Схемы зарядки автомобильных аккумуляторов: Схемы зарядных устройств для автомобильных АКБ: как сделать своими руками

Содержание

Схема зарядного устройства для аккумулятора 12 вольт

Владельцам автомобилей приходится сталкиваться с вопросами обслуживания своего транспортного средства. Но обращаться в сервисные центры по каждому даже незначительному поводу накладно, поэтому мелкие неисправности большинство предпочитает устранять самостоятельно. К ним вполне можно отнести и разрядившийся аккумулятор. Обычно для его зарядки применяют специальное оборудование, которое достаточно широко представлено на рынке. Однако многие автомобилисты со стажем предпочитают собирать зарядное устройство для автомобильного аккумулятора своими руками. Конечно, оно будет отличаться от промышленных моделей и не всегда в лучшую сторону.


Поиск данных по Вашему запросу:

Схема зарядного устройства для аккумулятора 12 вольт

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.

По завершению появится ссылка для доступа к найденным материалам.

Содержание:

  • Самое простое, но самое правильное зарядное устройство
  • Автоматическое зарядное устройство 12 В
  • Схемы простого зарядного устройства для автомобильного аккумулятора
  • Схемы зарядных устройств для автомобильных аккумуляторов
  • Самодельное зарядное устройство для акб
  • Зарядное устройство на 12 вольт. Схема и описание
  • Зарядное устройство для аккумулятора своими руками
  • Автомобильное зарядное устройство

ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Зарядка автомобильного аккумулятора Зарядным от Ноутбука

Самое простое, но самое правильное зарядное устройство


Зарядка осуществляется асимметричным импульсным током, благодаря чему улучшается десульфатация и в несколько раз снижается газовыделение. Зарядный ток Iз формируется стабилизатором DA1 в положительной полуволне напряжения на вторичной обмотке сетевого трансформатора. В зависимости от положения переключателя SA1 он составляет 1,1 или 0,8 или 0,6 А и замыкается через VD5.

Зарядный цикл рекомендуется рассчитывать на 20 часов. Параметры радиоэлементов для аккумулятора на 6 вольт обозначены в скобках. Причем существенный ток, протекая по R4, обеспечивает открытое состояние транзистора VТ1, который сквозь сопротивление R3 шунтирует резистор R5, который входит в состав делителя напряжения , определяющий выходное напряжение. Функционирование первого этапа зарядки обозначается свечением светодиода HL2.

Это обеспечивает постепенный переход в автоматическом режиме к второму этапу зарядки, в завершении которого ток заряда уменьшается до 0,02С, падение напряжения на R4 уже становится малым чтобы поддерживать открытым транзистор VТ1, и он запирается, отсоединяя RЗ от минуса и исключая из делителя, определяющего выходное напряжение стабилизатора Ic.

Выходное напряжение снижается с 14,4 до 13,8 вольт при 6 вольтовом варианте с 7,2 до 6,9 вольт , а гашение светодиода HL2 сообщает о завершении зарядки аккумулятора и переходе в режим подзарядки.

Получать уведомления по электронной почте об ответе на свой комментарий. Блок питания Набор для сборки регулируемого блока питания Отправить сообщение об ошибке. Похожие записи: Зарядно-пусковое устройство. Добавить комментарий Отменить ответ Ваш электронный адрес не будет опубликован.


Автоматическое зарядное устройство 12 В

Блог new. Технические обзоры. Недорогое зарядное устройство Опубликовано: ,

За период зарядки (пара миллисекунд) на клеммы аккумулятора Схемы самодельных несложных зарядных устройств для Во-первых, нужен источник постоянного напряжения в пределах от 12 до 25 вольт.

Схемы простого зарядного устройства для автомобильного аккумулятора

Без сомнений, электроинструмент значительно облегчает наш труд, а также сокращает время рутинных операций. В ходу сейчас и всевозможные шуруповёрты с автономным питанием. Рассмотрим устройство, принципиальную схему и ремонт зарядного устройства для аккумуляторов от шуруповёрта фирмы «Интерскол». Для начала взглянем на принципиальную схему. Она срисована с реальной печатной платы зарядного устройства. Силовая часть зарядного устройства состоит из силового трансформатора GS Мощность его около Ватт.

Схемы зарядных устройств для автомобильных аккумуляторов

Соблюдение режима эксплуатации аккумуляторных батарей, и в частности режима зарядки, гарантирует их безотказную работу в течение всего срока службы. Зарядку аккумуляторных батарей производят током, значение которого можно определить по формуле. Зарядный ток, рекомендуемый в инструкции по эксплуатации аккумуляторной батареи, обеспечивает оптимальное протекание электрохимических процессов в ней и нормальную работу в течение длительного времени. Классическая схема зарядного устройства для автомобильного аккумулятора состоит из понижающего трансформатора, выпрямителя и регулятора тока зарядки.

Зарядка осуществляется асимметричным импульсным током, благодаря чему улучшается десульфатация и в несколько раз снижается газовыделение.

Самодельное зарядное устройство для акб

В данной статье представлена схема зарядного устройства предназначеного для заряда любых типов аккумуляторов — кислотных и щелочных аккумуляторных батарей напряжением от 1,5 до 15 вольт, током заряда от 50 миллиампер до 10 ампер. Возможен заряд как маленьких пальчиковых, так и больших свинцовых автомобильных и других стартерных аккумуляторных батарей. Устройство имеет схему стабилизации зарядного тока. По мере заряда аккумуляторной батареи, ток заряда не падает как у обычных зарядных устройств, а поддерживается на установленном уровне, что позволяет качественно заряжать аккумуляторную батарею. В отдельных случаях, возможно восстановление аккумуляторных батарей, которые уже подвержены сульфатации. Заряд аккумуляторной батареи производится прямоугольными импульсами частотой 50 Герц положительной полуволной сетевого напряжения.

Зарядное устройство на 12 вольт. Схема и описание

При использовании шуруповёрта пользователи часто сталкиваются с повреждением зарядного устройства ЗУ. В первую очередь это связано с нестабильностью параметров электрической сети, к которой подключается устройство заряда, а во вторую — с выходом из строя аккумуляторной батареи. Решается эта проблема двумя способами: покупкой нового зарядного устройства для шуруповёрта или его самостоятельным ремонтом. Популярность шуруповёрта вызвана тем, что он упрощает процесс закручивания или выкручивания различного крепёжного элемент а. Характеризуясь мобильностью и небольшими размерами, он незаменим при сборке мебельных конструкций, разборке техники, кровельных и других строительных работах.

Главная» Источники питания» Две схемы зарядного устройства для свинцовых аккумуляторов на 12 вольт.

Зарядное устройство для аккумулятора своими руками

Схема зарядного устройства для аккумулятора 12 вольт

Данное зарядное устройство на 12 вольт позволяет, как заряжать, так и восстанавливать автомобильные аккумуляторы с изношенными пластинами за счет применения асимметричного тока при зарядке в режиме заряд 5 А — разряд 0,5 А за полный период сетевого напряжения. Данное зарядное устройство, также как и ранее описываемый самодельный зарядник для аккумулятора , обладает целым рядом дополнительных функций, способствующих удобству использования. Так, при завершении заряда схема автоматически выключит автомобильный аккумулятор от зарядного устройства.

Автомобильное зарядное устройство

ВИДЕО ПО ТЕМЕ: ДЕЛАЕМ ПРОСТОЕ ЗАРЯДНОЕ УСТРОЙСТВО ДЛЯ АКБ с авто выключением при полном заряде

Впервые столкнувшись с необходимостью реанимации уже мертвых аккумуляторов, я решил изучить вопрос и задаться целью «впихнуть невпихуемое», то есть выжать из приготовленных на выброс АКБ последнее. Опуская всякие детали, перейду к тому, что же я вывел для себя. А получается вот что: заряжать аккумуляторы нужно не только импульсами, а еще и разряжать в паузах между импульсами заряда. Но что еще важнее — импульсы постоянного тока также не очень благоприятны.

Это очень простая схема приставки к вашему уже имеющемуся зарядному устройству. Которая будет контролировать напряжение заряда аккумуляторной батареи и при достижении выставленного уровня — отключать его от зарядника, тем самым предотвращая перезарядку аккумулятора.

Эта история началась когда мы решили отправиться в лес в ночь с субботы на воскресение — у брата был день варенья, и мы его решили отметить на свежем воздухе под шашлычек и водочку. Стали собираться. Для освещения взяли пару фонарей, для наведения музыкального фона небольшую магнитолку-бумбокс. Разумеется, для всего этого купили батарейки, что обошлось нам в кругленькую сумму. С рожами счастливых идиотов мы вломились в лес и бойко приступили к сборке дров, трезво пока еще рассудив, что было бы неплохо наломать этих самых дров пока не стемнело.

Ремонт телефона. Продажа автомобильных аккумуляторов в Москве. Забыл пароль? Ремонт телефона Недорогой ремонт смартфонов!


Схемы импульсных зарядных устройств для автомобильных аккумуляторов: принцип действия


Принцип действия

Действие такого зарядного устройства основано на генерации высокой частоты, повышающей выходное напряжение, поступающее по сети. В устройстве содержится система фильтров, регулирующих величину напряжения.

Аккумулятор получает величину, необходимую для его зарядки. При полной батарее, зарядное устройство переходит в режим хранения, что способствует сохранению величины заряда.

Особенности

Предлагаемые в продаже зарядники делятся на несколько видов:

  • Ручные. Отличаются небольшой ценой. Но требуют пристального внимания в процессе зарядки.
  • Полуавтоматические. Отличаются от ручных, тем, что необходимо следить только за временем зарядки батареи.
  • Автоматические. Процесс зарядки полностью автоматизирован. Водителю нужно лишь подключить батарею к заряднику. Главное условие – соблюдение полярности.

Время зарядки зависит от степени разряженности батареи и вида зарядного устройства. Оно может быть до 20 часов.

Специальный режим зарядки

Интересно ИЗУ тем, что обладают особым режимом зарядки в экстренных ситуациях. Если аккумулятор полностью разряжен, а автомобиль необходим, то можно использовать BOOST.

Такой режим позволяет запустить аккумулятор даже в том случае, если батарея была в минусе. Этот метод можно использовать в крайних случаях, поскольку он приводит к быстрому износу батареи.

Преимущества и недостатки

ИЗУ имеют ряд преимуществ. Малые габариты позволяют взять его с собой в поездку и воспользоваться в критической ситуации. Несложное устройство, особенно у автоматов. Использовать его может даже начинающий автолюбитель.

Преимуществом, опять же, автомата является автономный процесс зарядки. Человеческое участие в нём не требуется. Наличие защитных функций. В продвинутых вариантах есть и подсказки, если действия совершаются не верно.

Как недостатки таких устройств можно отметить достаточно высокую стоимость и сложность в починке. В остальном ИЗУ интересен и привлекателен для всех категорий автомобилистов.

Виды зарядных устройств

Срок эксплуатации аккумуляторной батареи не более 6 лет. При условии качественного его обслуживания и надлежащей эксплуатации. Соблюдение правил эксплуатации особенно актуально в зимних условиях. Даже в случае нормальной работы аккумулятор требует периодической проверки и подзарядки.

Для подзарядки батареи можно использовать трансформаторные или импульсные зарядники.

Недостатком трансформаторной зарядки является большой вес. Но они отличаются надежностью.

Исходя из ситуации можно использовать зарядное устройство, когда нужно зарядить аккумулятор или проверить его работоспособность.

В экстренной ситуации можно использовать пусковое устройство для батареи. Их главное отличие — портативность. Применять их можно тогда, когда нет возможности дать аккумулятору полноценную зарядку. Пуско-зарядное включает в себя функции и зарядки, но для работы такого устройства требуется подключение к сети.

Выбирая зарядное устройство, ориентироваться необходимо прежде всего на аккумуляторную батарею. Номинал АКБ может располагаться в диапазоне от 6 вольт. Наиболее востребованный вариант 12 вольт, но есть вариант с 24 вольт.

Универсальным решением будет импульсный автомат. Такой вид зарядника самостоятельно выбирает нужный режим работы и отслеживает уровень зарядки.

В ситуации, когда есть нужда в зарядном устройстве, а его нет или оно не работает, зарядку можно изготовить самостоятельно.

Самодельные зарядки для АКБ

Для изготовления зарядника необходим паяльник и небольшие навыки и знания в области электротехники. С помощью варианта, рассчитанного на 6 и 12 В можно зарядить большинство АКБ с ёмкостью в диапазоне от 10 до 120 А/ч.

Для такого устройства понадобится выпрямитель и понижающий трансформатор Т1. Выпрямительные диоды VD2-VD5 позволяют отрегулировать ток зарядника. Для измерения нужен амперметр с диапазоном 30А.

Можно использовать и подручный материал. Например, компьютерный блок питания. Дополнительной составляющей будет ШИМ-контроллёр TL494. Таким устройством можно зарядить батарею до 10 А.

Настройка блока автоматической регулировки и защиты АЗУ

При безошибочной сборке платы и исправности всех радиоэлементов, схема заработает сразу. Останется только установить порог напряжения резистором R5, при достижении которого зарядка аккумулятора будет переведена в режим зарядки малым током.

Регулировку можно выполнить непосредственно при зарядке аккумулятора. Но все, же лучше подстраховаться и перед установкой в корпус, схему автоматического регулирования и защиты АЗУ проверить и настроить. Для этого понадобится блок питания постоянного тока, у которого есть возможность регулировать выходное напряжение в пределах от 10 до 20 В, рассчитанного на выходной ток величиной 0,5-1 А. Из измерительных приборов понадобится любой вольтметр, стрелочный тестер или мультиметр рассчитанный на измерение постоянного напряжения, с пределом измерения от 0 до 20 В.

Проверка стабилизатора напряжения

После монтажа всех деталей на печатную плату нужно подать от блока питания питающее напряжение величиной 12-15 В на общий провод (минус) и вывод 17 микросхемы DA1 (плюс). Изменяя напряжение на выходе блока питания от 12 до 20 В, нужно с помощью вольтметра убедиться, что величина напряжения на выходе 2 микросхемы стабилизатора напряжения DA1 равна 9 В. Если напряжение отличается или изменяется, то DA1 неисправна.

Микросхемы серии К142ЕН и аналоги имеют защиту от короткого замыкания по выходу и если закоротить ее выход на общий провод, то микросхема войдет в режим защиты и из строя не выйдет. Если проверка показала, что напряжение на выходе микросхемы равно 0, то это не всегда означает о ее неисправности. Вполне возможно наличие КЗ между дорожками печатной платы или неисправен один из радиоэлементов остальной части схемы. Для проверки микросхемы достаточно отсоединить от платы ее вывод 2 и если на нем появится 9 В, значит, микросхема исправна, и необходимо найти и устранить КЗ.

Проверка системы защиты от перенапряжения

Описание принципа работы схемы решил начать с более простой части схемы, к которой не предъявляются строгие нормы по напряжению срабатывания.

Функцию отключения АЗУ от электросети в случае отсоединения аккумулятора выполняет часть схемы, собранная на операционном дифференциальном усилителе А1.2 (далее ОУ).

Принцип работы операционного дифференциального усилителя

Без знания принципа работы ОУ разобраться в работе схемы сложно, поэтому приведу краткое описание. ОУ имеет два входа и один выход. Один из входов, который обозначается на схеме знаком «+», называется неинвертирующим, а второй вход, который обозначается знаком «–» или кружком, называется инвертирующим. Слово дифференциальный ОУ означает, что напряжение на выходе усилителя зависит от разности напряжений на его входах. В данной схеме операционный усилитель включен без обратной связи, в режиме компаратора – сравнения входных напряжений.

Таким образом, если напряжение на одном из входов будет неизменным, а на втором изменятся, то в момент перехода через точку равенства напряжений на входах, напряжение на выходе усилителя скачкообразно изменится.

Проверка схемы защиты от перенапряжения

Вернемся к схеме. Неинвертирующий вход усилителя А1.2 (вывод 6) подключен к делителю напряжения, собранного на резисторах R13 и R14. Этот делитель подключен к стабилизированному напряжению 9 В и поэтому напряжение в точке соединения резисторов, никогда не изменяется и составляет 6,75 В. Второй вход ОУ (вывод 7) подключен ко второму делителю напряжения, собранному на резисторах R11 и R12. Этот делитель напряжения подключен к шине, по которой идет зарядный ток, и напряжение на нем меняется в зависимости от величины тока и степени заряда аккумулятора. Поэтому и величина напряжения на выводе 7 тоже будет, соответственно изменятся. Сопротивления делителя подобраны таким образом, что при изменении напряжения зарядки аккумулятора от 9 до 19 В напряжение на выводе 7 будет меньше, чем на выводе 6 и напряжение на выходе ОУ (вывод

будет больше 0,8 В и близко к напряжению питания ОУ. Транзистор будет открыт, на обмотку реле Р2 будет поступать напряжение и оно замкнет контакты К2. 1. Напряжение на выходе также закроет диод VD11 и резистор R15 в работе схемы участвовать не будет.

Как только напряжение зарядки превысит 19 В (это может случится только в случае, если от выхода АЗУ будет отключен аккумулятор), напряжение на выводе 7 станет больше, чем на выводе 6. В этом случае на выходе ОУ напряжение скачкообразно уменьшится до нуля. Транзистор закроется, реле обесточится и контакты К2.1 разомкнутся. Подача питающего напряжения на ОЗУ будет прекращена. В момент, когда напряжение на выходе ОУ станет равно нулю, откроется диод VD11 и, таким образом, параллельно к R14 делителя подключится R15. Напряжение на 6 выводе мгновенно уменьшится, что исключит ложные срабатывания в момент равенства напряжений на входах ОУ из-за пульсаций и помех. Изменяя величину R15 можно менять гистерезис компаратора, то есть напряжение, при котором схема вернется в исходное состояние.

При подключения аккумулятора к ОЗУ напряжения на выводе 6 опять установится равным 6,75 В, а на выводе 7 будет меньше и схема начнет работать в штатном режиме.

Для проверки работы схемы достаточно изменять напряжение на блоке питания от 12 до 20 В и подключив вольтметр вместо реле Р2 наблюдать его показания. При напряжении меньше 19 В, вольтметр должен показывать напряжение, величиной 17-18 В (часть напряжения упадет на транзисторе), а при большем – ноль. Желательно все же подключить к схеме обмотку реле, тогда будет проверена не только работа схемы, но и его работоспособность, а по щелчкам реле можно будет контролировать работу автоматики без вольтметра.

Если схема не работает, то нужно проверить напряжения на входах 6 и 7, выходе ОУ. При отличии напряжений от указанных выше, нужно проверить номиналы резисторов соответствующих делителей. Если резисторы делителей и диод VD11 исправны, то, следовательно, неисправен ОУ.

Для проверки цепи R15, D11 достаточно отключить одни из выводов этих элементов, схема будет работать, только без гистерезиса, то есть включаться и отключаться при одном и том же подаваемом с блока питания напряжении. Транзистор VT12 легко проверить, отсоединив один из выводов R16 и контролируя напряжение на выходе ОУ. Если на выходе ОУ напряжение изменяется правильно, а реле все время включено, значит, имеет место пробой между коллектором и эмиттером транзистора.

Проверка схемы отключения аккумулятора при полной его зарядке

Принцип работы ОУ А1.1 ничем не отличается от работы А1.2, за исключением возможности изменять порог отключения напряжения с помощью подстроечного резистора R5.

Делитель для опорного напряжения собран на резисторах R7, R8 и напряжение на выводе 4 ОУ должно быть 4,5 В. Напряжение на выводе 3 А1.1, как Вы уже поняли, должно быть равно напряжению 4,5 в случае, когда напряжение на аккумуляторе достигнет величины 15,6 В для случая тока зарядки 0,3 А. Для больших токов, напряжение будет большим и его нужно подбирать экспериментально. Более подробно этот вопрос рассмотрен в статье сайта «Как заряжать аккумулятор».

Для проверки работы А1.1, питающее напряжение, поданное с блока питания плавно увеличивается и уменьшается в пределах 12-18 В. При достижении напряжения 15,6 В должно отключиться реле Р1 и контактами К1.1 переключить АЗУ в режим зарядки малым током через конденсатор С4. При снижении уровня напряжения ниже 12,54 В реле должно включится и переключить АЗУ в режим зарядки током заданной величины.

Напряжение порога включения 12,54 В можно регулировать изменением номинала резистора R9, но в этом нет необходимости.

С помощью переключателя S2 имеется возможность отключать автоматический режим работы, включив реле Р1 напрямую.

Схема зарядки для экстренных случаев

Если аккумулятор не заряжается после морозной ночи, а необходимость в автомобиле велика, помочь в ситуации могут источник постоянного напряжения и сопротивление ограничения тока.

Основной элемент — зарядное устройство ноутбука. Плюсом будет внутренний вход, а минусом внешний контур штекера. Ограничителем может выступать лампа из салона машины.

Воспользоваться можно и блоком питания компьютера. Если есть не нужный рабочий блок, то он может послужить для создания вполне надежного зарядника. Минусом такой зарядки будет её длительность.

После использования любого зарядного устройства обязательна проверка напряжения в АКБ. Для этого используется тестер.

Принцип работы ШИМ

Сигнал, промодулированный по ширине импульса, формируется двумя способами:

  • аналоговым;
  • цифровым.

При аналоговом способе создания ШИМ-сигнала несущая в виде пилообразного или треугольного сигнала подается на инвертирующий вход компаратора, а информационный – на неинвертирующий. Если мгновенный уровень несущей выше модулирующего сигнала, то на выходе компаратора ноль, если ниже – единица. На выходе получается дискретный сигнал с частотой, соответствующей частоте несущего треугольника или пилы, и длиной импульса, пропорциональной уровню модулирующего напряжения.

В качестве примера приведена модуляция по ширине импульса треугольного сигнала линейно-возрастающим. Длительность выходных импульсов пропорциональна уровню выходного сигнала.

Аналоговые ШИМ-контроллеры выпускаются и в виде готовых микросхем, внутри которых установлен компаратор и схема генерации несущей. Имеются входы для подключения внешних частотозадающих элементов и подачи информационного сигнала. С выхода снимается сигнал, управляющий мощными внешними ключами. Также имеются входы для обратной связи – они нужны для поддержания установленных параметров регулирования. Такова, например, микросхема TL494. Для случаев, когда мощность потребителя относительно невелика, выпускаются ШИМ-контроллеры со встроенными ключами. На ток до 3 ампер рассчитан внутренний ключ микросхемы LM2596.

Цифровой способ осуществляется применением специализированных микросхем или микропроцессоров. Длина импульса регулируется внутренней программой. Во многих микроконтроллерах, включая популярные PIC и AVR, «на борту» имеется встроенный модуль для аппаратной реализации ШИМ, для получения PWM-сигнала надо активировать модуль и задать параметры его работы. Если такой модуль отсутствует, то ШИМ можно организовать чисто программным методом, это несложно. Этот способ дает более широкие возможности и предоставляет больше свободы за счёт гибкого использования выходов, но задействует большее количество ресурсов контроллера.

Модели ИЗУ

Выбор ИЗУ должен основываться на характеристиках аккумулятора, который предполагается заряжать. Выбрать устройство можно из предлагаемых отечественными и зарубежными производителями.

Voin VL 156 (6-12) импульсный автомат с несколькими режимами зарядки и удобным дисплеем. Хорош наличием нескольких уровней защиты.

Master Watt. Полуавтоматическое компактное импульсное устройство. Его можно применять для зарядки любых типов аккумуляторов. Поскольку это полуавтомат, то над процессом зарядки необходим периодический контроль.

KeePower Medium. Компактный «умный» автомат. Реализована возможность определения скорости зарядки в устройстве.

Также может использовать для подзарядки любых видов аккумуляторных батарей. Отличительной чертой такого ИЗУ является функция диагностики возможных неисправностей АКБ.

Популярное;

  • Простой стабилизатор напряжения к зарядному устройству
  • Импульсное, простое зарядное устройство для автомобильного АКБ
  • Зарядное устройство автомобильного АКБ с ШИ-регулировкой тока
  • Зарядное устройство для авто из БП от светодиодной ленты
  • Компактное ЗУ для автомобильного аккумулятора
  • Зарядное устройство для АКБ очень высокого качества
  • Автоматическое зарядное устройство с автоотключением.
  • Автоотключение любого ЗУ автомобиля при завершении зарядки, схема

Зарядка автомобильного аккумулятора в домашних условиях

Часто в водительской практике возникает ситуация, когда, поставив машину возле дома вечером, утром обнаруживается, что АКБ разряжен. Что можно сделать в такой ситуации, когда под рукой нет паяльника, никаких деталей, а завестись надо?

Обычно на аккумуляторе осталась небольшая емкость, его просто необходимо немного «подтянуть», чтобы заряда хватило для запуска двигателя. В этом случае может помочь блок питания от какой-нибудь бытовой или оргтехники, например, ноутбука.

Зарядка от блока питания ноутбука

Напряжение, которое производит блок питания ноутбука обычно 19 Вольт, ток до 10 Ампер. Этого хватает, чтобы зарядить АКБ. Но напрямую подключать блок питания к аккумулятору НЕЛЬЗЯ. Необходимо последовательно в цепь заряда включить ограничивающее сопротивление. В качестве него можно взять автомобильную электролампочку, лучше для освещения салона. Ее можно приобрести на ближайшей автозаправке.

Обычно средний контакт разъема положительный. К нему подключается лампочка. Ко второму выводу лампочки подключается + АКБ.

Отрицательная клемма подключается к отрицательному выводу блока питания. На блоке питания обычно имеется шильдочка, показывающая полярность разъема. Пары часов зарядки таким методом достаточно, чтобы запустить двигатель.

Схема простого зарядного устройства для автомобильного аккумулятора.

Рис.1

Заряд от бытовой сети

Более экстремальный метод зарядки – непосредственно от бытовой сети. Его применяют только в критической ситуации, используя максимальные меры электробезопасности. Для этого понадобится осветительная лампа (не энергосберегающая).

Можно вместо нее использовать электроплитку. Также необходимо приобрести выпрямительный диод. Такой диод можно «позаимствовать» из неисправной энергосберегающей лампы. На это время напряжение, подаваемое в квартиру, лучше обесточить. Схема представлена на рисунке.

Рис.2

Ток заряда при мощности лампы 100 Ватт будет приблизительно 0,5 А. За ночь АКБ подзарядится всего на несколько ампер-часов, но этого может хватить для запуска. Если соединить параллельно три лампы, то АКБ зарядится в три раза больше. Если вместо лампочки подключить электроплитку (на самой маленькой мощности), то время заряда существенно уменьшится, но это очень опасно. К тому же может пробиться диод, тогда возможно замыкание АКБ. Методы заряда от 220 В опасны.

Зарядка для автомобильных аккумуляторов своими руками. Видео:

Зарядка для аккумулятора авто управление по вторичке. Простые схемы для зарядки самых разных аккумуляторов

Знаю что достал уже всякими разными зарядными, но я не мог не повторить улучшенную копию тиристорной зарядки для автомобильных аккумуляторов. Доработка этой схемы дает возможность больше не следить за состоянием заряженности АКБ, так же обеспечивает защиту от переполюсовки, а так же сохраняет старые параметры

Слева в розовой рамке представлена уже давно известная схема фазоимпульсного регулятора тока, подробней о преимуществах этой схемы можно почитать

В правой части схемы представлен ограничитель напряжения автомобильного аккумулятора. Смысл этой доработки заключается в том, что бы при достижении на аккумуляторе напряжения 14,4В, напряжение с этой части схемы блокировала подачу импульсов на левую часть схемы через транзистор Q3 и зарядка завершается.

Схему я выложил такой как нашел, лиж на печатной плате изменил немного номиналы делителя с подстроечником

Вот такая печатная плата у меня получилась в проекте SprintLayout

На плате изменился делитель с подстроечником, как выше говорил, а так же добавил еще один резистор для переключения напряжений между 14,4В-15,2В. Это напряжение 15,2В необходим для зарядки кальциевых автомобильных аккумуляторов

На плате три светодиодных индикатора: Питание, АКБ подключен, Переполюсовка. Первые два рекомендую поставить зеленые, третий светодиод красный. Переменный резистор регулятора тока устанавливается на печатную плату, тиристор и диодный мост вынес на радиатор.

Выложу пару фоток собранных плат, но пока не в корпусе. Так же пока нет испытаний зарядного устройства для автомобильных аккумуляторов. Остальные фото выложу как буду в гараже


Так же начал рисовать лицевую панель в этом же приложении, но пока жду посылку с Китая, панелью еще не начинал заниматься

Так же нашел в интернете таблицу напряжений аккумулятора при разных степенях заряженности, возможно кому то пригодится

Интересна будет статья про другое простое зарядное устройство

Что бы не пропустить последние обновления в мастерской, подписывайтесь на обновления в Вконтакте или Одноклассниках , так же можно подписаться на обновления по электронной почте в колонке справа

Не хочется вникать в рутины радиоэлектроники? Рекомендую обратить внимание на предложения наших китайских друзей. За вполне приемлемую цену можно приобрести довольно таки качественные зарядные устройства

Простенькое зарядное устройство с светодиодным индикатором зарядки, зеленый батарея заряжается, красный батарея заряжена.

Есть защита от короткого замыкания, есть защита от переполюсовки. Отлично подойдет для зарядки Мото АКБ емкостью до 20А\ч, АКБ 9А\ч зарядит за 7 часов, 20А\ч — за 16 часов. Цена на это зарядное всего 403 рубля,доставка бесплатна

Этот тип зарядного способен автоматически заряжать практически любые типы автомобильных и мото аккумуляторов 12В до 80А\Ч. Имеет уникальный способ зарядки в три этапа: 1. Зарядка постоянным током, 2. Зарядка постоянным напряжением, 3. Капельная дозарядка до 100%.

На передней панеле два индикатора, первый указывает напряжение и процент зарядки, второй указывает ток зарядки.
Довольно качественный прибор для домашних нужд, цена всего 781,96 руб, доставка бесплатна. На момент написания этих строк количество заказов 1392, оценка 4,8 из 5. При заказе не забудьте указать Евровилку

Зарядное устройство для самых разнообразных типов аккумуляторов 12-24В с током до 10А и пиковым током 12А. Умеет заряжать Гелиевые АКБ и СА\СА. Технология зарядки как и у предыдущего в три этапа. Зарядное устройство способно заряжать как в автоматическом режиме, так и в ручном. На панеле есть ЖК индикатор указывающий напряжение, ток заряда и процент зарядки.

Хороший прибор если вам надо заряжать все возможные типы АКБ любых емкостей, аж до 150А\ч

!
Сегодня мы рассмотрим 3 простые схемы зарядных устройств, которые могут быть использованы для зарядки самых разных аккумуляторов.

Первые 2 схемы работают в линейном режиме, а линейный режим в первую очередь означает сильный нагрев. Но зарядное устройство вещь стационарная, а не портативная, чтобы КПД было решающим фактором, так что единственный минус представленных схем – это то, что они нуждаются в больших радиатор охлаждения, а в остальном все хорошо. Такие схемы всегда применялись и будут применяться, так как имеют неоспоримые плюсы: простота, низкая себестоимость, не «гадят» в сеть (как в случае импульсных схем) и высокая повторяемость.

Рассмотрим первую схему:

Данная схема состоит всего из пары резисторов (с помощью которых задается напряжение окончания заряда или выходное напряжение схемы в целом) и датчика тока, который задает максимальной выходной ток схемы.

Если нужно универсальное зарядное устройство, то схема будет выглядеть следующим образом:

Вращением подстроечного резистора можно задать любое напряжение на выходе от 3 до 30 В. По идее можно и до 37В, но в таком случае на вход нужно подавать 40В, чего автор (AKA KASYAN) делать не рекомендует. Максимальный выходной ток зависит от сопротивления датчика тока и не может быть выше 1,5А. Выходной ток схемы можно рассчитать по указанной формуле:

Где 1,25 — это напряжение опорного источника микросхемы lm317, Rs — сопротивление датчика тока. Для получения максимального тока 1,5А сопротивление этого резистора должно быть 0,8 Ом, но на схеме 0,2 Ома.

Дело в том, что даже без резистора максимальный ток на выходе микросхемы будет ограничен до указанного значения, резистор тут в большей степени для страховки, а его сопротивление снижено для минимизации потерь. Чем больше сопротивление, тем больше на нем будет падать напряжение, а это приведет к сильному нагреву резистора.

Микросхему обязательно устанавливают на массивный радиатор, на вход подается не стабилизированное напряжение до 30-35В, это чуть меньше максимально допустимого входного напряжения для микросхемы lm317. Нужно помнить, что микросхема lm317 может рассеять максимум 15-20Вт мощности, обязательно учитывайте это. Также нужно учитывать то, что максимальное выходное напряжение схемы будет на 2-3 вольта меньше входного.

Зарядка происходит стабильным напряжением, а ток не может быть больше выставленного порога. Данная схема может быть использована даже для зарядки литий-ионных аккумуляторов. При коротких замыканиях на выходе ничего страшного не произойдет, просто пойдет ограничение тока и, если охлаждение микросхемы хорошее, а разница входного и выходного напряжения небольшое, схема в таком режиме может проработать бесконечно долгое время.

Собрано все на небольшой печатной плате.

Ее, а также печатные платы для 2-ух последующих схем можете вместе с общим архивом проекта.

Вторая схема из себя представляет мощный стабилизированный источник питания с максимальным выходным током до 10А, была построена на базе первого варианта.

Она отличается от первой схемы тем, что тут добавлен дополнительный силовой транзистор прямой проводимости.

Максимальный выходной ток схемы зависит от сопротивления датчиков тока и тока коллектора использованного транзистора. В данном случае ток ограничен на уровне 7А.

Выходное напряжение схемы регулируется в диапазоне от 3 до 30В, что у позволит заряжать практически любые аккумуляторы. Регулируют выходное напряжение с помощью того же подстроечного резистора.

Этот вариант отлично подходит для зарядки автомобильных аккумуляторов, максимальный ток заряда с указанными на схеме компонентами составляет 10А.

Теперь давайте рассмотрим принцип работы схемы. При малых значениях тока силовой транзистор закрыт. При увеличении выходного тока падение напряжения на указанном резисторе становится достаточным и транзистор начинает открываться, и весь ток будет протекать по открытому переходу транзистора.

Естественно из-за линейного режима работы схема будет нагреваться, особенно жестко будут греться силовой транзистор и датчики тока. Транзистор с микросхемой lm317 прикручивают на общий массивный алюминиевый радиатор. Изолировать подложки теплоотвода не нужно, так как они общие.

Очень желательно и даже обязательно использование дополнительного вентилятора, если схема будет эксплуатироваться на больших токах.
Для зарядки аккумуляторов, вращением подстроечного резистора нужно выставить напряжение окончания заряда и все. Максимальный ток заряда ограничен 10-амперами, по мере заряда батарей ток будет падать. Схема коротких замыканий не боится, при КЗ ток будет ограничен. Как и в случае первой схемы, если имеется хорошее охлаждение, то устройство сможет долговременно терпеть такой режим работы.
Ну а теперь несколько тестов:

Как видим стабилизация свое отрабатывает, так что все хорошо. Ну и наконец третья схема:

Она представляет из себя систему автоматического отключения аккумулятора при полном заряде, то есть это не совсем зарядное устройство. Начальная схема подвергалась некоторым изменением, а плата дорабатывалась в ходе испытаний.

Рассмотрим схему.

Как видим она до боли простая, содержит всего 1 транзистор, электромагнитное реле и мелочевку. У автора на плате также имеется диодный мост по входу и примитивная защита от переполюсовки, на схеме эти узлы не нарисованы.

На вход схемы подается постоянное напряжение с зарядного устройства или любого другого источника питания.

Тут важно заметить, что ток заряда не должен превышать допустимый ток через контакты реле и ток срабатывания предохранителя.

При подаче питания на вход схемы, заряжается аккумулятор. В схеме есть делитель напряжения, с помощью которого отслеживается напряжение непосредственно на аккумуляторе.

По мере заряда, напряжение на аккумуляторе будет расти. Как только оно становится равным напряжению срабатывания схемы, которое можно выставить путем вращения подстроечного резистора, сработает стабилитрон, подавая сигнал на базу маломощного транзистора и тот сработает.

Так как в коллекторную цепь транзистора подключена катушка электромагнитного реле, последняя также сработает и указанные контакты разомкнутся, а дальнейшая подача питания на аккумулятор прекратится, заодно и сработает второй светодиод, уведомив о том, что зарядка окончена.

Зарядное устройство для автомобильных аккумуляторов.

Ни для кого не ново, если скажу, что у любого автомобилиста в гараже должно быть зарядное устройство для аккумуляторной батареи. Конечно, его можно купить в магазине, но, столкнувшись с этим вопросом, пришел к выводу, заведомо не очень хорошее устройство по приемлемой цене брать не хочется. Встречаются такие, у которых ток заряда регулируется мощным переключателем, который добавляет или уменьшает количество витков во вторичной обмотке трансформатора, тем самым увеличивая или уменьшая зарядный ток, при этом прибор контроля тока в принципе отсутствует. Это наверно самый дешевый вариант зарядника заводского исполнения, ну а толковый девайс стоит не так уж и дешево, цена прямо-таки кусается, поэтому решил найти схему в интернете, и собрать ее самому. Критерии выбора были такие:

Простая схема, без лишних наворотов;
— доступность радиодеталей;
— плавная регулировка зарядного тока от 1 до 10 ампер;
— желательно чтобы это была схема зарядно-тренировочного устройства;
— не сложная наладка;
— стабильность работы (по отзывам тех, кто уже делал данную схему).

Поискав в интернете, наткнулся на промышленную схему зарядного устройства с регулирующими тиристорами.

Все типично: трансформатор, мост (VD8, VD9, VD13, VD14), генератор импульсов с регулируемой скважностью (VT1, VT2), тиристоры в качестве ключей (VD11, VD12), узел контроля заряда. Несколько упростив эту конструкцию, получим более простую схему:

На этой схеме нет узла контроля заряда, а остальное – почти то же самое: транс, мост, генератор, один тиристор, измерительные головки и предохранитель. Обратите внимание, что в схеме стоит тиристор КУ202, он немного слабоват, поэтому чтобы не допустить пробоя импульсами большого тока его необходимо установить на радиатор. Трансформатор — ватт на 150, а можно использовать ТС-180 от старого лампового телевизора.

Регулируемое зарядное устройство с током заряда 10А на тиристоре КУ202.

И еще одно устройство, не содержащее дефицитных деталей, с током заряда до 10 ампер. Оно представляет собой простой тиристорный регулятор мощности с фазоимпульсным управлением.

Узел управления тиристором собран на двух транзисторах. Время, за которое конденсатор С1 будет заряжаться до переключения транзистора, выставляется переменным резистором R7, которым, собственно, и выставляется величина зарядного тока аккумулятора. Диод VD1 служит для защиты управляющей цепи тиристора от обратного напряжения. Тиристор, также как и в предыдущих схемах, ставится на хороший радиатор, или на небольшой с охлаждающим вентилятором. Печатная плата узла управления выглядит следующим образом:

Схема не плохая, но в ней есть некоторые недостатки:
— колебания напряжения питания приводят к колебанию зарядного тока;
— нет защиты от короткого замыкания кроме предохранителя;
— устройство дает помехи в сеть (лечится с помощью LC-фильтра).

Зарядно-восстанавливающее устройство для аккумуляторных батарей.

Это импульсное устройство может заряжать и восстанавливать практически любые типы аккумуляторов. Время заряда зависит от состояния батареи и колеблется в пределах 4 — 6 часов. За счет импульсного зарядного тока происходит десульфатация пластин аккумулятора. Смотрим схему ниже.

В этой схеме генератор собран на микросхеме, что обеспечивает более стабильную его работу. Вместо NE555 можно использовать российский аналог — таймер 1006ВИ1 . Если кому не нравится КРЕН142 по питанию таймера, так ее можно заменить обычным параметрическим стабилизатором, т.е. резистором и стабилитроном с нужным напряжением стабилизации, а резистор R5 уменьшить до 200 Ом . Транзистор VT1 — на радиатор в обязательном порядке, греется сильно. В схеме применен трансформатор со вторичной обмоткой на 24 вольта. Диодный мост можно собрать из диодов типа Д242 . Для лучшего охлаждения радиатора транзистора VT1 можно применить вентилятор от компьютерного блока питания или охлаждения системного блока.

Восстановление и зарядка аккумулятора.

В результате неправильной эксплуатации автомобильных аккумуляторов пластины их могут сульфатироваться, и он выходит из строя.
Известен способ восстановления таких батарей при заряде их «ассимметричным» током. При этом соотношение зарядного и разрядного тока выбрано 10:1 (оптимальный режим). Этот режим позволяет не только восстанавливать засульфатированные батареи аккумуляторов, но и проводить профилактическую обработку исправных.


Рис. 1. Электрическая схема зарядного устройства

На рис. 1 приведено простое зарядное устройство, рассчитанное на использование вышеописанного способа. Схема обеспечивает импульсный зарядный ток до 10 А (используется для ускоренного заряда). Для восстановления и тренировки аккумуляторов лучше устанавливать импульсный зарядный ток 5 А. При этом ток разряда будет 0,5 А. Разрядный ток определяется величиной номинала резистора R4.
Схема выполнена так, что заряд аккумулятора производится импульсами тока в течение одной половины периода сетевого напряжения, когда напряжение на выходе схемы превысит напряжение на аккумуляторе. В течение второго полупериода диоды VD1, VD2 закрыты и аккумулятор разряжается через нагрузочное сопротивление R4.

Значение зарядного тока устанавливается регулятором R2 по амперметру. Учитывая, что при зарядке батареи часть тока протекает и через резистор R4 (10%), то показания амперметра РА1 должны соответствовать 1,8 А (для импульсного зарядного тока 5 А), так как амперметр показывает усредненное значение тока за период времени, а заряд производится в течение половины периода.

В схеме предусмотрена защита аккумулятора от неконтролируемого разряда в случае случайного исчезновения сетевого напряжения. В этом случае реле К1 своими контактами разомкнет цепь подключения аккумулятора. Реле К1 применено типа РПУ-0 с рабочим напряжением обмотки 24 В или на меньшее напряжение, но при этом последовательно с обмоткой включается ограничительный резистор.

Для устройства можно использовать трансформатор мощностью не менее 150 Вт с напряжением во вторичной обмотке 22…25 В.
Измерительный прибор РА1 подойдет со шкалой 0…5 А (0…3 А), например М42100. Транзистор VT1 устанавливаются на радиатор площадью не менее 200 кв. см, в качестве которого удобно использовать металлический корпус конструкции зарядного устройства.

В схеме применяется транзистор с большим коэффициентом усиления (1000…18000), который можно заменить на КТ825 при изменении полярности включения диодов и стабилитрона, так как он другой проводимости (см. рис. 2). Последняя буква в обозначении транзистора может быть любой.


Рис. 2. Электрическая схема зарядного устройства

Для защиты схемы от случайного короткого замыкания на выходе установлен предохранитель FU2.
Резисторы применены такие R1 типа С2-23, R2 — ППБЕ-15, R3 — С5-16MB, R4 — ПЭВ-15, номинал R2 может быть от 3,3 до 15 кОм. Стабилитрон VD3 подойдет любой, с напряжением стабилизации от 7,5 до 12 В.
обратного напряжения.

Какой провод лучше использовать от зарядного устройства до аккумулятора.

Конечно, лучше брать гибкий медный многожильный, ну а сечение нужно выбрать из расчета какой максимальный ток будет проходить по этим проводам, для этого смотрим табличку:

Если вас интересует схемотехника импульсных зарядно-восстановительных устройств с применением таймера 1006ВИ1 в задающем генераторе — прочтите эту статью:

Неоднократно мы с вами беседовали о всевозможных зарядных устройствах для автомобильного аккумуляторам на импульсной основе, сегодня тоже не исключение. А рассмотрим мы конструкцию ИИП, который может иметь выходную мощность 350-600 ватт,но и это не предел, поскольку мощность при желании можно поднять до 1300-1500 ватт, следовательно, на такой основе можно соорудить пуско-зарядное устройство, ведь при напряжении 12-14 Вольт с блока 1500 ватт можно снять до 120 Ампер тока! ну разумеется

Конструкция привлекла мое внимание еще месяц назад, когда на одном из сайтов на глаза попалась статейка. Схема регулятора мощности показалось довольно простой, поэтому решил использовать эту схему для своей конструкции, которая особа проста и не требует никакой наладки. Схема предназначена для зарядки мощных кислотных аккумуляторов с емкостью 40-100А/ч, реализована по импульсной основе. Основной, силовой частью нашего зарядного устройства является сетевой импульсный блок питания с мощностью

Совсем недавно решил изготовить несколько зарядных устройств для автомобильного аккумуляторы, который собирался продавать на местном рынке. В наличии имелись довольно красивые промышленные корпуса, стоило лишь изготовить хорошую начинку и все дела. Но тут столкнулся с рядами проблем, начиная от блока питания, заканчивая узлом управления выходного напряжения. Пошел и купил старый добрый электронный трансформатор типа ташибра (китайский бренд) на 105 ватт и начал переделку.

Довольно простое зарядное устройство автоматического типа можно реализовать на микросхеме LM317, которая из себя представляет линейный стабилизатор напряжения с регулируемым выходным напряжением. Микросхема может также работать в качестве стабилизатора тока.

Качественное зарядное устройство для авто аккумулятора, на рынке можно приобрести за 50$, а сегодня расскажу самый простой способ изготовления такого зарядного устройства с минимальными расходами денежных средств, оно простое и изготовить сможет даже начинающий радиолюбитель.

Конструкцию простейшего зарядного устройства для автомобильных аккумуляторов можно реализовать за пол часа с минимальными затратами, ниже будет описан процесс сборки такого зарядного устройства.

В статье рассмотрено простое по схемному решению зарядное устройство (ЗУ) для аккумуляторов различного класса, предназначенных для питания электрических сетей автомобилей, мотоциклов, фонарей и т.д. ЗУ простое в эксплуатации, не требует корректировок в процессе заряда аккумулятора, не боится коротких замыканий, несложно и дешево в изготовлении.

Недавно в интернете попалась схема мощного зарядного устройство для автомобильных аккумуляторов с током до 20А. На самом деле это мощный регулируемый блок питания собранный всего на двух транзисторах. Основное достоинство схемы — минимальное количество используемых компонентов, но сами компоненты довольно недешевые, речь идет о транзисторах.

Естественно у каждого в машине есть зарядки в прикуриватель для всякого рода девайсов навигатор, телефон и т.д. Прикуриватель естественно не без размерный и тем более он один (вернее гнездо прикуривателя), а если еще и человек курящий то сам прикуриватель надо вынуть куда то положить, а если уж надо что-то подключить в зарядку то тогда использование прикуривателя по прямому назначению просто невозможно, можно решить подключение всякого рода тройников с гнездом как прикуриватель, но это как то

Недавно в голову пришла идея собрать автомобильное зарядное устройство на базе дешевых китайских БП с ценой 5-10$. В магазинах электроники сейчас можно найти такие блоки, которые предназначены для запитки светодиодных лент. Поскольку такие ленты питаются от 12 Вольт, следовательно выходное напряжение блока питания тоже в пределах 12Вольт

Представляю конструкцию несложного DC-DC преобразователя, который позволит вам зарядить мобильный телефон, планшетный компьютер или любое другое портативное устройство от автомобильной бортовой сети 12 Вольт. Сердцем схемы является специализированная микросхема 34063api разработанная специально для таких целей.

После статьи зарядного устройство из электронного трансформатора на мой электронный адрес поступило много писем, с просьбой пояснить и рассказать — как умощнить схему электронного трансформатора, и чтобы не писать каждому пользователю отдельно, решил напечатать эту статью, где я расскажу о тех основных узлах, которые нужно будет переделать для увеличения выходной мощности электронного трансформатора.

Это зарядное устройство я сделал для зарядки автомобильных аккумуляторов, выходное напряжение 14. 5 вольт, максимальный ток заряда 6 А. Но им можно заряжать и другие аккумуляторы, например литий-ионные, так как выходное напряжение и выходной ток можно регулировать в широких пределах. Основные компоненты зарядного устройства были куплены на сайте АлиЭкспресс.

Вот эти компоненты:

Еще потребуется электролитический конденсатор 2200 мкФ на 50 В, трансформатор для зарядного устройства ТС-180-2 (как распаивать трансформатор ТС-180-2 посмотрите в ), провода, сетевая вилка, предохранители, радиатор для диодного моста, крокодилы. Трансформатор можно использовать другой, мощностью не менее 150 Вт (для зарядного тока 6 А), вторичная обмотка должна быть рассчитана на ток 10 А и выдавать напряжение 15 – 20 вольт. Диодный мост можно набрать из отдельных диодов, рассчитанных на ток не менее 10А, например Д242А.

Провода в зарядном устройстве должны быть толстые и короткие. Диодный мост нужно закрепить на большой радиатор. Необходимо нарастить радиаторы DC-DC преобразователя, или использовать для охлаждения вентилятор.




Сборка зарядного устройства

Подсоедините шнур с сетевой вилкой и предохранителем к первичной обмотке трансформатора ТС-180-2, установите диодный мост на радиатор, соедините диодный мост и вторичную обмотку трансформатора. Припаяйте конденсатор к плюсовому и минусовому выводам диодного моста.


Подключите трансформатор к сети 220 вольт и произведите замеры напряжений мультиметром. У меня получились такие результаты:

  1. Переменное напряжение на выводах вторичной обмотки 14.3 вольта (напряжение в сети 228 вольт).
  2. Постоянное напряжение после диодного моста и конденсатора 18.4 вольта (без нагрузки).

Руководствуясь схемой, соедините с диодным мостом DC-DC понижающий преобразователь и вольтамперметр.

Настройка выходного напряжения и зарядного тока

На плате DC-DC преобразователя установлены два подстроечных резистора, один позволяет установить максимальное выходное напряжение, другим можно выставить максимальный зарядный ток.

Включите зарядное устройство в сеть (к выходным проводам ничего не подсоединено), индикатор будет показывать напряжение на выходе устройства, и ток равный нулю. Потенциометром напряжения установите на выходе 5 вольт. Замкните между собой выходные провода, потенциометром тока установите ток короткого замыкания 6 А. Затем устраните короткое замыкание, разъединив выходные провода и потенциометром напряжения, установите на выходе 14.5 вольт.

Данное зарядное устройство не боится короткого замыкания на выходе, но при переполюсовке может выйти из строя. Для защиты от переполюсовки, в разрыв плюсового провода идущего к аккумулятору можно установить мощный диод Шоттки. Такие диоды имеют малое падение напряжения при прямом включении. С такой защитой, если перепутать полярность при подключении аккумулятора, ток протекать не будет. Правда этот диод нужно будет установить на радиатор, так как через него при заряде будет протекать большой ток.


Подходящие диодные сборки применяются в компьютерных блоках питания. В такой сборке находятся два диода Шоттки с общим катодом, их нужно будет запараллелить. Для нашего зарядного устройства подойдут диоды с током не менее 15 А.


Нужно учитывать, что в таких сборках катод соединен с корпусом, поэтому эти диоды нужно устанавливать на радиатор через изолирующую прокладку.

Необходимо еще раз отрегулировать верхний предел напряжения, с учетом падения напряжения на диодах защиты. Для этого, потенциометром напряжения на плате DC-DC преобразователя нужно выставить 14.5 вольт измеряемых мультиметром непосредственно на выходных клеммах зарядного устройства.

Как заряжать аккумулятор

Протрите аккумулятор тряпицей смоченной в растворе соды, затем насухо. Выверните пробки и проконтролируйте уровень электролита, если необходимо, долейте дистиллированную воду. Пробки во время заряда должны быть вывернуты. Внутрь аккумулятора не должны попадать мусор и грязь. Помещение, в котором происходит заряд аккумулятора должно хорошо проветриваться.

Подключите аккумулятор к зарядному устройству и включите устройство в сеть. Во время заряда напряжение будет постепенно расти до 14.5 вольт, ток будет со временем уменьшаться. Аккумулятор можно условно считать заряженным, когда зарядный ток упадет до 0.6 – 0.7 А.

Схема заряда батареи — 5 настраиваемых функций для идеальной зарядки

Для начинающих инженеров, любителей и всех, кто интересуется электроникой, схема зарядки батареи может стать одним из самых полезных проектов. Будь то батареи для светодиодов, смартфонов или других электронных устройств, невозможно прожить день без использования устройства с батарейным питанием. Разные аккумуляторы требуют разных вариантов зарядки.

По сути, это означает, что если у вас уже есть схема зарядки аккумулятора, вы захотите настроить ее в соответствии с вашими конкретными требованиями к зарядке аккумулятора. Таким образом, это то, что следующее руководство направлено на то, чтобы сделать. В нем мы рассмотрим факторы, на которые вам необходимо обратить внимание при настройке схемы зарядки, а также общие функции настройки.

 

Содержание

Факторы настройки заряда батареи

 

Существуют различные типы коммерческих перезаряжаемых батарей. Однако наиболее распространенными являются никель-металлогидридные (NiMH), никель-кадмиевые (NiCd), литий-ионные полимерные (LiPo), свинцово-кислотные и перезаряжаемые щелочные батареи.

Было бы лучше принять особые меры предосторожности, чтобы создать или настроить схему зарядки для каждого типа батареи. Таким образом, в этом разделе руководства мы рассмотрим факторы, которые могут повлиять на то, как ваша схема зарядки будет работать для каждого типа батареи.

 

Никель-металлогидридная большая сверхдолговечная изолированная батарея

 

    • Зарядка с регулируемым током: Набор транзисторов, резисторов и переключателей необходим для регулирования максимального тока во избежание перезарядки.
    • Утечка батареи: Необходимо принять особые меры предосторожности против перезарядки, так как это может привести к протечке батареи.
    • Положение батареи: Перепутывание клемм на аккумуляторе может привести к его разрядке или неправильной работе.
    • Цикл зарядки: В среднем никель-металлогидридные батареи имеют предел до 500 циклов перезарядки.

 

Никель-кадмиевые батареи перезаряжаемые

 

    • Постоянный ток: Лучший способ зарядить никель-кадмиевый аккумулятор — это заряд постоянным током. Поэтому, если вы собираетесь заряжать одну батарею AA емкостью 500 мАч, мы рекомендуем вам использовать постоянную скорость полной зарядки ниже 50 мА.
    • Циклы зарядки: NiCad аккумуляторы имеют предел до 1000 циклов зарядки и разрядки.

 

 

Литий-ионный полимерный аккумулятор

    • Пошаговая зарядка: Литий-ионные полимерные аккумуляторы менее устойчивы к перезарядке. Хотя в большинстве случаев вы можете и должны использовать постоянный ток для их зарядки, вы можете использовать метод ступенчатой ​​зарядки для безопасности и долговечности. Кроме того, вы можете добиться этого с помощью ряда резисторов, которые уменьшают силу тока в разных фазах.
    • Управление температурным режимом: литий-ионные аккумуляторы популярны благодаря возможности быстрой зарядки. Следовательно, производители смартфонов в основном используют их в своих устройствах. Однако при их зарядке необходимо обращать внимание на температуру батареи. Вы можете справиться с этим, интегрировав радиатор в конструкцию зарядного устройства. Соответственно, мониторинг температуры батареи важен для любой литий-ионной батареи. Высокие температуры могут сократить общий срок службы батареи.

 

Иллюстрация литий-ионного аккумулятора

 

 

свинцово-кислотный аккумулятор

 

  • 3
  • 3
    • Постоянное напряжение: Мы заряжаем герметичные свинцово-кислотные аккумуляторы методом постоянного напряжения.
    • Постоянный ток: Мы заряжаем герметичный свинцово-кислотный аккумулятор постоянным током до тех пор, пока он не достигнет определенного значения напряжения, а затем непрерывно подзаряжаем его. Таким образом, вам нужно будет соответствующим образом построить или изменить схему зарядки.
    • Автоматическое отключение: Чтобы предотвратить перезарядку, мы должны интегрировать механизм автоматического отключения.
  •  

    Общие конфигурации цепей зарядки аккумуляторов

     

    Электронные компоненты, разложенные на принципиальной схеме

    , мы рассмотрим различные конфигурации

    . Мы рассмотрим части и принципы для каждого.

    12V CONS TANT напряжение зарядное устройство

    Список деталей

    , чтобы создать свою константную заряду батареи.

    • Резистор 10 кОм x 2 (R1 и R2)
    • Резистор 1 кОм (R3)
    • Резистор 6 кОм (R4)
    • Резистор 12 Ом x 2 (R5 и R6)
    • Конденсатор 1 нФ (C1)
    • Конденсатор 220 мкФ (C2)
    • 1N4001 Диод (D1)
    • 1N4148 Диод x 2 (D2 и D3)
    • Зеленый светодиод (D4)
    • Транзистор BD140 (T1)
    • BC546 Транзистор (T2)
    • Трансформатор 18 В

     

    Принцип

     

    Зарядное устройство постоянного напряжения представляет собой простую схему зарядного устройства, которую можно спроектировать, построить и в конечном итоге настроить. Мы обычно используем их в герметичных свинцово-кислотных аккумуляторах для автомобилей. Обычно они состоят из источника постоянного тока (DC), который может состоять из понижающего трансформатора и выпрямителя. Если вы планируете использовать зарядное устройство постоянного напряжения для литий-ионного полимерного аккумулятора, вам потребуется более совершенная конструкция.

    Вышеупомянутое зарядное устройство постоянного напряжения можно использовать для зарядки одной батареи или нескольких батарей. Однако они должны иметь суммарное напряжение 12 В. Таким образом, вы можете использовать его для зарядки шести 2-вольтовых аккумуляторов.

    Приведенная выше конструкция достаточно компактна, чтобы ее можно было упаковать в сетевой адаптер. Его также сложно использовать неправильно. И наоборот, даже если вы подключите батареи с обратной полярностью, это не вызовет короткого замыкания и не повлияет на цепь. Эта схема заряда батареи использует зеленый светодиод в качестве индикатора.

    В нем используется вторичная цепь с диодным мостом 1N4001 для выпрямления переменного тока 18 В, который подается от трансформатора. Ток 6 мА будет проходить через цепь и заряжать разряженную батарею. Он пройдет от R2 к D2, а затем от R4 к R6, пока не достигнет D1.

    Как только напряжение батареи достигнет 0,5 В, база-эмиттер первого транзистора насыщается настолько, что приводит его в состояние проводимости. В целом, для полной зарядки NiCD-аккумулятора емкостью 500 мАч потребуется 12 часов. Транзистор T1 предотвратит его короткое замыкание.

    Nickel-Cadmium Battery Charge

    Никель-кадмий-батареи

    Список деталей

    011111112

    0701101101.6.6003 9003
        11111111112

        9000 3

        .
      • Кабель питания от сети с входом питания 230 В переменного тока
      • 1N4007 PN-выпрямительный диод
      • Резистор 10 Ом x 2
      • Зеленый светодиод

       

      Принцип

       

      Если предыдущая настройка схемы зарядки батареи покажется вам слишком сложной для создания, вот более простая схема. Это простое металлическое зарядное устройство для никель-кадмиевых аккумуляторов, которое требует меньше деталей, чем предыдущая базовая конструкция. На самом деле, все, что вам нужно, это в общей сложности шесть компонентов.

      Вы можете использовать его для подзарядки аккумулятора мобильного телефона и перезаряжаемого фонарика. В этом проекте мы советуем вам использовать две батареи размера AA. Вы также можете использовать приведенную выше схему зарядки аккумулятора для зарядки сухих батарей.

      Приведенная выше схема представляет собой медленное зарядное устройство. Таким образом, это обеспечит срок службы вашей батареи. Кроме того, для полной зарядки аккумуляторов потребуется 12 часов. В схеме используется переменный ток 220 В, который проходит через понижающий трансформатор 0-6 В. Затем цепь проводит ток к диодам 4007 и пропускает его через резистор 10 Ом, прежде чем достичь вторичной цепи.

      Схема также имеет вторичную цепь, которая соединяет резистор 10 Ом параллельно с зеленым светодиодом. Мы используем светодиод для индикации состояния цепи (включен или выключен). Как только он проходит через вторичную обмотку, ток достигает батареи.

      12V Аккумуляторная схема и зарядная цепь поплавок

      Электрическая схема и счетчик AMP

      Перечисление партий

      • 11717 -rigtable.
      • Операционный усилитель LM358 (IC2)
      • BC547 NPN-транзистор (T1)
      • Светодиод 5 мм x 3 (L1, L2 и L3)
      • Зенор-диод 8 В (ZD1)
      • 1/4 Вт +-5% Углеродный резистор 270 Ом (R1)
      • Диод выпрямителя N4007 x 5 (D1, D2, D3, D4 и D5)
      • ¼-Ватт +-5% Углерод 2,2 кОм (R2)
      • Потенциометр 2 кОм (VR1)
      • ¼-Ватт +-5% Углерод 10 кОм (R3 и R6)
      • Потенциометр 5 кОм (VR2)
      • ¼-Ватт +-5% Углерод 22 кОм (R4 и R5)
      • 5 Вт +-5% углерода 0,2 Ом (R7)
      • ¼-Ватт +-5% Углерода 4,7 кОм (R8 и R9)
      • Потенциометр 20 кОм (VR3)
      • Алюминиевый электролитический конденсатор 220 мкФ, 40 В (C1)
      • Алюминиевый электролитический конденсатор 10 мкФ, 25 В (C2 и C3)
      • Керамический дисковый конденсатор 1 мкФ (C4)
      • Вход питания 230 В переменного тока
      • Вторичный трансформатор 15–0–15 В (X1)
      • 2-контактный разъем (CON1)
      • Аккумулятор 12 В, 7 Ач (CON2)
      • 2-контактный разъем-перемычка (J1)
      • Переключатель включения/выключения (S1)
      • Радиатор для LM317 (S2)
      Principle

       

      Если вы ищете гораздо более сложную схему настройки схемы, то стоит остановиться на этом. Схема позволяет заряжать герметичные свинцово-кислотные аккумуляторы 12В 7Ач. Он будет заряжать аккумулятор до тех пор, пока не достигнет напряжения поглощения. Как только он пройдет стадию поглощения, он перейдет в плавающую стадию, чтобы поддерживать заряд на своем плавающем напряжении. Максимальное плавающее напряжение составляет 14,3 В, а максимальное плавающее напряжение составляет 13,8 В.

      Основные компоненты схемы включают трансформатор 15–0–15 В (X1), компаратор операционного усилителя (IC2), регулируемый стабилизатор напряжения LM358 (IC2), а также несколько других деталей. 230 В переменного тока подается на трансформатор, который снижает основное напряжение. Впоследствии его выпрямляют первые два диода IN4007 (D1 и D2). Далее он дойдет до LM317, который его сгладит.

      Мы советуем установить радиатор на стабилизатор напряжения LM317, чтобы выполнить тяжелую работу в цепи. Кроме того, вы должны разместить четвертый конденсатор (C4) рядом с компаратором операционного усилителя (IC2), если это возможно. Для калибровки вам потребуется использовать 2-контактную перемычку (j1).

      Первоначально, когда вы устанавливаете напряжение зарядки, вам нужно будет удалить перемычку и снова подключить ее после завершения цикла калибровки.

      Схема зарядного устройства для зарядного устройства для быстрого кислотного аккумура
    • Резистор 820 Ом (R3)
    • Резистор 560 Ом (R4)
    • Резистор 470 Ом (R5)
    • Потенциометр предварительной настройки 500 Ом (P1)
    • Конденсатор 1000 мкФ, 25 В (C1)
    • 330 н Конденсатор (C2)
    • Конденсатор 1 мкФ 16 В (C3)
    • Измеритель с подвижной катушкой 500 мА (M1)
    • Вторичный сетевой трансформатор 12 В, 600 мА (Tr1)
    • Выключатель DPST (S1)
    • Радиатор замедленного действия 100 Ма
    • 1N4001 Диоды x 6 (D1,D2,D3,D4,D7 и D8)
    • IN41148 Диоды x 2 (D5,D9)
    • Зеленый светодиод (D6)
    • Регулятор L200 (IC1)

     

    Принцип

     

    Вы можете использовать эту настройку схемы зарядки кислотных аккумуляторов для быстрой зарядки свинцово-кислотных аккумуляторов 6 В и 12 В. Кроме того, эта конструкция имеет компонент автоматического отключения. Таким образом, он может работать как схема автоматического зарядного устройства, или вы можете настроить его так. Кроме того, он имеет встроенную защиту от короткого замыкания, неправильной полярности и температурных перегрузок.

    Нынешний дизайн соответствует требованиям времени, поскольку обеспечивает быструю зарядку. Однако это может привести к снижению емкости и срока службы батареи.

    В этой схеме используется регулятор напряжения L200 для поддержания зарядного тока. В свою очередь, первые два резистора предназначены для сокращения тока. Однако второй резистор необходим только в том случае, если вы используете зарядный ток выше 0,5 А.

    Мы рекомендуем использовать радиатор с регулятором L200. Запитать схему можно как от сети, так и от автомобильного аккумулятора 12 В. Тем не менее, если вы планируете использовать автомобильный аккумулятор на 12 В, вам следует подать вторичное напряжение 18 В. Дополнительно необходимо поднять сопротивление первого резистора (R1) до 1кОм. Кроме того, вы должны заменить первый предустановленный потенциометр на предустановленный 1 кОм.

    Высокая тока-зарядная схема зарядного устройства

    Красный литий-ионный ионный

  • Резистор 240 Ом (R2)
  • Резистор 10 кОм (R3 и R4)
  • Потенциометр предварительной настройки 10 кОм x 2 (P1 и P2)
  • 6A4 — 400 В, 6 А, переключающий диод x 2 (D1 и D5)
  • 1N4148 Диод (D2)
  • 7 В ½ Вт ЗЕНЕР ДИОД x 2 (D3 и D4)
  • 741 Операционный усилитель для входа 12 В (IC1)
  • Регулируемый регулятор LM338 (IC2)
  •  

    Принцип

     

    Эта настройка заряда батареи требует меньше усилий, чем две предыдущие. Фактически, вы можете повторно использовать некоторые компоненты из предыдущей настройки для выполнения этой. Этот дизайн включает два важных этапа; ступень отсечки перезарядки (IC1) и ступень регулятора напряжения (IC2).

    Если вы собираетесь использовать вход 12 В, вам нужно будет использовать операционные усилители 741 для входа 12 В. Однако, если вы планируете увеличить входное напряжение с помощью входа 24 В, вам понадобится один операционный усилитель LM321 (IC1).

    Первый потенциометр предварительной настройки (P1) функционирует как диск управления для изменения зарядного напряжения в цепи. Второй потенциометр помогает предотвратить перезарядку. При настройке в первый раз не подключайте выходную батарею.

    Далее вам нужно установить второй горшок (P2) на уровень земли. После этого вам нужно будет отрегулировать первый горшок, чтобы получить наилучший уровень напряжения для зарядки аккумулятора. Вы также можете использовать зеленый и красный светодиоды для отображения состояния.

     

    Заключение

     

    В приведенном выше руководстве показано, как можно заряжать почти все типы аккумуляторов путем настройки схемы аккумуляторной батареи. Мы включили то, что, по нашему мнению, было пятью лучшими функциями и типами настройки. Мы позаботились о том, чтобы было отличное сочетание сложных и простых в сборке конструкций. Являетесь ли вы новичком или опытным любителем электроники, вы найдете большую ценность в приведенном выше тексте. Тем не менее, мы надеемся, что вам понравилось читать это руководство. Добавьте его в закладки и поделитесь им со всеми своими друзьями. Как всегда, спасибо за чтение.

     

     

     

    Автомобильное зарядное устройство

    Автомобильное зарядное устройство
    Главная > Схемы > Источники питания > Автомобильное зарядное устройство

    Поиск:

    Автор просмотров просмотров сегодня Ранг Комментарии
    875 318 8 159
    Это зарядное устройство быстро и легко зарядит любой свинцово-кислотный аккумулятор. Зарядное устройство обеспечивает полный ток до тех пор, пока ток, потребляемый аккумулятором, не упадет до 150 мА. В это время подается более низкое напряжение, чтобы завершить работу и предотвратить перезарядку. Когда батарея полностью заряжена, схема выключается и загорается светодиод, сообщая вам, что цикл завершен.

    Схема

    Часть
    Всего шт.
    Описание
    Замена
    R1 1 500 Ом 1/4 Вт Резистор
    R2 1 3K 1/4 W Resistor
    R3 1 1K 1/4 W Resistor
    R4 1 15 Ohm 1/ 4 W Resistor
    R5 1 230 Ohm 1/4 W Resistor
    R6 1 15K 1/4 W Resistor
    R7 1 0. 2 Ohm 10 W Resistor
    C1 1 0.1uF 25V Ceramic Capacitor
    C2 1 1uF 25V Electrolytic Capacitor
    C3 1 1000pF 25V Ceramic Capacitor
    D1 1 1N457 Diode
    Q1 1 2N2905 PNP Transistor
    U1 1 LM350 Regulator
    U2 1 LM301A Op Amp
    S1 1 Normally Open Push Button Switch
    РАЗНОЕ 1 Провод, плата, радиатор для U1, корпус, клеммы или зажимы типа «крокодил» для выхода
    1. Схема должна питаться от источника питания, поэтому на схеме нет трансформатора, выпрямителя или фильтрующих конденсаторов. Нет причин, по которым вы не можете добавить их.
    2. Для U1 потребуется радиатор.
    3. Чтобы использовать схему, подключите ее к источнику питания. Затем подключите заряжаемую батарею к выходным клеммам. Все, что вам нужно сделать сейчас, это нажать S1 (переключатель «Старт») и дождаться завершения схемы.
    4. Если вы хотите использовать зарядное устройство без внешнего источника питания, используйте следующую схему.

      Часть
      Всего шт.
      Описание
      Замена
      C1 1 Электролитический конденсатор 6800 мкФ 25 В
      T1 1 3A 15V Transformer
      BR1 1 5A 50V Bridge Rectifier 10A 50V Bridge Rectifier
      S1 1 5A SPST Switch
      F1 1 Предохранитель 4 А 250 В
    5. При первом использовании схемы следует время от времени проверять ее, чтобы убедиться, что она работает правильно и батарея не перезаряжается.

    Родственные цепи

    Преобразователь 6 В в 12 В, портативный адаптер для проигрывателя компакт-дисков для автомобиля, зарядное устройство для автомобильного аккумулятора, автоматическое зарядное устройство для свинцово-кислотных аккумуляторов 12 В, полупроводниковая катушка Тесла / высоковольтный генератор, инвертор 12 В постоянного тока в 120 В переменного тока, источник питания лазера, источник питания, сильноточный источник питания, двойной Полярный источник питания, высоковольтный сильноточный источник питания, бестрансформаторный источник питания, источник постоянного напряжения, инвертор напряжения, инвертор напряжения II, автоматический выключатель питания с определением нагрузки, преобразователь постоянного тока 12 В в 24 В, полупроводниковая катушка Тесла

    Комментарии

    анонимно
    Автомобильное зарядное устройство
    Воскресенье, 12 апреля 2015 г. 11:03:44
    Я новичок, но я собрал это зарядное устройство, и оно работает так, как должно. Я собираюсь подключить его к настольному вентилятору, который я преобразовал в генератор, и заряжать аккумулятор в ветреные дни. Отличный сайт.
    Ричард
    Автомобильное зарядное устройство
    Пятница, 21 октября 2011 г. 8:11:48
    от источника питания плюс и минус питания подключаются к чему в зарядном устройстве? у него только один «IN» куда идет минус питания? земля идет на трансформатор правильно?
    батарея leoch
    Зарядное устройство для автомобильного аккумулятора
    Пятница, 16 сентября 2011 г. 5:10:16
    Я просто больше знаю об автомобильном аккумуляторе. Не перезаряжайте аккумулятор, иначе он повредится.
    анонимно
    Автомобильное зарядное устройство
    Четверг, 1 сентября 2011 г. 6:59:10
    Могу ли я использовать 8-амперный стабилизатор напряжения 13,8 В в качестве источника питания для автомобильного зарядного устройства?
    Ли
    Автомобильное зарядное устройство
    9 февраля 2011 г. 15:17:59
    каким должно быть выходное напряжение зарядного устройства? я получил около 15 В в соответствии с multisim. спасибо
    анонимно
    Автомобильное зарядное устройство
    Четверг, 28 октября 2010 г. 8:41:28
    привет, когда вы говорите «почти любой свинцово-кислотный аккумулятор», вы имеете в виду, что он также будет заряжать 6 вольт?
    шоаиб
    Автомобильное зарядное устройство
    Воскресенье, 10 октября 2010 г. 7:04:10
    Могу ли я использовать любой другой диод вместо D1 IN457? Помогите мне, пожалуйста….
    Макс.
    Автомобильное зарядное устройство
    пятница, 25 июня 2010 г. 13:15:25
    Отличная схема! Буду использовать как зарядное устройство для аккумуляторов. Спасибо
    сиамак
    Автомобильное зарядное устройство
    Воскресенье, 20 июня 2010 г. 23:41:25
    Схема, которую вы предложили, имеет вход 18 В, я думаю, что это должно быть напряжение постоянного тока, и, как вы знаете, трансформатор переменного тока 12 В после прохождения через диодный мост дает 18 В постоянного тока (корневой квадрат 12×2). поэтому я думаю, что для этой схемы достаточно трансформатора на 12 В переменного тока с током 3 ампера, все в порядке?
    Спудж
    Автомобильное зарядное устройство
    Пятница, 28 мая 2010 г. 8:38:17
    Хорошая трасса. что нужно изменить, если я хочу, чтобы он быстро заряжал аккумулятор на 140 ампер. Мне нужно зарядное устройство от 10 до 20 ампер, по крайней мере. Для моих ИБП у нас здесь 4-5 часов отключения электроэнергии каждый день.
    В настоящее время отображаются последние 10 комментариев. Показать все комментарии.

    Вернуться на страницу цепей | напишите мне | Поиск

    Разработка собственных решений для зарядки аккумуляторов электромобилей

    Приведенные ниже указания по применению должны помочь разработчикам в разработке собственных решений для зарядки аккумуляторов электромобилей. При необходимости можно получить помощь от компании.

    Популярность электромобилей (EV) в Индии быстро растет. Согласно опросу, рынок электромобилей в Индии, по оценкам, увеличится с 3 миллионов единиц в 2019 году до 29 миллионов единиц к 2027 году при среднегодовом темпе роста в 21,1%. В результате спрос на зарядные устройства переменного/постоянного тока, интеллектуальные зарядные устройства для электромобилей, также будет расти.

    Для эффективной зарядки аккумуляторов и обеспечения их длительного срока службы нам нужна интеллектуальная система управления батареями или зарядки. Чтобы реализовать такую ​​систему зарядки электромобилей, Holtek разработала интеллектуальные решения для зарядки аккумуляторов электромобилей, основанные на недорогом флэш-микроконтроллере (MCU) ASSP HT45F5Q-X для зарядки аккумуляторов электромобилей.

    В настоящее время для быстрой разработки продукта доступны три конструкции зарядных устройств для электромобилей, подходящие для индийского рынка, со спецификациями 48 В/4 А, 48 В/12 А и 48 В/15 А. Эта интеллектуальная система зарядки на основе полупроводников может поддерживать как литий-ионные, так и свинцово-кислотные батареи.

    Блок-схема решения для зарядки аккумуляторов электромобилей показана на рис. 1. Здесь зарядное устройство ASSP flash MCU HT45F5Q-X является сердцем схемы зарядного устройства электромобиля со встроенными операционными усилителями (OPA) и цифровым преобразователем. -аналоговые преобразователи (ЦАП), необходимые для функции зарядки аккумулятора.

    Рис. 1: Блок-схема зарядного устройства электромобиля

    Технические характеристики флэш-микроконтроллера зарядного устройства серии HT45F5Q-X показаны на рис. 2. Разработчики могут выбрать подходящий микроконтроллер из серии HT45F5Q-X в соответствии с требованиями своего приложения.

    Рис. 2: Технические характеристики HT45F5Q-X

    Особенности и работа зарядного устройства для электромобилей для спецификации 48 В/12 А кратко описаны ниже. В этой конструкции зарядного устройства для электромобиля используется микроконтроллер HT45F5Q-2 для реализации функции управления зарядкой аккумулятора.

    MCU включает в себя модуль зарядки аккумулятора, который можно использовать для управления зарядкой с обратной связью с постоянным напряжением и постоянным током для эффективной зарядки аккумулятора. Внутренняя блок-схема MCU HT45F5Q-2 представлена ​​на рис. 3.9.0003 Рис. 3: Блок-схема HT45F5Q-2

    Модуль зарядки аккумулятора в HT45F5Q-2 имеет встроенные OPA и DAC, необходимые для процесса зарядки. Таким образом, конструкция снижает потребность во внешних компонентах, таких как шунтирующие регуляторы, ОУМ и ЦАП, которые обычно используются в обычных цепях зарядки аккумуляторов. В результате периферийная схема компактна и проста, что приводит к меньшей площади печатной платы и низкой общей стоимости.

    Работа зарядного устройства электромобиля

    Входная мощность зарядного устройства электромобиля представляет собой переменное напряжение в диапазоне от 170 до 300 В. Зарядное устройство электромобиля использует полумостовую конструкцию резонансного преобразователя LLC из-за его характеристик высокой мощности и высокой эффективности для получения мощности постоянного тока для зарядки аккумулятора.

    В конструкции используется схема выпрямителя для преобразования входного переменного напряжения в высокое постоянное выходное напряжение, а также фильтр электромагнитных помех (ЭМП) для устранения высокочастотных помех от входного источника питания. Микросхема контроллера широтно-импульсной модуляции (ШИМ), такая как UC3525, может использоваться для управления полевыми МОП-транзисторами полумостового LLC-преобразователя.

    Процесс зарядки аккумулятора контролируется MCU HT45F5Q-2. Он отслеживает напряжение батареи и уровни зарядного тока и дает обратную связь на микросхему ШИМ-контроллера. Основываясь на обратной связи, ШИМ-контроллер изменяет рабочий цикл своего ШИМ-сигнала и управляет схемой MOSFET для получения переменного выходного напряжения и тока для зарядки аккумулятора.

    Для лучшей защиты HT45F5Q-2 изолирован от остальной части схемы (т. е. высоковольтных компонентов) с помощью оптрона. Светодиодные индикаторы уровня заряда батареи предназначены для определения состояния зарядки.

    Процесс зарядки аккумулятора

    Изменение зарядного напряжения и тока во время процесса зарядки графически показано на рис. 4. Если напряжение аккумулятора слишком низкое при подключении для зарядки, низкий зарядный ток (т. е. непрерывный заряд (TC)) будет установлен изначально, и начнется процесс зарядки.

    Рис. 4: Кривая зарядки аккумулятора

    Когда напряжение аккумулятора увеличивается до заданного уровня (Vu), для зарядки применяется постоянное напряжение (CV) и постоянный ток (CC), которые продолжаются до тех пор, пока аккумулятор не будет полностью заряжен. Аккумулятор считается полностью заряженным, когда напряжение достигает VOFF. Когда зарядный ток падает до Iu, устанавливается конечное напряжение (FV). Процесс контроля напряжения, тока и температуры в этом зарядном устройстве для электромобилей описан ниже.

    (a) Контроль напряжения

    Напряжение зарядки определяется на основе начального напряжения батареи, когда она подключена для зарядки. По мере зарядки напряжение зарядки изменяется соответствующим образом, и, наконец, когда батарея полностью заряжена, устанавливается окончательное напряжение. Уровни принятия решений по зарядному напряжению для зарядного устройства 48 В/12 А поясняются ниже.

    • Если напряжение аккумулятора <36 В, TC (0,6 А) зарядка, установка напряжения FV (56 В)
    • Если напряжение батареи <40 В, TC (0,6 А) зарядки, установка напряжения CV (58 В)
    • Если напряжение батареи > 40 В, зарядка CC (12,0 А), установка напряжения CV (58 В)
    • При полной зарядке напряжение устанавливается на FV (56 В). Если напряжение батареи ниже FV, зарядный ток будет сброшен до CC (12,0 А).

    (b) Контроль тока

    Ток заряда устанавливается в зависимости от напряжения аккумулятора. Первоначально, если напряжение батареи слишком мало, для зарядки батареи будет установлен ток подзарядки. Как только напряжение батареи достигает определенного уровня, для зарядки подается постоянный ток, пока батарея не будет полностью заряжена. Уровни принятия решений по зарядному току для зарядного устройства 48 В/12 А перечислены ниже.

    • Ток перезарядки <1,2 А, определить окончание зарядки
    • Ток перезарядки >0,2 А, определить начало зарядки

    (c) Защита от перегрева

    Зарядное устройство электромобиля оснащено термистором с отрицательным температурным коэффициентом (NTC) для контроля температуры и вентилятором для регулирования нагрева. При повышении температуры автоматически включается вентилятор для отвода тепла; он выключается, когда температура снижается до нижнего установленного порога. Кроме того, вентилятор включается при высоком зарядном токе и выключается при низком зарядном токе.

    • Когда температура NTC >110°C, зарядный ток будет снижен до 50 % зарядного тока и будет периодически контролироваться

    (d) Светодиодные индикаторы состояния зарядки

    Они перечислены ниже.

    • TC зарядка, красный индикатор медленно мигает (0,3 с горит, 0,3 с выключается)
    • CC, CV-зарядка, красный индикатор быстро мигает (0,1 с горит, 0,1 с выключается)
    • При отсутствии зарядки горит зеленый индикатор
    • Когда время зарядки превышает восемь часов, ярко горят красный и зеленый индикаторы

    (e) Продолжительность зарядки

    При превышении продолжительности зарядки (длительность зависит от емкости аккумулятора) напряжение падает до FV, ток снижается до TC, и зарядное устройство повторно контролирует напряжение аккумулятора.

    Схема и сборка печатной платы

    Схема конструкции зарядного устройства Holtek EV для типа 48 В/12 А показана для справки на Рис. 5, а его печатная плата в сборе показана на Рис. 6.

    Рис. 5: Схема зарядного устройства EV для 48 В/12 А 12А
    Скачать исходное изображение: 
    щелкните здесь

    Флэш-микроконтроллер ASSP HT45F5Q-2 также можно использовать для разработки решений с более высокой мощностью. Он предлагает программируемую опцию для установки пороговых значений параметров, что делает его очень удобным для конструкций зарядных устройств для электромобилей. Holtek предоставляет технические ресурсы, такие как блок-схемы, схемы приложений, файлы печатных плат, исходный код и т. д., чтобы помочь разработчикам в быстрой разработке продукта и сокращении времени выхода на рынок.

    Рис. 6: Сборка печатной платы зарядного устройства для электромобилей

    Платформа разработки зарядных устройств для электромобилей для серии HT45F5Q-X скоро будет доступна.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *