и для этого потребуется хорошо заряженный аккумулятор. Подключите полностью заряженный аккумулятор к выходу зарядного устройства и на место предохранителя (5 А) подключите амперметр — предпочтительно старого аналогового типа, который лучше реагирует на средние токи, чем некоторые современные цифровые мультиметры.

Затем отрегулируйте переменный резистор Р1 так, чтобы получить ток около 100 мА. Позже, когда у вас будет возможность зарядить сильно разряженный аккумулятор, вы сможете точно выполнить эту настройку, установив P1 так чтобы получить зарядный ток близкий к максимальному, который вы рассчитали для R6.

В дальнейшем вам нужно будет найти компромисс между зарядным током (поддерживающим), который не должен превышать около 100 мА и максимальным током заряда.

Тестер транзисторов / ESR-метр / генератор

Многофункциональный прибор для проверки транзисторов, диодов, тиристоров…

Подробнее

зарядное устройство 2021-02-26

С тегами: зарядное устройство

Знакомство с зарядными устройствами

от 10 ноября 2021 г.

Как часто вы заряжаете свой телефон? Как насчет наушников или компьютера? В течение дня мы используем множество устройств, для работы которых требуются заряженные батареи. Транспортные средства — от легковых и грузовых автомобилей до лодок и внедорожников — не являются исключением. Во многих случаях все, что нужно для того, чтобы автомобильный аккумулятор был заряжен и функционировал, — это его эксплуатация. […]

Как часто вы заряжаете свой телефон? Как насчет наушников или компьютера? В течение дня мы используем множество устройств, для работы которых требуются заряженные батареи. Транспортные средства — от легковых и грузовых автомобилей до лодок и внедорожников — не являются исключением.

Во многих случаях все, что требуется для поддержания заряда и функционирования автомобильного аккумулятора, — это его эксплуатация. Оставлять машину или лодку без дела месяцами — это прямой путь к разряженной батарее. Потратьте время, чтобы регулярно поддерживать его в рабочем состоянии с зарядным устройством Schumacher Electric .

Но как узнать, какое зарядное устройство купить? Ответ зависит от типа аккумулятора, транспортного средства и варианта использования. Некоторые зарядные устройства используются в течение определенного периода времени и быстро удаляются. Другие более снисходительны, когда дело доходит до перезарядки батареи. Есть вопросы? Вы всегда можете обратиться к руководству пользователя вашей батареи для получения дополнительной информации или свяжитесь с нами , если ответ не найден в вашем руководстве.

Давайте рассмотрим некоторые общие термины, относящиеся к батареям и зарядным устройствам. Затем мы поговорим о вариантах зарядки аккумуляторов.

Общие термины, относящиеся к батареям и зарядным устройствам

Прежде чем мы поговорим о самих зарядных устройствах, ознакомьтесь со следующими терминами. Для разных аккумуляторов подходят разные типы зарядных устройств. Скорость зарядки может варьироваться в зависимости от силы тока, напряжения и продолжительности зарядки:

  • Напряжение описывает давление источника питания, которое проталкивает электроны через проводящую петлю. Измеряется в вольтах. Многие батареи классифицируются в первую очередь по напряжению. Обычное напряжение для батарей составляет 6 вольт (для садовых тракторов и мотоциклов или 12 вольт и 24 вольта для более крупных транспортных средств). часто имеют различную силу тока в зависимости от их назначения. Общие скорости зарядки включают скорость зарядки 2, 10, 12 или 15 ампер. привести к опасным ситуациям.Всегда проверяйте технические характеристики вашего аккумулятора, чтобы найти оптимальную безопасную скорость зарядки.

    Типы зарядных устройств для аккумуляторов

    Schumacher Electric продает множество различных типов зарядных устройств для аккумуляторов. Два наиболее распространенных типа, которые мы предлагаем, — это ручные зарядные устройства и автоматические зарядные устройства. Эти два типа зарядных устройств имеют ключевые отличия в работе. Следуйте инструкциям, чтобы продлить срок службы батареи и оставаться в безопасности.

    Ручные зарядные устройства

    Ручные зарядные устройства заряжают аккумулятор, к которому они подключены, независимо от уровня заряда аккумулятора. Они не включаются и не отключаются сами по себе. Вместо этого они будут подавать ток с выбранной настройкой, пока вы не отключите их от зарядного устройства.

    Если вы используете ручное зарядное устройство, следите за показаниями амперметра во время зарядки. Это позволит вам узнать, когда будет достигнут полный заряд.

    Вы также можете использовать ареометр или вольтметр для определения уровня заряда. Остановите процесс зарядки, как только батарея будет полностью заряжена. Несоблюдение этого требования может привести к повреждению аккумулятора, материальному ущербу и даже травмам.

    Автоматические зарядные устройства

    Автоматические зарядные устройства Schumacher прекратят зарядку и перейдут в режим поддержания (плавающий режим) после полной зарядки аккумулятора. Автоматические зарядные устройства не так сильно влияют на срок службы батареи или безопасность, как ручные. Но они не должны оставаться подключенными в течение неопределенного времени или в качестве зарядных устройств для технического обслуживания.

    Что такое режим поддержания (плавающий режим) зарядки?

    Поддерживающий режим, также называемый плавающим режимом, представляет собой технологию, используемую во многих автоматических зарядных устройствах и устройствах технического обслуживания Schumacher. Он держит батареи заряженными, подавая небольшое количество тока на батарею, когда это необходимо. Если напряжение батареи упадет ниже заданного уровня, зарядное устройство начнет ее заряжать еще раз. Он продолжает переключаться между двумя режимами по мере необходимости. Большинство автоматических зарядных устройств Schumacher используют микропроцессоры для управления процессом зарядки.

    Как работает зарядка с микропроцессорным управлением

    Они существенно отличаются от зарядных устройств с трансформаторами. Зарядные устройства с микропроцессорным управлением используют алгоритмы для контроля процесса зарядки и вносят коррективы на основе информации о текущем напряжении и заряде батареи.

    Быстрая зарядка таким образом не влияет отрицательно на срок службы или производительность аккумулятора и даже может продлить срок службы аккумулятора. Преимущество зарядных устройств с микропроцессорным управлением заключается в том, что их можно подключать в течение более длительного периода времени. Для более быстрой, безопасной и эффективной зарядки используйте зарядное устройство с микропроцессорным управлением.

    Аккумуляторные зарядные устройства

    Другой тип зарядного устройства для техобслуживания можно оставлять подключенным к аккумулятору на день или два в месяц. Эти зарядные устройства называются капельными зарядными устройствами. Однако, в отличие от поплавковых зарядных устройств, у них нет датчика, который бы определял, заряжена ли батарея. Как и ручные зарядные устройства, они будут продолжать подавать ток, пока не будут отключены.

    Как использовать подзарядное устройство

    Чтобы использовать подзарядное устройство, подключите его так же, как любое другое зарядное устройство. Используйте его один раз в месяц, и пусть он работает не дольше, чем день или два. Это позволит вашей батарее быть заряженной и поддерживаться в рабочем состоянии без риска выкипания электролитов из вашей батареи или повреждения ее внешних пластин из-за перезарядки.

    Солнечные зарядные устройства

    Солнечные зарядные устройства получают энергию от солнца через солнечные панели и преобразуют ее в полезный ток для зарядки аккумуляторов. Во многих случаях солнечные зарядные устройства могут оставаться установленными на транспортных средствах дольше, чем день или два.

    Несмотря на простоту использования, использование солнечного зарядного устройства может привести к перезарядке. В этих случаях для дополнительной защиты от этого процесса перезарядки может быть рекомендован контроллер заряда.

    Какое зарядное устройство купить?

    Выбор зарядного устройства зависит от вашей батареи и потребностей. Купите подзарядное устройство или ручное зарядное устройство для периодической подзарядки, когда вы будете следить за аккумулятором во время зарядки. Для всего остального автоматическое зарядное устройство обеспечивает высокую гибкость и спокойствие.

    Где найти зарядные устройства

    Не позволяйте разряженному аккумулятору помешать вашим планам. Используйте один из многих надежных продуктов для зарядки аккумуляторов, доступных от Schumacher Electric. Пусть сок течет к вашему автомобилю, грузовику, квадроциклу, лодке или другим транспортным средствам. Приобретите нашу полную линейку продуктов для зарядки аккумуляторов сегодня .

    Последовательное и параллельное соединение аккумуляторов и зарядных устройств

    Важно обсудить эту тему, потому что, когда более одного аккумулятора соединены вместе, полученный аккумуляторный блок будет иметь либо другое напряжение, либо другую емкость в ампер-часах (или и то, и другое) при сравнении на одну батарею.

    Давайте начнем с рисунка 1 с простой блочной модели, показывающей положительные и отрицательные клеммы для представления физической батареи. Мы будем использовать это для связи с физическими соединениями между батареями, которые вы использовали бы для создания аккумуляторной батареи.

    Рисунок 1: Физическая модель и схематическое обозначение одиночной батареи

    Рисунок 2: Батареи , соединенные последовательно

    На рисунке 2 показаны две 12-вольтовые батареи, соединенные последовательно. Важные моменты, которые следует учитывать при последовательном соединении: 1) Напряжение аккумуляторной батареи суммируется, чтобы определить напряжение аккумуляторной батареи. В этом примере результирующее напряжение батареи составляет 24 вольта. 2) Емкость аккумуляторной батареи такая же, как и у отдельной батареи. При этом предполагается, что емкости отдельных аккумуляторов одинаковы. На самом деле, это обязательно. Не смешивайте и не подбирайте батареи разных размеров в одном батарейном блоке.

    Рисунок 3: Батареи , подключенные параллельно

    На рисунке 3 показаны две 12-вольтовые батареи, подключенные параллельно. Важные моменты, которые следует учитывать при параллельном подключении: 1) Напряжение аккумуляторной батареи такое же, как и напряжение отдельной батареи. Это предполагает, что напряжение отдельных аккумуляторов одинаково. На самом деле, это абсолютная необходимость. Не смешивайте и не подбирайте аккумуляторы с разным напряжением в одном и том же аккумуляторном блоке.

    В этом примере напряжение аккумуляторной батареи составляет 12 вольт, что точно такое же, как и у каждой отдельной 12-вольтовой батареи. 2) Емкость аккумуляторной батареи равна сумме емкостей отдельных батарей. Опять же, убедитесь, что все батареи имеют одинаковый размер, то есть имеют одинаковую емкость в ампер-часах.

    Существует множество способов одновременного соединения группы батарей как последовательно, так и параллельно. Это обычная практика для многих устройств с батарейным питанием, особенно в электромобилях и больших системах ИБП, где аккумуляторные блоки требуют больших напряжений и емкости в ампер-часах. Нередки аккумуляторные батареи с несколькими сотнями вольт и несколькими сотнями ампер-часов.

    Просто чтобы получить представление о том, как можно выполнить эти соединения, мы рассмотрим два примера с 4 батареями в каждой, использующими батареи 12 В, 20 Ач. В каждом из примеров 4 батареи обозначены как A, B, C и D. Пример 1, показанный на рисунке 4, имеет 2 пары последовательно соединенных батарей, соединенных в одно параллельное соединение. В этом типе расположения мы называем каждую пару последовательно соединенных батарей «цепочкой». Батареи А и С соединены последовательно. Батареи B и D включены последовательно. Цепочка A и C параллельна цепочке B и D. Обратите внимание, что общее напряжение аккумуляторной батареи составляет 24 вольта, а общая емкость аккумуляторной батареи составляет 40 ампер-часов.

    Рис. 4: Аккумуляторы , соединенные последовательно/параллельно: пример 1

    Пример 2, показанный на рис. 5, имеет 2 пары параллельно соединенных аккумуляторов, соединенных в одно последовательное соединение. Батареи А и В включены параллельно. Батареи C и D включены параллельно. Параллельное соединение A и B последовательно с параллельным соединением C и D. Опять же, общее напряжение аккумуляторной батареи составляет 24 вольта, а общая емкость аккумуляторной батареи составляет 40 ампер-часов.

    Рисунок 5: Аккумуляторы , соединенные последовательно/параллельно: пример 2

    Примечание. На следующих схемах показаны некоторые способы подключения зарядных устройств Deltran к различным аккумуляторам, соединенным последовательно и параллельно.

    Положительный к положительному, отрицательный к отрицательному, напряжения одинаковые

    Рис. 6: Одна батарея, одно зарядное устройство

    На рис. 6 показано самое простое соединение между зарядным устройством и одной батареей. Положительный выход зарядного устройства (красный) подключается к положительному выводу аккумулятора. Отрицательный выход зарядного устройства (черный) подключается к отрицательному выводу аккумуляторной батареи. Всегда помните: 1) плюс соединяется с плюсом, а минус соединяется с минусом 2) зарядное устройство и аккумулятор должны иметь одинаковое напряжение.

    Рис. 7: Две последовательно соединенные батареи, два зарядных устройства

    На рис. 7 показаны две последовательно соединенные 12-вольтовые батареи.

    Результирующее напряжение аккумуляторной батареи составляет 24 вольта. Как видите, каждая батарея подключена к одному 12-вольтовому зарядному устройству. Это, вероятно, лучший способ обеспечить полную зарядку каждой батареи до полной емкости после каждой разрядки аккумуляторной батареи. Это устраняет большинство проблем, связанных с последовательно включенными батареями.

    Рисунок 8: Два последовательно соединенных аккумулятора, одно зарядное устройство

    Рисунок 9: Два параллельных аккумулятора, одно зарядное устройство номинальное выходное напряжение зарядки как номинальное напряжение аккумуляторной батареи. На рис. 8 одно зарядное устройство на 24 В подключено к аккумуляторной батарее на 24 В.

    На рисунке 9 мы видим пару 12-вольтовых аккумуляторов, соединенных параллельно. Этот 12-вольтовый аккумулятор подключается к одному 12-вольтовому зарядному устройству. Обратите внимание на синий провод, обозначенный W1. Назначение этого провода — равномерно сбалансировать падение напряжения на обеих батареях и на каждом проводе во время зарядки. Это не критично для зарядных устройств с меньшим током, но когда вы начинаете попадать в диапазон 10 ампер и выше, разница в напряжении может быть значительной. Синий провод W1 должен быть подсоединен к противоположному концу аккумуляторной батареи по сравнению с черным проводом в верхней части аккумуляторной батареи.

    Рисунок 11: Четыре батареи в последовательном/параллельном соединении (пример 1), одно зарядное устройство

    Схема, показанная на рисунке 11, представляет собой приемлемый способ зарядки комбинированного последовательного/параллельного блока батарей. Этот метод определенно лучше схемы, показанной на рис. 10, потому что дисбаланс напряжений отдельных батарей не так важен. Есть некоторые сложные детали алгоритмов зарядки, которые специально оптимизированы для учета и устранения дисбаланса напряжения отдельных батарей в больших последовательностях. Даже без этих специальных функций зарядки одно 24-вольтовое зарядное устройство в этом устройстве работает лучше, чем два 12-вольтовых зарядных устройства. Опять же, синий провод, обозначенный W1, выполняет ту же функцию дисбаланса падения напряжения заряда, что и на рисунке 9..

    На рис. 12 снова показаны два 12-вольтовых зарядных устройства, подключенных к последовательно/параллельно аккумуляторной батарее. Но этот аккумулятор настроен так же, как пример 2 в предыдущем разделе. У вас есть два комплекта из двух батарей, соединенных параллельно. Затем эти два параллельно соединенных набора батарей соединяются последовательно одним проводным соединением. В этом случае вполне допустимо использовать одно зарядное устройство для каждого из параллельно соединенных комплектов аккумуляторов, не беспокоясь о дисбалансе напряжений, обсуждаемом в отношении примера 1. Напомним, что пример 1, показанный на рис. 4, имел два комплекта из двух аккумуляторов. , сначала соединены последовательно, затем каждая серия соединена параллельно 2 проводными соединениями.

    Для тех любителей математики, которые увлекаются топологией, n-мерными пространствами и т. д., можно учесть тот факт, что в примере 2 есть еще один кусок провода, соединяющий батареи (всего 5 отрезков провода), по сравнению с 4 отрезками. провода в примере 1. Это одно дополнительное соединение позволяет эффективно использовать два 12-вольтовых зарядных устройства вместо одного 24-вольтового зарядного устройства. В некоторых более крупных системах такие соображения могут повлиять как на экономичность, так и на надежность системы.

    Рисунок 12: Четыре батареи в последовательном/параллельном соединении (пример 2), два зарядных устройства

    На рисунке 13 показано такое же расположение блока батарей на 24 В, 4 батареи, последовательное/параллельное, как в примере 2, но с одним зарядное устройство на 24 вольта. Из-за различий между физическими электрическими соединениями в аккумуляторных батареях при сравнении примеров 1 и 2 в одном случае допустимо использовать либо две 12-вольтовые батареи, либо одну 24-вольтовую батарею. В другом случае это неприемлемо.

    Если у вас возникнут какие-либо сомнения относительно электрических соединений между батареями и зарядным оборудованием, обратитесь к производителю батареи и/или зарядному устройству и убедитесь, что вы правильно выполняете соединения. Эта информация потенциально может сэкономить много денег и разочарований.

    Рисунок 13: Четыре батареи последовательно/параллельно (пример 2), одно зарядное устройство

    Еще одно замечание по поводу дисбаланса напряжения при подаче зарядного тока. На рис. 13 показаны два выделенных провода: синий, обозначенный W1, и зеленый, обозначенный W2. Интересно, что если соединение с положительной клеммы батареи D переместить на положительную клемму батареи C, не изменяя соединение с отрицательной клеммой батареи A, то будет существовать дисбаланс напряжения. Проведите мысленный эксперимент. Возьмите карандаш и проследите путь зарядного тока от выхода, положительной клеммы зарядного устройства на 24 вольта, через провода и аккумуляторы, через W1 и обратно к выходу, отрицательной клемме зарядного устройства на 24 вольта.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *